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Abstract

We pay homage to George B. Dantzig by describing a less well-known part of his legacy – his early and dedicated championship
of the importance of systems optimization in solving complex real-world problems.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

George B. Dantzig, affectionately known as “GBD”, was a remarkable mathematician and an equally remarkable
person, famous for many things: inventing the simplex method for linear programming; foundational research on
duality, complementarity theory, integer programming, quadratic programming, decomposition algorithms, stochastic
programming, and methods for large specially structured linear programs; inspiring generations of students and
colleagues; and shaping the entire field of optimization. Although George’s lifetime achievements include a substantial
body of deep theory, he derived his greatest professional satisfaction from the successful application of theory to real-
world problems. In [2], he comments

. . . because my mathematics has its origin in a real problem doesn’t make it less interesting to me – just the other
way around, I find it makes the puzzle I am working on all the more exciting. I get satisfaction out of knowing
that I’m working on a relevant problem.

The five coauthors were all privileged to work with George at the Systems Optimization Laboratory (SOL) in the
Operations Research Department at Stanford University. We focus mainly on George’s role in defining and supporting
systems optimization; we have also included a few reminiscences that typify GBD’s endearing personal qualities.
Detailed chronological descriptions of GBD’s career are given by Dick Cottle in [5,6].

∗ Corresponding author. Tel.: +1 212 998 3056; fax: +1 212 995 3883.
E-mail addresses: pgill@ucsd.edu (P.E. Gill), walter@stanford.edu (W. Murray), saunders@stanford.edu (M.A. Saunders),

tomlin@yahoo-inc.com (J.A. Tomlin), mhw@cs.nyu.edu (M.H. Wright).

1572-5286/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2007.01.002

http://www.elsevier.com/locate/disopt
mailto:pgill@ucsd.edu
mailto:walter@stanford.edu
mailto:saunders@stanford.edu
mailto:tomlin@yahoo-inc.com
mailto:mhw@cs.nyu.edu
http://dx.doi.org/10.1016/j.disopt.2007.01.002


152 P.E. Gill et al. / Discrete Optimization 5 (2008) 151–158

2. GBD’s perspective on systems optimization

During and after World War II, GBD worked for the United States Air Force, where one of his tasks was to develop
mathematical models that could be used to formulate practical planning and scheduling problems. He describes the
then-prevailing situation in [2]:

The ground rules used in planning were expressed in a completely different format from the way we now
formulate a linear program. What we did was review these rules one by one and demonstrate that almost all
could be reformulated acceptably in linear programming format. . . .

. . . I learned from Koopmans in 1947 that the economists didn’t have an algorithm, and that was bad news.
The generals in the Air Force were paying us to solve real planning problems. By hook or crook, we were
expected to find a practical way to solve them.

His Air Force work led to the simplex method, which succeeded in solving what would be seen today as very small
linear programs, such as a 77-variable diet problem. However, at the time this was an impressive accomplishment [17],
requiring 120 man-days using hand-operated desk calculators!

Given the limited computing power available during the 1940s and 1950s, there was no possibility then of
solving “realistic” systems-scale linear programs, meaning those with thousands of inequalities and unknowns. But
by the 1960s, progress in hardware, algorithms, and software meant that some linear programming problems of this
scale could be solved in a reasonable time on existing computers, and George’s dream of a “systems optimization
laboratory”, inspired by the pioneering work of Wassily Leontief [2, page 303], began to take shape. Starting in the
mid-1960s, GBD spoke about this ambitious concept at many conferences, arguing that there was an urgent need for
environments that he described in detail in what we shall call the “SOL paper”, entitled “On the need for a systems
optimization laboratory”.

The SOL paper in fact appeared twice: in 1973 with eight authors (but missing an “s” on “systems”) [9], and in
1974, with George as the sole author, in the proceedings of a 1971 NATO conference [7]. Despite having multiple
coauthors, the 1973 version contains evidence that it represents primarily George’s views, such as “I cite some
examples”, “it is my belief”, and “Philip Wolfe and myself”. Hence we are comfortable in describing it as GBD’s
paper and GBD’s vision.

GBD asserts in the SOL paper that, because complex and urgent real-world problems require total system planning,
modeling, and optimization, it is necessary to create systems optimization laboratories in which there is a “critical
mass” of people and resources so that:

1. Representative problems can be modeled mathematically;
2. General-purpose optimization methods can be devised;
3. Software implementing these methods can be written and systematically tested on representative problems;
4. Insights can be obtained into the nature of the problems and the properties of the general methods;
5. Based on these insights, methods can be developed to take advantage of the special structure of the most interesting

and important problems.

An essential part of GBD’s perspective was that the fruits of all these activities should be freely available to the wider
community.

As justification for systems optimization laboratories, GBD pointed out that many complex problems can be solved
only if they are viewed as total systems. His list of examples includes investment planning over time; engineering
design and optimization; physical, biological, and ecological systems; urban planning; and transportation systems.
GBD presented an ambitious and prophetic concept ahead of its time, recognizing (for what we believe to have been
the first time) many of the organizational issues that needed to be solved to make significant progress toward modeling
and optimizing complex systems.

3. The early days of the Stanford SOL

In addition to conceiving a grand vision, GBD was determined to found an actual systems optimization laboratory
within the Operations Research (OR) Department at Stanford. Several OR faculty, including Dick Cottle, Fred Hillier,
and Alan Manne, were supportive of such an activity, but the department did not wish to appoint multiple regular
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faculty with very similar research interests in numerical optimization and software. Hence George’s only hope was to
find external funding for full-time researchers.

Unfortunately for the nascent Stanford SOL, in those days United States government agencies were reluctant to
fund software development, which was not considered to be fundamental research. GBD nonetheless continued in his
low-key but persistent way to seek and obtain funding to establish an SOL. The authors of this paper believe that it
is now safe to reveal that he managed to do so by bootstrapping grants in optimization that emphasized mathematical
theory without mentioning any of the software-related activities that he planned to include.

The funding that GBD was able to raise covered scientific personnel, but certainly not lavish accommodations
or equipment. John Tomlin was the first person to work full-time explicitly at the Stanford SOL. When he arrived
in 1970 as an IBM post-doctoral fellow, the largest room in the OR Department was impressively labeled “Model
Optimization Laboratory”. However, the room was almost empty, containing only a drafting table, a large cabinet
with many wide, short drawers, and an IBM “golfball” computer terminal – the sole connection between the OR
Department and the computer center across the campus. When John returned to Stanford in 1972 as the Assistant
Director of SOL, the room had been relabeled as the “Systems Optimization Laboratory”, but there was a large gap
between his imposing title and the unchanged reality of an organization that still possessed a drafting table (whose
purpose was never clarified), but no official funding and very little structure.

Despite the sparse environment and uncertain financial support, admirable results were produced almost
immediately. In particular, John used the golfball terminal to write the initial versions of his linear programming
“LPMx” codes, intended to test basis updating methods [35]. Ph.D. students with practical inclinations also became
involved with SOL activities, although they were warned by George that they needed to “math it up” to pass muster
with the primarily theoretical OR Department.

The next step toward creation of the critical mass envisaged by GBD was the arrival in 1975 of Michael Saunders,
whose 1972 Ph.D. thesis in the Computer Science Department at Stanford treated linear algebraic issues in the simplex
method (with GBD as a member of his thesis committee). Michael stayed at SOL for two years, then went back to New
Zealand for two years, and finally returned to Stanford in 1979. Margaret Wright arrived in 1976, another Ph.D. from
Stanford’s Computer Science Department; John Tomlin departed in 1977; and Philip Gill and Walter Murray joined
SOL in 1979 from the National Physical Laboratory in Teddington, England.

We note for completeness that, in addition to GBD, Martin Beale (Imperial College), Gene Golub (Stanford), and
Jim Wilkinson (National Physical Laboratory) influenced the early SOL work on numerical software by the present
authors.

Many changes have taken place at Stanford since those early years. Gerd Infanger’s arrival in 1989 was an
especially important event for GBD, who collaborated closely with Gerd on stochastic programming until the late
1990s. (See [29] for information about today’s Stanford SOL.)

4. GBD and optimization software

GBD refers to himself in [2] as “expert at programming planning methods using the only ‘computing machines’
we had then . . . hand-operated desk calculators” during 1941–1945; John Tomlin recalls that, at their first meeting
in 1969, George wore a button saying “My computer understands me”. GBD appreciated very early the impact and
potential of computers as tools to solve real-world problems. (For this reason, he had a joint appointment in Stanford’s
Computer Science Department.) In happy (for us) contrast to some of his colleagues who regarded the design and
writing of software as trivial or uninteresting, he dedicated vast amounts of his time and energy to generating support
for, nurturing, and protecting software-related activities.

The problems that GBD loved the most, without question, were linear programs, preferably stochastic with staircase
structure. In the hallway outside his office, he had posted an imitation Charles Schulz cartoon depicting the “Peanuts”
character Linus sucking his thumb and holding his blanket, with the caption “Happiness is assuming the world is
linear”. Hence it is no surprise that the first software produced at the Stanford SOL (by John Tomlin) was the linear
programming code LPM1 [35], making George’s vision of freely available SOL software a reality.

Despite GBD’s personal focus on linear programming, he was entirely supportive of the Stanford SOL’s expansion
into nonlinearity. In the mid-1970s, Michael Saunders, together with Bruce Murtagh, produced the first version of the
code MINOS (Modular In-core Nonlinear Optimization System). Originally designed for problems with a nonlinear
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objective function and linear constraints [25], this code has morphed into today’s all-nonlinear MINOS [26], and is
probably the software most associated with the Stanford SOL.

Other software developed at the Stanford SOL during its first decade includes LCPL for linear complementarity
problems [37,38]; QPSOL for nonconvex quadratic programming; LSSOL for linearly constrained linear least-squares
problems; and NPSOL for nonlinearly constrained optimization [14].

5. A historical aside: GBD, the Stanford SOL, Khachiyan, and Karmarkar

Throughout his career, George described his invention of the simplex method with characteristic modesty [8]:

I thought the method might be efficient [in the sense that it required a small number of steps relative to the
exponential number of combinations] but not practical, so I continued to look for a better algorithm. About a
year later . . . my group asked me why I continued to look elsewhere when the simplex algorithm was working
out so well on the test problems. . . . I certainly did not anticipate that it would turn out to be so terrific.

Never one to rest on his laurels, GBD keenly followed theoretical and practical advances in linear programming,
especially the quest to discover a polynomial-time method. He mused on various occasions about the contrived nature
of the famous Klee–Minty example of exponential-time performance by the simplex method using the “textbook”
pivot rule [20], and he wondered about the existence of a polynomial-time simplex pivot rule (a question still open in
2007).

In 1979, Leonid Khachiyan astounded the mathematical programming community by showing [19] that linear
programs could be solved in polynomial-time using the ellipsoid algorithm, which had been developed in 1976–77
for nonlinear convex programs independently by Shor and by Yudin and Nemirovski. Khachiyan’s breakthrough
ran completely contrary to the long-dominant worldview that, because of the power of the simplex method, it was
undesirable to “nonlinearize” linear programs by applying techniques from nonlinear optimization.

GBD was delighted with Khachiyan’s result, especially because the proof techniques (verifying that the optimal
solution lies within a sequence of shrinking ellipsoids) were radically different from those traditionally associated
with the simplex method. GBD’s respect for Khachiyan led him to ask that a photograph be taken of the two of them
together at a 1990 Asilomar workshop. (By a sad coincidence, Khachiyan died at the age of 52 on April 29, 2005, two
weeks before GBD. An appreciation of Khachiyan’s work may be found in [34].)

Stanford SOL researchers were among the earliest to investigate the performance of the ellipsoid algorithm applied
to linear programs, and (as is now well-known) the method turned out to be extremely slow in practice. GBD was first
and foremost a scientist, but he was, not surprisingly, pleased that the simplex method retained its pre-eminence as
an LP solution technique. He was also fascinated, as were many, by the enormous gap between practice (the typically
rapid speed of the simplex method) and achievable worst-case complexity. This dichotomy, which is not unique to the
simplex method, continues to lead to new results. A centerpiece of recent work by Spielman and Teng [30,31] is a
proof that the simplex method has polynomial “smoothed complexity”.

Five years after Khachiyan’s result, Stanford SOL researchers played an interesting role during a tumultuous period
in linear programming. In 1984 Narendra Karmarkar, a mathematician at AT&T Bell Labs, announced his discovery
of an algorithm for linear programming that was both polynomial-time and consistently 50 times faster than the
simplex method. Even more than Khachiyan, Karmarkar was the subject of wide publicity in the mainstream press,
including the New York Times [16]. Karmarkar’s proof of polynomial complexity, accompanied by a mathematical
description of the algorithm, appeared at the end of 1984 [18]. However, because the software implementing his
method was proprietary, researchers outside AT&T were unable to perform comparative numerical tests as they had
with Khachiyan’s method.

GBD, who was unfailingly gracious and warm to young researchers, was delighted to learn about this latest
development in linear programming. He personally congratulated Karmarkar for his accomplishment and invited him
to visit Stanford. During Karmarkar’s Stanford talk, the SOL researchers, trained in nonlinear optimization in general
and barrier methods in particular [23,24], observed the strong similarity between the equations in Karmarkar’s method
and those arising in the 1960s logarithmic barrier method of Fiacco and McCormick [12].

By the summer of 1985, the Stanford SOL “gang of four” – Gill, Murray, Saunders, Wright – and their former
colleague John Tomlin, with help from Irvin Lustig (then a Stanford Ph.D. student working with GBD), had proved
that there was a formal mathematical connection between Karmarkar’s method and the log barrier method. In addition,
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a “projected Newton barrier” code had been written and compared with the simplex method (as implemented in
MINOS) on a suite of representative LPs (see Section 6). To the surprise of many (including the authors of this paper),
the nonlinear barrier method was obviously competitive with the simplex method, providing the first confirmation
outside AT&T of the promise of barrier-based methods for LP. (For details, see [15].)

The so-called “interior-point revolution” in linear, quadratic, convex, and nonlinear optimization began with
Karmarkar’s seminal work. It also seems fair to say that, without George’s guiding influence, commitment, and
support, the central role of barrier methods (see [22]) would have taken much longer to be established.

Unfortunately, for reasons that seem in retrospect incomprehensible, the first few years after Karmarkar’s
announcement were marred by inaccurate and unwarranted comments about the simplex method. For example, a
Time magazine article in late 1984 [32] asserted that “Before the Karmarkar method, linear equations [sic] could be
solved only in a cumbersome fashion, ironically known as the simplex method, devised by mathematician George
Dantzig in 1947”; a speaker at the 1988 International Symposium on Mathematical Programming ended his talk on
an interior-point method by saying “The simplex method is still running”. George’s equanimity and sweetness of
temperament were never more in evidence than during this time.

Because of limited space, this paper cannot begin to summarize the long-term effects of interior methods on
optimization, except to note that linear, nonlinear, and integer programming have all changed in significant ways
since 1984. Mike Todd’s survey [33] gives a nice overview of linear programming from several perspectives. Readers
seeking a picture of the recent state of the art in LP software should consult Bob Bixby’s 2002 study [3], which
carefully analyzes algorithmic features of simplex-based and barrier methods as well as the effects of computer
hardware. Several textbooks ([28,39,41], to name three) discuss the history of interior-point methods as well as issues
of complexity. In our view, a central and welcome change has been elimination of the formerly widespread article of
faith that linear and nonlinear programming are completely different. (This aspect of LP history is described in, for
example, the opening sections of [40].)

6. Collecting representative test problems

From the beginning, a Stanford SOL activity initiated by GBD was the collection of test problems, primarily
LP problems. These came from a variety of sources, including industrial contacts and large-scale energy-economic
models. In particular, George and colleagues (including, during 1975–1990, Pat McAllister, Shail Parikh, John Stone,
and others) had developed PILOT, a multiperiod investment and production model of the United States economy.
George was especially fond of the associated linear programs not only because they display the staircase structure that
never failed to engross him but also because the PILOT model is, in his words, “the real McCoy – a powerful tool for
making policy decisions” [2].

Another step toward the systematic collection of representative problems occurred at the 1973 International
Mathematical Programming Symposium, held at Stanford, when SOL hosted a meeting of researchers (including
Harlan Crowder, Larry Haverly, Rick Jackson, and Mike Powell) who were interested in developing standards for
testing optimization algorithms (see [36]). The resulting discussions culminated in the formation of the Mathematical
Programming Society’s Committee on Algorithms (COAL).

As noted in Section 5, the frenzy surrounding Karmarkar’s method led many researchers to the view, propounded
by GBD in the SOL paper [9], that a standard collection of linear programming test problems was essential to enable
experimental comparisons of the simplex method and the flood of newly proposed interior-point methods. Email
was in wide use by 1984, and David Gay of Bell Labs began a concerted effort to gather a suite of interesting LP
problems [13]. The resulting collection of LP problems, called the “netlib test set” after the netlib system for electronic
software distribution [11], has grown substantially since 1984 and remains the standard benchmark for testing LP
methods. Several of the first netlib problems were collected by the Stanford SOL and we list them for LP aficionados:
25fv47, adlittle, afiro, bandm, beaconfd, brandy, capri, czprob, e226, etamacro (based on Alan Manne’s
nonlinear energy model), israel, pilot (in several variations), share1b, share2b, shell, and stair. In addition,
long before the availability of tools for doing so, Irv Lustig analyzed and created graphical representations of the
matrix structures in the first 53 netlib problems [21].

In the immediate post-Karmarkar era, leading researchers began to report computational results on the same set
of problems, and consequently it became known which problems were “easy” and which were “hard” for which
methods. A nice example of GBD’s goal of improving methods by learning from numerical results occurred when
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early interior-point methods were observed to be noticeably slower than the simplex method on the netlib problem
israel. The difficulty was caused by fill-in from a few dense columns in the constraint matrix (see, e.g., Figures 25
and 26 in [1]), and linear algebraic techniques were soon developed to address this situation.

Today, researchers in LP have access to a large array of test problems, some huge (with tens of millions of
variables), along with analysis of characteristics that influence the performance of algorithmic options; see [3].

7. The scenario today

Many changes have transformed the landscape of optimization methods and software since GBD first proposed
establishment of a systems optimization laboratory. Thanks to the Internet and the World Wide Web, it is no longer
necessary for the critical mass of people to be co-located, since researchers and users can exchange code electronically
as well as run problems on a machine in a remote location using software written by someone else. Even so,
GBD’s concept of a systems optimization laboratory lives on; there are at least twenty organizations in universities
around the world (Canada, France, Israel, Japan, Korea, and the United States) whose names are small variants of
“systems optimization laboratory”. Not all organizational problems have been resolved, however; obtaining sustained
government funding for software development remains a challenge.

We mention two complementary resources for today’s optimization researchers, software developers, and users,
both reflecting GBD’s philosophy of providing publicly available access to the latest and best.

• NEOS (Network-Enabled Optimization Server) [27] fulfills several elements in GBD’s “wish list” for a systems
optimization laboratory. NEOS enables optimization software to be invoked electronically by those with problems
to solve. Users can submit problems to NEOS, expressed in a selection of modeling languages, and receive the
computed solutions within moments. The structure of NEOS permits authors of proprietary software to make their
codes available as solvers without providing access to the source, so that commercial software can be used on a
trial basis.

• The COIN-OR (Computational Infrastructure for Operations Research) project, launched in 2000 by IBM Research
and managed today by a foundation [4], aims “to create for mathematical software what the open literature is for
mathematical theory”. A key difference from NEOS is that COIN-OR uses an “open source” model in which
researchers submit their own source code and have access to the source code of others. The structure of COIN-OR
also makes it possible for software to be peer-reviewed.

Turning now to the “big picture” that motivated GBD during his entire career, despite tremendous progress the
problems of modeling and optimizing complex systems are not yet solved. In fact, a 2004 report on multiscale
mathematics by the United States Department of Energy includes a sentence that could have been written by GBD
in the 1970s: “Unfortunately, the ability to simulate complete systems does not follow immediately or easily from an
understanding, however comprehensive, of the component parts. For that, we need to know and to faithfully model
how the system is connected and controlled at all levels” [10].

8. GBD’s legacy

In our view, GBD deserves enormous credit – which, in his unassuming way, he would never have claimed for
himself – for his pioneering and enduring contributions to modeling and optimizing complex systems. George was an
inspiration to people in his field as well as to people who never met him; to his amusement, his famous “two unsolved
problems” homework incident once served as the theme of a radio sermon about positive thinking given by a minister
he met on an airplane [2]. GBD was quiet and gentle, but utterly unforgettable. One can almost hear his soft voice and
see his eyes sparkling with enthusiasm as he says [8]:

We have come a long way . . . but much work remains to be done. The final test will come when we can solve
the practical problems which originated the field back in 1947.

It is impossible to convey the extent to which George is and will be missed.
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