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S U M M A R Y
Thepractical 2-D magnetotelluric inverse problem seeks to determine the shallow-Earth con-
ductivity structure using finite and uncertain data collected on the ground surface. We present an
approach based on using PLTMG (Piecewise Linear Triangular MultiGrid), a special-purpose
code for optimization with second-order partial differential equation (PDE) constraints. At
each frequency, the electromagnetic field and conductivity are treated as unknowns in an op-
timization problem in which the data misfit is minimized subject to constraints that include
Maxwell’s equations and the boundary conditions. Within this framework it is straightforward
to accommodate upper and lower bounds or other conditions on the conductivity. In addi-
tion, as the underlying inverse problem is ill-posed, constraints may be used to apply various
kinds of regularization. We discuss some of the advantages and difficulties associated with
using PDE-constrained optimization as the basis for solving large-scale nonlinear geophysical
inverse problems.

Combined transverse electric and transverse magnetic complex admittances from the CO-
PROD2 data are inverted. First, we invert penalizing size and roughness giving solutions that
are similar to those found previously. In a second example, conventional regularization is re-
placed by a technique that imposes upper and lower bounds on the model. In both examples the
data misfit is better than that obtained previously, without any increase in model complexity.

Key words: Numerical solutions; Inverse theory; Non-linear differential equations; Magne-
totelluric; Geomagnetic induction.

1 I N T RO D U C T I O N

In magnetotelluric (MT) sounding, measurements of time-varying
surface magnetic and electric fields allow us to learn about the con-
ductivity structure of the Earth. However, the measurements are
necessarily finite and uncertain and in the face of these limitations,
the ultimate goal of an inversion must be to quantify the informa-
tion that the measurements contain about the electrical structure
of the Earth. Because the MT inverse problem is also non-linear
and ill-posed, there is a paucity of rigourous methods that can ex-
tract the truly essential features of conductivity models. One such
solution to the MT problem in one spatial dimension has been de-
veloped by us using optimization theory to unify the treatment of
the differential equations and the inversion (Medin et al. 2007). Our
method was applied to long-period observations and the question
of the conductivity in the upper and mid-mantle paper. Our pur-
pose here is to extend (as far as possible) that technique to a 2-D
geometry.

Our earlier work does not rely on regularization to construct a
plausible model from which to draw conclusions. Instead, the ob-
servations and the differential equations are regarded as constraints

in an optimization problem in which a conductivity function is min-
imized subject to inequality constraints that keep σ positive (for
example). Subject to these constraints, bounds are sought on the
average conductivity in intervals of particular geophysical inter-
est, such as the seismic transition zone. Whereas the 1-D problem is
motivated by whole-Earth issues such as possible conductivity asso-
ciated with water in the transition zone, 2-D problems are concerned
more with visualization of the crust and uppermost mantle. With
this perspective, although definitive conclusions are the ultimate
objective, the best that can be achieved with current techniques
is the identification of general features rather than precise infer-
ence. Our work on the 1-D problem used the optimization package
SNOPT (Gill et al. 2005). Here we employ the general-purpose par-
tial differential equation (PDE)-solver PLTMG (Piecewise Linear
Triangular MultiGrid), which combines the finite element method
with an interior method for constrained optimization. As we will
explain, fitting our problem to this code is far from a trivial matter,
but there are advantages in using a flexible, debugged code that is
built on firm theoretical foundations. The utility of incorporating
inequality constraints, something easily done with PLTMG, is one
lesson we take from the 1-D study.
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2 A. E. Van Beusekom et al.

In Section 5, we give results using conventional smoothing
regularization and using inequality constraints. The data set, CO-
PROD, was collected in southern Saskatchewan and Manitoba,
Canada over the prominent North American Central Plain (NACP)
conductive anomaly (<10 �m). COPROD has been the subject
of numerous inversion studies, making it ideal for validating our
method (see Jones 1993, for the solutions of other researchers).
Because an optimization problem with regularization most closely
resembles the previous researchers’ problem setups, we first present
our results on COPROD2 with regularization. Our code is able to
find a better overall fit to the data compared with earlier solutions
without increased model complexity; it can handle large numbers
of sites without significant degradation in computational speed.
For a second example of the value of our new method, the data
set COPROD2 is inverted with additional inequality constraints on
the structure in lieu of traditional regularization. The success of
this constraint-based regularization indicates the benefits of PDE-
constrained optimization for solving inverse problems.

2 O P T I M I Z AT I O N T H E O RY I N
I N V E R S I O N

The theory for the 2-D MT inverse problem is far less advanced
than that for the corresponding 1-D case. For example, conditions
for the existence of a unique solution with exact observations are
not known, whereas conditions for the solution of the 1-D case have
been known for more than 30 years (Weidelt 1972). The existence
problem in 1-D, that is, the consistency of a given finite, noisy data
set with the 1-D approximation, was also settled some time ago
(Parker 1980, 1982), through the ability to construct the best-fitting
conductivity profile with depth, the D+ model comprised of a finite
number of delta functions. The solution of the D+ problem cannot
be extended to two dimensions because the residues at the poles
in the complex c plane are no longer necessarily positive (Weidelt
& Kaikkonen 1994). Only for very simple and specific inverse
problems can one find the exact, or analytical, 2-D solution that
gives the minimum data misfit, (see Weidelt 1975; Everett 1996).

In contrast, there are many purely numerical methods for finding
a 2-D MT regularized solution (e.g. deGroot-Hedlin & Constable
1990; Rodi & Mackie 2001; Oldenburg & Ellis 1993; Smith &
Booker 1991; Romo et al. 2005). These methods can usually find a
smooth solution that fits the data, but they cannot identify properties
common to all models that fit the data. Towards this goal, we present
a 2-D inversion method based entirely on an optimization approach
that treats the conductivity and the electric and magnetic fields at all
observed frequencies as unknowns in addition to the conductivity.
This ‘all-at-once’ approach was first introduced in the geophysical
literature by the UBC-GIF group to solve 1- and 3-D regularized
inversions of electrical problems as well as 2-D regularized inver-
sions of gravity problems with additional inequality constraints on
density (Haber et al. 2000, 2004; Oldenburg 2004; Leliévre et al.
2008). We adopt the same basic philosophy, but exploit the versatil-
ity of PLTMG to apply different types of regularization, including
constraint-based regularization.

3 S O LV E R S P E C I F I C S

We briefly outline details of the general-purpose package PLTMG.
More technical information may be found in (Bank 2007; Bank
et al. 2003; Bank & Holst 2003; Bank & Smith 2002; Gill et al.
1981). PLTMG is designed to find the real scalar variable u that

satisfies the elliptic PDE:

−∇a(x, z, u, ∇u) + f (x, z, u, ∇u) = 0 (1)

in the domain � ⊂ R2, subject to boundary conditions

u = Bd (x, z) on �d (2)

an = g(x, z, u) on �n (3)

u, a.n continuous on �0 (4)

for the Dirichlet, Neumann and periodic boundary conditions; here
n is the unit normal, a is the vector (ax az)T and ax, az, f , Bd , g are
scalar functions. The equations and a schematic of the domain are
depicted in Fig. 1. Then eqs (1)–(4) can be converted into the weak
form used in the finite-element approximation, that is, A∗(u, �) =
0 with the test functions �. Here A∗ is given by

A∗(u, �) =
∫

�

[a(u,∇u)∇� + f (u,∇u)�]dx dz −
∫

�

g(u)� ds

= 〈a(u,∇u), ∇�〉� + 〈 f (u,∇u), �〉� − 〈g(u),�〉�, (5)

where 〈 · 〉� and 〈 · 〉� are inner products over the domain and the
boundary.

As the name indicates, PLTMG is a multigrid code that auto-
matically refines the finite element triangular grid, beginning with a
coarse approximation, then adding elements in regions where they
are most needed in a sequence of iterations. However, PLTMG does
not merely solve (1)–(4); it allows those equations, or equivalently
A∗(u, �) = 0, to be applied as constraints in the minimization of an
objective of our choosing:

p(u) =
∫

�

p1(x, z, u, ∇u) dx dz +
∫

�

p2(x, z, u, ∇u) ds, (6)

where p1 and p2 are scalar functions. Furthermore, the solution u
can be subjected to upper and lower bounds: u(x, z) ≤ u ≤ ū(x, z).
Thus we can state the basic problem solved by PLTMG as

min
u∈RN

p(u) (7)

subject to

A∗(u, �) = 0. (8)

ū ≥ u ≥ u. (9)

Figure 1. The domain of the general boundary value problem for the scalar
elliptic partial differential equation, (1)–(4).
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2-D MT inverse problem solved with optimization 3

PLTMG solves this system by minimizing a single Lagrangian func-
tion in which the objective p and constraints all appear in suitably
weighted terms.

This basic formulation does not cover the 2-D MT inverse prob-
lem because u must be a real scalar function. For example, in the
Transverse Electric (TE) mode, the complex electric field compo-
nents along strike (direction y) satisfy

−∇∇Ek(x, z) + iωkμ0σ (x, z)Ek(x, z) = 0 (10)

for each of the angular frequencies ωk , k = 1, 2, . . . K . Expanded
in real and imaginary parts, these equations comprise a set of 2K
coupled elliptic equations. We can adopt the PLTMG machinery
to our purposes by applying a framework called FOSLS, for First-
Order System Least-Squares, developed for general second-order
PDEs at the University of Colorado, Boulder and by Cai et al.
(1994, 1997). We rewrite the coupled elliptic equations as a system
of loosely coupled first-order equations by defining new variables
for the partial derivatives. There are six real unknowns for each
complex field in the original equations. For example, we define
Ey = u + iv and introduce four real variables U = ∂x u, V =
∂x v, W = ∂ zu and Y = ∂ zv. These definitions allow the original
equations to be expressed as a set of first-order equations; see eqs
(A2)–(A7) of Appendix A. A modified version of PLTMG is used
to minimize a functional consisting of the sum of the squared 2-
norms of the residuals of the first-order equations. For convenience
in exposition, we set u = ( u U W v V Y σ )T .

The elliptic vector problem obtained from the FOSLS discretiza-
tion is solved as a PDE-constrained optimization problem using
PLTMG. For this purpose PLTMG employs a primal interior method
to minimize the penalty functional. A sequence of unconstrained
subproblems is solved in which a new function is minimized, the
Lagrangian of the form

Lγ η = {objective} + γ {PDE violation} − η log(σ ). (11)

A complete description of the objective function is given in the
next section. The term that penalizes the violation of the field equa-
tions is described in Appendix A. In the successive subproblems,
the parameters γ → ∞ and η → 0; the solution of the previous
subproblem serves as a starting point for the next. As the iterations
proceed, the minimizer of Lγ η approaches the solution of the PDEs
while maintaining strictly feasible values of σ . The positive param-
eter η, is called a barrier parameter (see Chap. 6, Gill et al. 1981);
the logarithmic term enforces the positivity of σ , the conductivity.
Additional equality constraints appear as objective terms penalized
by γ . Additional inequality constraints, such as those in (9), would
be entered as logarithmic terms multiplied by η.

The use of a sequence of unconstrained subproblems, introduced
to solve the constrained optimization problem, also permits us to
improve the resolution and accuracy of the finite element approx-
imations in a natural way. At each step, as well as increasing γ

and decreasing η, PLTMG refines the grid, adding more triangu-
lar elements as necessary. We make γ inversely proportional to η,
while γ = O(

√
N ), where N is the number of vertices in the grid.

In this way errors in satisfying the constraints are of the same or-
der as those in the finite element approximation to the PDE (Bank
2007). This approach is computationally efficient since we are not
solving the subproblems with large η on a fine mesh; the large η

problems normally require more iterations. As the mesh is refined,
the current solution is interpolated onto the refined mesh and be-
comes the initial guess for the iteration on that mesh. Because of
the improving quality of these initial guesses, we expect that fewer
iterations will be required for the finest meshes. The values of the pa-

Figure 2. Convergence history of the COPROD2 joint TE—TM data inver-
sion. A and C show parameters γ and η and the L2 norms of eq. (11). The
objective here only contains the data misfit. The regularization term R(σ ,
ρ) will be discussed later. B shows the number of vertices in the mesh and
the number of iterations required for each subproblem’s convergence.

rameters and norms throughout convergence of a specific problem
are shown in Fig. 2. (The problem is the COPROD2 joint TE—
TM data inversion; the equations are (13)–(26) and the solution for
resistivity is Fig. 4).

In each subproblem we seek the stationary point of the La-
grangian, the point where ∇Lγ η = 0, which is a necessary condition
for optimality. To solve this system of nonlinear equations PLTMG
uses an approximate Newton iterative procedure with line search.
We write a perturbation to the current solution vector as t, then a
first-order Taylor expansion yields

t∇∇Lγ η(u) = −∇Lγ η(u). (12)

This sparse linear system is solved approximately for t. Here ∇Lγ η

is the Jacobian of the Lagrangian and ∇∇Lγ η is its Hessian. Note,
however, that ∇∇Lγ η is the Jacobian of the system ∇Lγ η = 0 and
we refer to this matrix as the Jacobian for the problem in its role in
the Newton iterations. In our approach, the Jacobian is approximated
by a block diagonal matrix, with diagonal blocks corresponding to
each scalar field and conductivity, or u = (u U W v V Y σ )T for
each frequency. These diagonal blocks typically have a form equiv-
alent to that arising from discretization of a second-order scalar
elliptic PDE of the type normally handled by PLTMG. This diag-
onal approximation significantly reduces the time needed to solve
the linear system for t. The next estimate of the solution is u+ =
u + βt, where β is a positive step chosen to yield a sufficient de-
crease in the Lagrangian. A single step of the iterative Newton cycle
for each subproblem involves recalculating the Lagrangian and its
derivatives at u+ and the calculation of an approximate solution of
the linear system for t.

The linear system (12) is very large for even a modest-size prob-
lem. However, the Jacobian is sparse and we only compute its
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4 A. E. Van Beusekom et al.

Figure 3. Green and yellow are the non-zero values in the sparse Jacobian matrix for a small TE inverse problem with 2500 vertices. The right figure is a zoom
on 0.01 per cent of the matrix, the lower right corner.

diagonal blocks, which makes storage of ∇∇Lγ η and solution of
the equations possible. Fig. 3 shows a diagonal block of the Jaco-
bian ∇∇Lγ η for a small TE inverse problem with coarse mesh of
2500 vertices (the matrix is accordingly a square 2500 × 2500).
Furthermore, only one of the sparse diagonal Jacobian blocks need
be computed at a time. By storing the non-zero elements of only
one sparse diagonal block at any given time, the same storage may
be shared by all the diagonal blocks and the space required is that
same as that for a single self-adjoint scalar PDE equation. This is a
very big storage savings when there are as many scalar unknowns,
as there are in our problem.

4 O P T I M I Z AT I O N O F T H E I N V E R S E
P RO B L E M

We now discuss how to set up a finite-dimensional problem that
approximates all the unknowns simultaneously, that is, it gives the
electric field E, the magnetic field H , the conductivity σ and the
resistivity ρ = 1/σ . In principle, there are many ways to formulate
an optimization problem in the PLTMG setting that will solve the
MT inverse problem. Each of these alternatives is non-linear and
non-convex and so the iterative scheme may converge to only a local
minimizer of the optimization problem. Moreover, because inverse
problems are inherently ill-conditioned, relatively minor differences
in the formulation of the problem can make the difference between
rapid convergence and failure. For example, consider the the single
variable equation 1/x = 1. Newton’s method for a root of f (x) =
1/x − 1 = 0 diverges for starting points x ≥ 2 or x ≤ 0. However,
if the problem is reformulated as G(x) = x − 1 = 0, it may be
solved in one Newton step from any starting point. The proper form

in a problem as complex as ours is far from obvious and we have
experimented with many variants.

In general the measurements are of complex admittances, c(xj,
ωk), in the both TE and TM modes. The data are collected at z =
0 on the Earth’s surface, at j = 1, . . . , J points xj and k = 1, . . . ,
K frequencies ωk . An idealized optimization problem to solve the
joint TE–TM inverse problem is given by the objective function

min
σ>0
ρ>0

∑
k, j

{∣∣∣ cTE(x j , ωk)−E(x j , 0, ωk)/(−∂z E(x j , 0, ωk))

�TE(x j , ωk)

∣∣∣2

+
∣∣∣ cTM(x j , ωk)−ρ(x j , 0) ∂z H (x j , 0, ωk)

�TM(x j , ωk)

∣∣∣2
}

+ R(σ, ρ), (13)

where the double summations are performed with respect to the
indices j = 1, . . . , J and k = 1, . . . , K . The two sums provide the
discrepancies between the observations and the model predictions.
Each sum is weighted by the inverse of its error, �TE and �TM.
The functional R is a regularizing term defined later. The objective
function is minimized subject to three sets of constraints. The first
is the differential equations for the electromagnetic fields:

−∇∇Ek + iωkσμ0 Ek = 0 (14)

−∇ρ∇ Hk + iωkμ0 Hk = 0, (15)

where Ek = E(x , z, ωk) and Hk = H (x , z, ωk), the fields at the set
of angular frequencies ωk . These constraints are imposed with top
(z = −τ ) and bottom (z = +τ ) field and conductivity conditions
for both modes:

E(x, τ, ωk) = 0 (16)

σ (x, τ ) = σ0 (17)

C© 2010 The Authors, GJI
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2-D MT inverse problem solved with optimization 5

∂z H (x, τ, ωk) = 0 (18)

ρ(x, τ ) = ρ0 (19)

∂z E(x,−τ, ωk) = −1 (20)

H (x,−τ, ωk) = 1

μ0ωk
i. (21)

In addition, we impose periodic left (x = −L) and right (x = +L)
conditions for the fields and conductivities

E(L , z, ωk) = E(−L , z, ωk) (22)

σ (L , z) = σ (−L , z) (23)

H (L , z, ωk) = H (−L , z, ωk) (24)

ρ(L , z) = ρ(−L , z). (25)

In (13)–(25) we treat σ and ρ as independent unknowns and then
we link them with a constraint equation:

σρ − 1 = 0. (26)

Note that since the constraints are satisfied as γ of (11) ap-
proaches infinity, σ and ρ will only be reciprocals at the solution.
Equation (26) is the first example of some additional restrictions
that are needed to obtain a PLTMG-FOSLS solution. If either σ or
ρ is eliminated, we find that the joint TE–TM inversion never con-
verges to a sensible solution. When one of the unknowns appears
in the denominator of one of the PDEs there is a solution in which
that variable tends to zero everywhere, along with the other field
variables and of course this is not the solution we want. However,
it is the one to which the PLTMG-FOSLS iterations usually tend.
Thus dividing by a variable that has an attraction to zero is not a
good idea in the current PLTMG-FOSLS code. The root of the dif-
ficulties may lie in our not retaining the off-diagonal blocks of the
Jacobian. Keeping only multiplications in the PDEs and connecting
ρ and σ through (26) appears to overcome the problem. The cost of
introducing an additional unknown and one more equation into the
system is very slight; recall each additional frequency requires six
new variables.

In the computer code, all variables are scaled so that (13)–(26)
are the same magnitude. For example, lengths are divided by L and
frequencies by an average ω.

Next, we consider the modifications that are necessary to adapt
the objective equation (13) to our approach. The objective is the
weighted squared 2-norm misfit between the complex TE and TM
data, cTE and cTM and the model values at the data collection points
with the addition of regularization functionals R. We have weighted
the deviations by the inverse of the error �(xj, ωk) and thus the
sum is in χ 2 form. The TM part of the objective is easily handled
as written above, but the TE part is subject to numerical instability
resulting from the division by the z gradient of E. To mitigate this
instability, the TE misfit terms are multiplied by ∂ z E , which re-
scales the objective. At first sight this appears to give TE penalty
with the wrong units, but the boundary condition (20) makes the
gradients of E dimensionless. The revised objective is effectively
the same when the misfit is small, since |∂ z E | at the surface does not

deviate very far from unity in the final solution. Consider a single
term in the TE part of the objective. For simplicity assume that the
uncertainties in the real and imaginary are the same (something
easily revised if necessary), so that �TE(x j , ωk) = (1 + i)�/

√
2;

write cTE(xj, ωk) = a + ib, E = u + iv and ∂ z E(xj, 0, ωk) = W +
iY . Then a typical term in the original TE objective sum is

1

�2

∣∣∣a + ib −
(

− u + iv

W + iY

)∣∣∣2
. (27)

We multiply though by (W + iY )2 and then break into real and
imaginary parts; this yields an alternative TE misfit terms:

�−2(−aW + bY − u)2 + �−2(−aY + bW − v)2. (28)

Even with this reformulation, during the early iterations (i.e. when γ

is small in (11)) there is still a tendency to converge to a solution in
which ∂ z E(xj, 0, ωk) is very small. This instability may be avoided
by using a regularization term weighted by η (the reciprocal of
γ . This scheme is shown qualitatively in (11)) which biases early
solutions towards those with W + iY = −1 in the air (z < 0).

We follow the traditional formulation of including an air layer
above the conducting ground. This approach is often used to allow
for the fact that the correct boundary condition for the TE mode at
the Earth’s surface (Schmucker 1971) cannot be written in differen-
tial form. For this reason the exact condition is incompatible with
the requirements of PLTMG for boundary conditions. The fields
vary slowly in the air and the number of elements devoted to this
region is small. We can simplify things in the air layer, where the
conductivity is known. Rather than solving the true PDEs (14) and
(15) there, we impose the conditions ∇ ∇ E = 0 and H − (i/ωk) =
0, since physically in a perfect insulator H does not vary. Because
PLTMG assumes every variable has a solution over the entire do-
main, we artificially set σ = ρ = 1 in the air to avoid the scaling
problems associated with setting σ = 0, ρ = ∞. We do not need
to include σ and ρ in the equations when we solve for E in the air
layer.

The presence of Dirichlet boundary conditions on ρ and σ , (17)
and (19), requires some comment. If we do not set a Dirichlet bound-
ary on ρ, we find that no reasonable amount of regularization on
‖∂ρ/∂z‖ 2

2 keeps ρ from going to zero at the bottom boundary z
= τ . Because of the way in which FOSLS handles the Neumann
boundary condition (18) (see Appendix A), without an explicit
condition on ρ, we find that ρ(x , τ ) = 0 is the solution to the
problem we have posed; but then σ = 1/ρ = ∞ causes instabil-
ity. The presence of the Dirichlet condition in ρ necessitates one
in σ also. As long as the bottom boundary is far from the sur-
face no pathological behaviour from these boundary conditions is
observed.

Finally, we consider the regularization term in the objective. The
MT inverse problem is ill-posed because small-scale variations in
conductivity at depth have vanishingly small influence on the obser-
vations and so, unless they are suppressed somehow, the solution to
the inverse problem is unstable. The function R in (13) is designed
to penalize large amplitudes and short wavelength components in σ

and ρ; see (29). This discrimination can be tailored to increase with
depth, since growth of the unstable parts increases exponentially
far from the surface. Another way to look at regularization (Parker
1994) is to say that with it we obtain the smoothest possible solu-
tion (the one with the smallest R) for the particular misfit obtained
and thus all other models with the same misfit are necessarily more
complex. Keeping complexity of the models to a minimum is de-
sirable for interpretation in terms of geological structure. One can
do without regularization, however, if one applies strong inequality

C© 2010 The Authors, GJI
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6 A. E. Van Beusekom et al.

constraints, for then the optimization problem becomes one of trad-
ing misfit against a bound on conductivity and there is every reason
to believe that extremal solution pressing up against conductivity
bounds are rather smooth overall. We illustrate these ideas in the
next section.

5 R E S U LT S

We apply the optimization method outlined above to analyse a data
set. During early testing we applied the code to artificial data gen-
erated from a known structure: a hemicylindrical conductor lying
on a perfectly conducting base. We used 3 frequencies and 7 sites
of TE and TM data. The algorithm returned a smoothed version of
the correct structure. For more details see Medin (2008). Here we
invert a set of field observations, COPROD2 (Jones & Savage 1986;
Jones 1988), which contains a subset of the frequencies drawn from
COPROD. The complete set consists of 40 frequencies of TE and
TM data collected at 35 sites along a 407 km profile in southern
Saskatchewan and Manitoba, Canada. We will be comparing our
results mainly with those of deGroot-Hedlin & Constable (1993),
whose data selection we follow, namely, the TE and TM responses
for 6 of the lower frequencies. The data set we used was already
corrected for static shifts by the earlier investigators.

5.1 COPROD2 joint TE—TM data inversion

We run the joint inversion on 6 frequencies of the COPROD2 data
set. With 6 frequencies of both the TE and TM modes in the FOSLS
format on a final mesh of 9400 vertices (stopping at γ = 100), we
are solving for (2 × 6 × 6 + 2) × 9400 = 676 800 unknowns with
2 × 6 × 8 + 1 = 97 constraint equations. The convergence history
is shown in Fig. 2. This problem took approximately 16.9 hr to
run on a 2 processor 3 GHz Intel Xeon desktop with 32 GB RAM.
The solution is shown in Fig. 4. We will report the frequencies as
their reciprocals, periods in seconds and the conductivity/resistivity
values as resistivity in �m; this is the traditional way to discuss MT
systems.

In the optimization problem eqs (13)–(26) we use �TE(xj, ωk) =
0.1, �TM(xj, ωk) = 0.1|cTM(xj, ωk)| and

R(σ, ρ) = f (σ, σ0) + f (ρ, ρ0) (29)

with

f (β, β0)=w1η

∫
�

exp(10z + x2/4)[(β(x, z) − β0)2 + |∇β|2] dx dz,
(30)

where w1 = 10−6, ρ0 = 10 �m (scaled σ 0 = 10 and scaled ρ0 =
0.1) and η is a parameter that is driven to zero as the solutions
of the successive subproblems converge, as shown qualitatively in
(11). This regularization is biased towards regions that are far from
the data (i.e. where the problem is the most ill-posed and hence
subject to difficulties with singularities). Due to our weighting with
parameter η → 0 as we converge on a solution, the regularization
is only large at the beginning. It was verified experimentally that
the choice of σ 0 and ρ0 does not change the major features of the
solution.

The data fit is shown together with the resistivity. Constraint
(26) is accurately satisfied so that ρ is indistinguishable from 1/σ .
The RMS misfit is 0.9 per cent. Of note, there is a lot of short
wavelength, high-frequency variability in the model responses of the
TM COPROD2 data which are not reflective of anything in the data.
This behaviour is caused by shallow structure in the resistivity model

which is not visible on the scale of the plot. The TM COPROD2 data
does not tell us much about the deep structure; we find that in the
joint inversion the addition of the TM data to the TE data smoothes
the solution found from the TE data inversion alone. The TM data
inversion alone does not resolve the known conductive anomalies.
Previous researchers (e.g. Berdichevsky et al. 1998) have found
that TM data tend to resolve resistive structure (>1000 �m) while
TE data tend to resolve conductive structure (<10 �m), so we are
not surprised that in a region with conductive anomalies the TE
inversion identifies the structure.

We compare our solution to the joint inversions by deGroot-
Hedlin & Constable (1993) and Romo et al. (2005). These solutions
are respectively A, B and C of Fig. 5. The scale of the three models
is the same; the vertical dashed lines are the horizontal extent of
our plot on the same scale. We place the figures between the lines
in respect to where they lie in the range −243 ≤ x ≤ 297 km. A
direct comparison of computational speed is not possible because
the different computers involved in each of the calculations.

The inversions by deGroot-Hedlin & Constable (1993) used the
same periods plus 28 s, for the middle 23 data sites in the popular
2-D MT inversion code Occam2-D (deGroot-Hedlin & Constable
1990). Our code has an advantage over Occam2-D in that it only
refines heavily around data sites instead of also at large-depth. So
there is little computational expense added when more sites are
included, consequently we use all 35 data sites. Occam2-D finds
a smooth model that fits the data to some desired misfit. Plot A
shows Occam2-D’s solution dominated by a discontinuous conduc-
tive body from −50 < x < 50 km, centred at depth between 8 <

z < 22 km. This body is identified as the NACP anomaly. The data
are fit to 10 per cent RMS. Plot B is the result from Occam2-D with
biasing of the upper 2.2 km to a particular 1-D structure. Again, the
NACP anomaly is most likely the conductive body between −50 <

x < 50 km; this time the body is centred deeper at z ≈ 40 km. The
data are fit to 15 per cent RMS. Occam2-D inverts models in a
brick mesh so the structure in these models contain discontinuous
jumps while our solutions, based on adaptive triangle meshing, do
not. It should be noted that our structure fits the data much more
accurately, yet is smoother at depth.

The model from Romo et al. (2005) is from an inversion of all
40 frequencies of the COPROD data set, instead of from only the
reduced COPROD2 data set. Therefore we expect their model to
possess more detail near the surface than ours; our model relies
on the lower frequencies with larger skin depths. They use all 35
data sites as we do. They find a solution with the NACP anomaly
and a smaller anomaly to the east, positive x-direction. This is
identified as the TOBE (Thompson nickel belt) anomaly. They do
not use TE and TM modes for inversion, instead using a ‘series
and parallel’ rotation for pseudo TE and TM modes of data. See
Romo et al. (2005) for more information on their inversion method.
Consequently this model is derived from slightly different data as
well as a completely different method of inversion. Nevertheless, we
believe it is worthwhile to compare the models, albeit with caution.
They fit the data to 5 per cent RMS.

Our solution recovers two conductive anomalies, NACP and
TOBE, in similar regions as deGroot-Hedlin & Constable (1993)
and Romo et al. (2005). The overall resistivity is less extreme in its
maximum and minimum values and looks generally smoother than
the models in Fig. 5, but this could be due to our choice of regular-
ization. We note that if we regularize the solution by tightening the
bounds on σ and ρ, instead of using the smoothing regularization
function (29), we can also get sharper anomalies. In any case, we
are encouraged by the fact that our code is both fitting the data and
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Figure 4. The joint TE–TM COPROD2 data inversion resistivity solution, �m. The data fit is plotted above, with each period of data (real admittances,
imaginary admittances) in the following colors: 14 s is (blue,red), 57 s is (green,brown),114 s is (orange,yellow), 228 s is (red,blue), 455 s (purple,gray), 910 s
is (brown,green). Where the line appears to not come close to intersect with the data points (notably in the longest period of TM), the fields are creating close
to delta functions which do not plot well.
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Figure 5. Joint inversions of COPROD2 data by other researchers for comparison with our result in Fig. 4. A and B are from deGroot-Hedlin & Constable
(1993) and C is from Romo et al. (2005). The horizontal and vertical scale of the three models is the same as our model in Fig. 4. The models are placed
between the dashed lines in respect to where they lie in −243 ≤ x ≤ 297 km, the horizontal extent of our model.

reproducing the general features in the conductivity models seen by
others.

5.2 COPROD2 inversion with bounds

Here we demonstrate regularization with bounds only, so that R(σ ,
ρ) = 0 in the objective equation (13). To get good convergence, we

have to choose rather narrow bounds if we insist on absolutely no
smoothing regularization terms. However, we want to make these
narrow bounds as wide as possible so that we are not influencing
the solution too much and/or driving up the data misfit. For the
COPROD2 data, we desire the resistivity to be 12.5 �m ≤ ρ ≤
1000 �m. Recall (11), the qualitative description of the subprob-
lem solved in the primal interior method, repeated here with the

C© 2010 The Authors, GJI
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two-sided bounds:

Lγ η = {objective} + γ {violation of PDE and other constraints}
− η {log(σ − 0.001) + log(−σ + 10)

+ log(ρ − 0.001) + log(−ρ + 10)}, (31)

where in successive subproblems γ → ∞, η → 0. In the early
cycles of solving with γ small, (26), the constraint σ − 1/ρ = 0, is
not strongly enforced. Hence the variables σ and ρ each need to be
controlled, or regularized and we choose to do this with bounds.

The bounded solution along with the data fit is shown in Fig. 6.
The RMS misfit is 1.1 per cent. The constraints are the same as the

Figure 6. The joint TE–TM COPROD2 data inversion regularized by bounds only; we constrain 10 ≤ ρ ≤ 1000 �m. The data fit is plotted above, with each
period of data (real admittances, imaginary admittances) in the following colours: 14 s is (blue,red), 57 s is (green,brown),114 s is (orange,yellow), 228 s is
(red,blue), 455 s (purple,gray), 910 s is (brown,green). Where the line appears to not come close to intersect with the data points (notably in the longest period
of TM), the fields are creating close to delta functions which do not plot well.
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previous problem, except that the Dirichlet boundary condition on
the structure at large-depth (17) and (19), is slightly more resistive
with ρ0 = 12.5 �m so it is within the bounds. This problem took
approximately 12.5 hr to run on a 2 processor 3 GHz Intel Xeon
desktop with 32 GB RAM. The solution in Fig. 6 is more resis-
tive than the solution in Fig. 4, as we demanded with the bound
constraints. Because we only used bounds and not smoothing regu-
larization, the structure shown in Fig. 6 does not fade slowly into the
Dirichlet boundary condition on the structure at large-depth. How-
ever, we are encouraged in the validity of our previous assumptions,
as again we see that the value of the Dirichlet boundary condition
on the structure at large-depth does not appear to affect the near-
surface features of the solution since we have made the boundary
deep enough.

Being able to use bounds for regularization is a great advantage
over other inverse codes (e.g. deGroot-Hedlin & Constable 1990;
Rodi & Mackie 2001; Oldenburg & Ellis 1993; Smith & Booker
1991; Romo et al. 2005). We can place the same bound on the entire
region, as we have done here. Or if we know a priori the location
of structure, we can place bounds only on that location and smooth
the rest of the domain.

6 C O N C LU S I O N S

We have solved the 2-D MT inverse problem with modern optimiza-
tion technology. Our approach can find solutions similar to those
found by other codes based on quite different principles. Inversion
of the COPROD2 demonstrates the versatility of our regularization
options: for the first problem we penalized structure size and rough-
ness and with the second problem conductivity bounds stabilized
the solution. We are able to satisfy the requirements of observation
to a higher accuracy than earlier codes, without introducing extreme
roughness.

Our program improves on previous codes in several ways. For
example, inclusion of large numbers of measurement sites does not
increase computational work significantly, whereas with other ap-
proaches the work increases proportionally to the number of sites.
Moreover, based on our experiments with artificial data, we have
reason to believe that the addition of sites will improve the conver-
gence behaviour and reduce the data misfit in the inversion. Another
advantage is the use of triangle mesh refinement: this process al-
locates the computational effort efficiently by only refining heavily
in the regions where it is necessary. Arguably the most important
improvement our code offers is the ability to include specific con-
straints such as bounds on conductivity, or to regularize the structure
in the more traditional way. The optimization format allows these
changes to be easily added to the problem setup.
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A P P E N D I X A : A B R I E F D E S C R I P T I O N
O F F O S L S

We illustrate the FOSLS method with the setup for solving the
TE mode forward equations at a single frequency. Inclusion of an
objective, other frequencies and constraints, etc, simply adds more
terms in the Lagrangian but does not change the essential procedure.
For induction in the TE mode, the equation governing the along-
strike (y component) of the complex electric field E(x , z) is (10)
which we write

− i

ωμ0
∇∇E − σ E = 0. (A1)

For FOSLS format it is necessary to write E in terms of its real and
imaginary parts

E = u + iv ⇔
(

u
v

)

and define a matrix of first derivatives U

∇E = U =
(

∂x u ∂xv

∂zu ∂zv

)
=

(
U V
W Y

)
,

where ∂/∂x and ∂/∂z are denoted by ∂x and ∂ z. The second-order
differential eq. (A1) becomes a set of six first-order equations in the
six real variables u, v, U , V , W , Y :

∂x u − U = 0 (A2)

∂zu − W = 0 (A3)

∂xv − V = 0 (A4)

∂zv − Y = 0 (A5)

1

ωμ0
(∂x V + ∂zY ) − σu = 0 (A6)

− 1

ωμ0
(∂xU + ∂z W ) − σv = 0. (A7)

Eqs (A2)–(A5) are the components of ∇E = U and (A6) and (A7)
are the real and imaginary parts of the TE-mode eq. (A1).

Next we consider the boundary conditions. Dirichlet boundary
conditions in PLTMG can be set directly. Only the Neumann con-
ditions require attention for FOSLS. Neumann conditions apply on
the top boundary in TE mode (air or ground surface) to assure con-
tinuity of the horizontal magnetic field. In general, this means that
∂n E − � = 0 on �n. Usually, the boundary �n is the air surface
z = −τ , so the normal derivative simplifies to ∂ z. As the driving
magnetic field is uniform and horizontal, the general function �

is taken to be the constant function −1. It is also necessary to in-
clude consistency conditions that link the derivatives to their scalar
variables. Thus the component form of the Neumann condition is

∂zu − W = 0 (A8)

∂zv − Y = 0 (A9)

∂zu + 1 = 0 (A10)

∂zv + 0 = 0. (A11)

The FOSLS formulation involves solving these equations by min-
imizing the sum of the squares of the L2 norms of the each of the
left-hand sides of the domain eqs (A2)–(A7) and H

1
2 norms of

the left-hand sides of the boundary eqs (A8)–(A11). If this sum of
squares is forced to be zero, then all the equations will be satisfied
exactly. This procedure is called minimizing the least squares func-
tional. The L2 norm of a function f on a domain � is the standard

‖ f ‖2,� =
( ∫

�

| f |2dx dz
) 1

2
.

The H
1
2 norm of a function on the boundary � of the domain � is a

more technical construct, which we will not go into here because, in
practice, the numerical implementation of the boundary terms uses
L2 norms scaled by the inverse of the element size h−1 instead of
exact H

1
2 norms. In vector notation the least squares functional for

the current system is

G0(E,U , σ, �) = ‖∇E − U‖2
2,� +

∥∥∥ − i

ωμ0
∇U − σ E

∥∥∥2

2,�

+ 1

h
‖∂z E − Uz‖2

2,�

+ 1

h
|∂z E − �‖2

2,�, (A12)

where Uz = (W Y ) and the vector and matrix norms involve the
sum of squares of the entries (as in the Frobenius matrix norm).
Again, the numerical strategy for solving the forward problem is to
minimize this functional. This gives an exact solution when G0 is
zero.

However for FOSLS, simply minimizing the least-squares func-
tional of the six domain equations and four boundary equations is
not enough, since equation (A12) is not a functional whose homo-
geneous (� = 0) form is elliptic. In other words, we do not have
a functional equivalent to a diagonal form of scalar norms, which
implies that the system variables E and U are still partially coupled.
The FOSLS technique drops off-diagonal blocks in the Jacobian,
which has no serious effects for elliptic systems. As the equations
stand now, if we drop those coupling terms, the finite element dis-
cretization may become unstable and inaccurate due to the build up
of errors in U with vanishing divergence under the coarser grids
created during the multigrid refinement process (Cai et al. 1997;
Bank & Smith 2002). The divergence-free errors can be suppressed
if we augment the system of equations. Because U = ∇E , it is
given that ∇ × U = 0. Suppose that we add to eqs (A2)–(A11) the
constraints:

∂zU − ∂x W = 0 (A13)

∂z V − ∂x Y = 0. (A14)
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Note this supplies apparently redundant conditions, but does so
without coupling the variables E and U . It can be shown that in-
cluding them by penalizing ‖∇ × U‖2

2,� explicitly in the functional
removes divergence free, oscillatory errors (Cai et al. 1997). Fur-
thermore, adding such curl equations imposes desirable continuity
requirements on U . The new FOSLS functional for the TE mode
becomes

G(E,U , σ, �) = ‖∇E − U‖2
2,� +

∥∥∥ − i

ωμ0
∇U − σ E

∥∥∥2

2,�

+‖∇ × U‖2
2,� + 1

h
‖∂z E − Uz‖2

2,�

+ 1

h
‖∂z E − �‖2

2,�. (A15)

To apply PLTMG to this functional we need to express it in a
weak form similar to (5). First, we express the functional (A15) as
a sum of just two terms, the squared norms of the conditions on the
domain and those on the boundary:

F(u, σ,�) = ‖Fu − 0‖2
2,� + 1

h
‖Bu − �‖2

2,�

= 〈Fu,Fu〉2,� + 1

h
〈Bu − �,Bu − �〉2,�,

where u = (u U W v V Y )T and the matrices F and B are 8 × 6
and 4 × 6, respectively. In explicit form, the matrices are

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x −1 0 0 0 0
∂z 0 −1 0 0 0
0 0 0 ∂x −1 0
0 0 0 ∂z 0 −1

−σ 0 0 0 ξ∂x ξ∂z

0 −ξ∂x −ξ∂z −σ 0 0
0 ∂z −∂x 0 0 0
0 0 0 0 ∂z −∂x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎝

∂z 0 −1 0 0 0
0 0 0 ∂z 0 −1
∂z 0 0 0 0 0
0 0 0 ∂z 0 0

⎞
⎟⎟⎠ ,

where ξ = 1/(ωμ0). Next, consider the first-order variation of F
with respect to u, that is,

δF = 2〈F ,Fδu〉2,� + 2

h
〈Bu − �,Bδu〉2,�.

The weak condition for stationarity is obtained by setting this vari-
ation to zero for a large class � of test functions. It follows that
solving (A2)–(A11) is equivalent to enforcing the condition

A(u, �) = 0 for all� ∈ H 1
e , (A16)

where

A(u, �) = 2〈F ,F�〉2,� + 2

h
〈Bu − �,B�〉2,�

for a sufficiently large set of test functions �. Thus A(u, �) may
be used in place of A∗ in (8) when PLTMG is applied to the vector
equations. The functional A(u, �) is discretized in terms of a tri-
angular mesh analogous to the approximation of A∗(u, �) for the
scalar case.

In principle, when the functional A(u, �) is elliptic, FOSLS
can achieve optimal error and optimal multigrid convergence. A
two-stage algorithm is used to solve eq. (A16). First, all equations
involving E are deleted and the remaining equations are solved for
U . Then, the current approximation ofU held fixed and the equations
involving E are used to solve for E. Cai et al. (1994, 1997) prove
that the least-squares functional of these 10 equations is elliptic in
a technical sense called product H 1 ellipticity. This property allows
the application of PLTMG to the 2-D MT inverse problem without
loss of efficiency.
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