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Abstract. Active-set quadratic programming (QP) methods use a working set to define the
search direction and multiplier estimates. In the method proposed by Fletcher in 1971, and in several
subsequent mathematically equivalent methods, the working set is chosen to control the inertia of the
reduced Hessian, which is never permitted to have more than one nonpositive eigenvalue. (We call
such methods inertia-controlling.) This paper presents an overview of a generic inertia-controlling QP
method, including the equations satisfied by the search direction when the reduced Hessian is positive
definite, singular and indefinite. Recurrence relations are derived that define the search direction
and Lagrange multiplier vector through equations related to the Karush-Kuhn-Tucker system. We
also discuss connections with inertia-controlling methods that maintain an explicit factorization of
the reduced Hessian matrix.
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1. Introduction. The quadratic programming (QP) problem is to minimize a
quadratic objective function subject to linear constraints on the variables. The linear
constraints may include an arbitrary mixture of equality and inequality constraints,
where the latter may be subject to lower and/or upper bounds. Many mathematically
equivalent formulations are possible, and the choice of form often depends on the
context. For example, in large-scale quadratic programs, it can be algorithmically
advantageous to assume that the constraints are posed in “standard form”, in which
all general constraints are equalities, and the only inequalities are simple upper and
lower bounds on the variables.

To simplify the notation in this paper, we consider only general lower-bound
inequality constraints; however, the methods to be described can be generalized to
treat all forms of linear constraints. The quadratic program to be solved is thus

(1.1)
minimize

x∈Rn
ϕ(x) = cTx + 1

2xTHx

subject to Ax ≥ β,

where the Hessian matrix H is symmetric, and A is an mL × n matrix. Any point
x satisfying Ax ≥ β is said to be feasible. The gradient of ϕ is the linear function
g(x) = c+Hx. When H is known to be positive definite, (1.1) is called a convex QP;
when H may be any symmetric matrix, (1.1) is said to be a general QP.

This paper has two main purposes: first, to present an overview of the theoretical
properties of a class of active-set methods for general quadratic programs; and second,
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to specify the equations and recurrence relations satisfied by the search direction and
Lagrange multipliers. At each iteration of an active-set method, a certain subset of the
constraints (the working set) is of central importance. The definitive feature of the
class of methods considered (which we call inertia-controlling) is that the strategy
for choosing the working set ensures that the reduced Hessian with respect to the
working set (see Section 2.3) never has more than one nonpositive eigenvalue. In
contrast, certain methods for general quadratic programming allow any number of
nonpositive eigenvalues in the reduced Hessian—for example, the methods of Murray
[33] and Bunch and Kaufman [3].

Our major focus will be on issues arising in general quadratic programming, and
we shall not examine details of the many methods proposed for the convex case.
Because the reduced Hessian is always positive definite for a convex QP, there is
no need to impose an inertia-controlling strategy or to invoke complicated results
involving singularity and indefiniteness. Nonetheless, many of the recurrence relations
developed in Section 5 may be applied directly in methods for convex QP. A recent
review of active-set quadratic programming methods is given in [14].

To our knowledge, Fletcher’s method [12] was the first inertia-controlling quadratic
programming method, and is derived using the partitioned inverse of the Karush-
Kuhn-Tucker matrix (see Sections 2.3 and 5.1). His original paper and subsequent
book [13] discuss many of the properties to be considered here. The methods of Gill
and Murray [18] and of QPSOL [22] are inertia-controlling methods in which the search
direction is obtained from the Cholesky factorization of the reduced Hessian matrix.
Gould [29] proposes an inertia-controlling method for sparse problems, based on up-
dating certain LU factorizations. Finally, the Schur-complement QP methods of Gill
et al. [21, 25] are designed mainly for sparse problems, particularly those associated
with applying Newton-based sequential quadratic programming (SQP) methods to
large nonlinearly constrained problems.

If suitable initial conditions apply and H is positive definite, an identical sequence
of iterates will be generated by inertia-controlling methods and by a wide class of
theoretically equivalent methods for convex QP (see, e.g., Cottle and Djang [9]).
Similarly, the methods of Murray [33] and Bunch and Kaufman [3] will generate the
same iterates as inertia-controlling methods when solving a general QP if certain
conditions hold. Despite these theoretical similarities, inertia-controlling methods are
important in their own right because of the useful algorithmic properties that follow
when the reduced Hessian has at most one nonpositive eigenvalue. In particular, the
system of equations that defines the search direction has the same structure regardless
of the eigenvalues of the reduced Hessian; this consistency allows certain factorizations
to be recurred efficiently (see Section 6).

We shall consider only primal-feasible (“primal”) QP methods, which require an
initial feasible point x0, and thereafter generate a sequence {xk} of feasible approxi-
mations to the solution of (1.1). If the feasible region of (1.1) is non-empty, a feasible
point to initiate the QP iterations can always be found by solving a linear program-
ming problem in which the (piecewise linear) sum of infeasibilities is minimized. (This
procedure constitutes the feasibility phase, and will not be discussed here; see, e.g.,
Dantzig [10].) Despite our restriction, it should be noted that an inertia-controlling
strategy of imposing an explicit limit on the number of nonpositive eigenvalues of the
reduced Hessian can be applied in QP methods that do not require feasibility at every
iteration (e.g., in the method of Hoyle [31]). We briefly discuss dual QP methods at
the end of Section 2.1.
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Before proceeding, we emphasize that any discussion of QP methods should dis-
tinguish between theoretical and computational properties. Even if methods are based
on mathematically identical definitions of the iterates, their performance in practice
depends on the efficiency, storage requirements and stability of the associated numeri-
cal procedures. Various mathematical equivalences among QP methods are discussed
in Cottle and Djang [9] and Best [2]. In the present paper, Sections 2–4 are concerned
primarily with theory, and Sections 5–6 treat computational matters.

The remainder of this paper is organized as follows. Section 2 summarizes the
algorithmic structure of active-set QP methods. In Section 3, we present theoretical
background needed to prove the crucial features of inertia-controlling methods, which
are collected in Section 4. Section 5 contains recurrence relations of importance in
implementation, without the restriction imposed in earlier treatments that the initial
point must be a minimizer. Two particular methods are described in Section 6,
including a new method in Section 6.1. Some brief conclusions and directions for
future research are mentioned in Section 7.

2. Inertia-Controlling Active-Set Methods.

2.1. Optimality conditions. The point x is a local optimal solution of (1.1)
if there exists a neighborhood of x such that ϕ(x) ≤ ϕ(x̄) for every feasible point
x̄ in the neighborhood. To ensure that x satisfies this definition, it is convenient to
verify certain optimality conditions that involve the relationship between ϕ and the
constraints.

The vector p is called a direction of decrease for ϕ at x if there exists τϕ > 0 such
that ϕ(x + αp) < ϕ(x) for all 0 < α < τϕ. Every suitably small positive step along a
direction of decrease thus produces a strict reduction in ϕ. The nonzero vector p is
said to be a feasible direction for the constraints of (1.1) at x if there exists τA > 0
such that x + αp is feasible for all 0 < α ≤ τA, i.e., if feasibility is retained for every
suitably small positive step along p. If a feasible direction of decrease exists at x,
every neighborhood of x must contain feasible points with a strictly lower value of ϕ,
and consequently x cannot be an optimal solution of (1.1).

The optimality conditions for (1.1) involve the subset of constraints active or
binding (satisfied exactly) at a possible solution x. (If a constraint is inactive at x,
it remains satisfied in every sufficiently small neighborhood of x.) Let IB (“B” for
“binding”) be the set of indices of the constraints active at the point x, and let AB

denote the matrix whose rows are the normals of the active constraints. (Both IB

and AB depend on x, but this dependence is usually omitted to simplify notation.)
The following conditions are necessary for the feasible point x to be a solution of

(1.1):

g(x) = AT
BµB for some µB;(2.1a)

µB ≥ 0;(2.1b)
vTHv ≥ 0 for all vectors v such that ABv = 0.(2.1c)

The necessity of these conditions is usually proved by contradiction: if all three are
not satisfied at an alleged optimal point x, a feasible direction of decrease must exist,
and x cannot be optimal.

The vector µB in (2.1a) is called the vector of Lagrange multipliers for the active
constraints, and is unique only if the active constraints are linearly independent. Let
ZB denote a basis for the null space of AB, i.e., every vector v satisfying ABv = 0
can be written as a linear combination of the columns of ZB. (Except in the trivial
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case, ZB is not unique.) The vector ZT
B g(x) and the matrix ZT

B HZB are called the
reduced gradient and reduced Hessian of ϕ (with respect to AB). Condition (2.1a) is
equivalent to the requirement that ZT

B g(x) = 0, and (2.1c) demands that ZT
B HZB be

positive semidefinite. Satisfaction of (2.1a) and (2.1c) is independent of the choice of
ZB.

Various sufficient optimality conditions for (1.1) can be stated, but the following
are most useful for our purposes. The feasible point x is a solution of (1.1) if there
exists a subset IP of IB (“P” for positive multipliers and positive definite), with
corresponding matrix AP of constraint normals, such that

g(x) = AT
P µP ;(2.2a)

µP > 0;(2.2b)
vTHv > 0 for all nonzero vectors v such that AP v = 0.(2.2c)

Condition (2.2b) states that all Lagrange multipliers associated with AP are positive,
and (2.2c) is equivalent to positive-definiteness of the reduced Hessian ZT

P HZP , where
ZP denotes a basis for the null space of AP . When the sufficient conditions hold, x
is not only optimal, but is also locally unique, i.e., ϕ(x) < ϕ(x̄) for all feasible x̄ in a
neighborhood of x (x̄ 6= x).

The gap between (2.1) and (2.2) arises from the possibility of one or more zero
Lagrange multipliers and/or a reduced Hessian that is positive semidefinite and sin-
gular. When the necessary conditions are satisfied at some point x but the sufficient
conditions are not, a feasible direction of decrease may or may not exist, so that x
is not necessarily a local solution of (1.1). (For example, consider minimizing x1x2

subject to x1 ≥ 0 and x2 ≥ 0. The origin is a local solution of this problem, but is not
a solution when minimizing −x1x2 subject to the same constraints.) Verification of
optimality in such instances requires further information, and is in general an NP-hard
problem (see Murty and Kabadi [34], Pardalos and Schnitger [36]). An alternative
(equivalent) issue arises in the copositivity problem of quadratic programming (see,
e.g., Contesse [7], Majthay [32]). A computational procedure for verifying optimality
in the context of inertia-controlling methods is given in [17].

In active-set dual QP methods, a sequence of infeasible iterates {xk} is generated
whose associated multipliers {µk} are dual feasible, i.e., satisfy the optimality condi-
tions (2.1a–2.1b). We have not treated dual methods because all such methods known
to us are restricted to QP problems in which H is positive semidefinite, and are not
inertia-controlling in the sense defined here. For example, the method of Goldfarb
and Idnani [26] has been extended by Stoer [38] to quadratic programs in which the
objective function represents a (possibly rank-deficient) least-squares problem (i.e.,
H = CTC, and the vector c from the objective lies in the range of C). The first step
of Stoer’s method involves finding the minimum-length solution of the unconstrained
least-squares problem, and hence the reduced Hessian may have any number of zero
eigenvalues. The main results of this paper would apply to dual methods that include
an inertia-controlling strategy.

2.2. Definition of an iteration. In common with many optimization algo-
rithms, inertia-controlling QP methods generate a sequence {xk} of approximations
to the solution of (1.1) that satisfy

xk+1 = xk + αkpk.

(Any reference hereinafter to “the algorithm” means a generic inertia-controlling
method.) The search direction pk is an n-vector that is either zero or a direction
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of decrease, and the scalar steplength αk is nonnegative. We usually consider a typi-
cal iteration (the k-th), and use unsubscripted symbols to denote quantities associated
with iteration k when the meaning is clear.

Let g denote g(x), the gradient of ϕ at the current iterate. The following (stan-
dard) terminology is useful in characterizing the relationship between p and ϕ:

p is a


descent direction if gTp < 0;
direction of positive curvature if pTHp > 0;
direction of negative curvature if pTHp < 0;
direction of zero curvature if pTHp = 0.

Because ϕ is quadratic,

(2.3) ϕ(x + αp) = ϕ(x) + αgTp + 1
2α2pTHp,

which shows that every direction of decrease p must be either a descent direction, or
a direction of negative curvature with gTp = 0. If gTp < 0 and pTHp > 0, we see from
(2.3) that ϕ(x + αp) < ϕ(x) for all 0 < α < τ , where τ = −2gTp/pTHp. If gTp < 0
and pTHp ≤ 0, or if gTp = 0 and pTHp < 0, (2.3) shows that ϕ is monotonically
decreasing along p, i.e., ϕ(x + αp) < ϕ(x) for all α > 0.

2.3. The role of the working set. At iteration k, pk is defined in terms of a
subset of the constraints, designated as the working set. The matrix whose rows are
normals of constraints in the working set at xk will be called Ak. The “new” working
set Ak+1 is always obtained by modifying the “old” working set, and the prescription
for altering the working set is known for historical reasons as the active-set strategy.

A crucial element in any formal description of an active-set QP method is the
precise definition of an “iteration” (in effect, the decision as to when the iteration
counter k is incremented). As we shall see, the working set can change when x
does not, and vice versa. To avoid ambiguity, we adopt the convention that the
iteration counter changes when either the point x or the working set changes. An
inertia-controlling method thus generates a sequence of distinct pairs {xk, Ak}, where
xk+1 6= xk or Ak+1 6= Ak. (In some circumstances, both iterate and working set
change, i.e. xk+1 6= xk and Ak+1 6= Ak.) It may seem unappealing to label the same
point or matrix with different subscripts, but other numbering conventions can lead
to indeterminacy in the specification of either xk or Ak for a given value of k.

Although it is sometimes useful to think of the working set as a prediction of the
set of constraints active at the solution of (1.1), we stress that this interpretation may
be misleading. The working set is defined by the algorithm, not simply by the active
constraints. In particular, the working set may not contain all the active constraints
at any iterate, including the solution.

Dropping the subscript k, we let m denote the number of rows of A, I the set of
indices of constraints in the working set, and b the vector of corresponding components
of β. We refer to both the index set I and the matrix A as the “working set”.

Let Z denote a matrix whose columns form a basis for the null space of A; the
reduced gradient and reduced Hessian of ϕ with respect to A are then ZTg(x) and
ZTHZ. We sometimes denote the reduced Hessian by HZ . A nonzero vector v such
that Av = 0 is called a null-space direction, and can be written as a linear combination
of the columns of Z.

In inertia-controlling methods, the working set is constructed to have three im-
portant characteristics:
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WS1. Constraints in the working set are active at x;
WS2. The rows of the working set are linearly independent;
WS3. The working set at x0 is chosen so that the initial reduced Hessian is positive

definite.
Although each of these properties has an essential role in proving that an inertia-
controlling algorithm is well defined (see Sections 3 and 4), some of them also apply
to other active-set methods.

We emphasize that it may not be possible to enforce the crucial property WS3 at
an arbitrary starting point x0 if the working set is selected only from the “original”
constraints—for example, suppose that H is indefinite and no constraints are active
at x0. Inertia-controlling methods must therefore include the ability to add certain
“temporary” constraints to the initial working set in order to ensure that property
WS3 holds. Such constraints are an algorithmic device, and do not alter the solution
(see Section 4.4).

This paper will consider only active-set primal-feasible methods that require prop-
erty WS1 to apply at the next iterate x+αp with the same working set used to define
any nonzero p. This additional condition implies that the search direction must be
a null-space direction, so that Ap = 0, and the methods of this paper are sometimes
described as null-space methods.

A stationary point of the original QP (1.1) with respect to a particular working
set A is any feasible point x for which Ax = b and the gradient of the objective
function is a linear combination of the columns of AT , i.e.,

(2.4) g = c + Hx = ATµ,

where g = g(x). Since A has full row rank, µ is unique. For any stationary point, let
µs (“s” for “smallest”) denote the minimum component of µ, i.e., µs = minµi. An
equivalent statement of (2.4) is that the reduced gradient is zero at any stationary
point. The Karush-Kuhn-Tucker (KKT) matrix K corresponding to A is defined by

(2.5) K ≡
(

H AT

A

)
.

When the reduced Hessian is nonsingular, K is nonsingular (see Corollary 3.2).
A stationary point at which the reduced Hessian is positive definite is called a

minimizer (with respect to A), and is the unique solution of a QP in which constraints
in the working set appear as equalities:

(2.6)
minimize

x∈Rn
cTx + 1

2xTHx

subject to Ax = b.

The Lagrange multiplier vector for the equality constraints of (2.6) is the vector µ of
(2.4). When the reduced Hessian is positive definite, the solution of (2.6) is x − q,
where q solves the KKT system

(2.7) K

(
q
µ

)
=
(

g
0

)
,

and µ is the associated Lagrange multiplier vector. If x is a stationary point, q = 0.
Given an iterate x and a working set A, an inertia-controlling method must be

able to
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• determine whether x is a stationary point with respect to A;
• calculate the (unique) Lagrange multiplier vector µ at stationary points (see

(2.4));
• determine whether the reduced Hessian is positive definite, positive semidef-

inite and singular, or indefinite.
In the present theoretical context, we simply assume this ability; Sections 5–6 discuss
techniques for computing the required quantities.

To motivate active-set QP methods, it is enlightening to think in terms of desirable
properties of the search direction. For example, since p is always a null-space direction
(i.e., Ap = 0), any step along p stays “on” constraints in the working set. Furthermore,
it seems “natural” to choose p as a direction of decrease for ϕ because problem (1.1)
involves minimizing ϕ. We therefore seek to obtain a null-space direction of decrease,
which can be computed using the current working set in the following two situations:

(i) when x is not a stationary point;
(ii) when x is a stationary point and the reduced Hessian is indefinite.

If neither (i) nor (ii) applies, the algorithm terminates or changes the working set (see
Section 2.4).

When (i) holds, the nature of p depends on the reduced Hessian. (The specific
equations satisfied by p are given in Section 4.1; only its general properties are summa-
rized here.) If the reduced Hessian is positive definite, p is taken as −q, the necessarily
nonzero step to the solution of the associated equality-constrained subproblem (see
(2.6) and (2.7)). This vector is a descent direction of positive curvature, and has the
property that α = 1 is the step to the smallest value of ϕ along p. When the reduced
Hessian is positive semidefinite and singular, p is chosen as a descent direction of zero
curvature. When the reduced Hessian is indefinite, p is taken as a descent direction
of negative curvature.

When (ii) holds, i.e., when x is a stationary point with an indefinite reduced
Hessian, p is taken as a direction of negative curvature.

2.4. Deleting constraints from the working set. When x is a stationary
point at which the reduced Hessian is positive semidefinite, it is impossible to reduce
ϕ by moving along a null-space direction. Depending on the sign of the smallest
Lagrange multiplier and the nature of the reduced Hessian, the algorithm must either
terminate or change the working set by deleting one or more constraints.

Let x be any stationary point (so that g = ATµ), and suppose that µs < 0 for
constraint s in the working set. Let es be the s-th coordinate vector. Given a vector
p satisfying

Ap = γes with γ > 0,

a positive step along p moves “off” (strictly feasible to) constraint s, but remains
“on” the other constraints in A. (The full rank of the working set guarantees that
the equations Ap = v are compatible for any vector v.) It follows that

gTp = µTAp = γµTes = γµs < 0,

so that p is a descent direction. A negative multiplier for constraint s thus suggests
that a null-space descent direction can be found by deleting constraint s from the
working set. However, our freedom to delete constraints is limited by the inertia-
controlling strategy. To ensure that the reduced Hessian has no more than one non-
positive eigenvalue, a constraint can be deleted only at a minimizer. (Section 3.3
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provides theoretical validation of this policy.) Following deletion of a constraint at a
minimizer, the reduced Hessian (with respect to the smaller working set) can have at
most one nonpositive eigenvalue (see Lemma 3.4).

When x is a minimizer, the action of the algorithm depends on the nature of µs,
the smallest multiplier. There are three cases to consider.

1. µs > 0. The sufficient conditions (2.2) for optimality apply with IP = I, and the
algorithm terminates.

2. µs < 0. Constraint s is deleted from the working set; x cannot then be a stationary
point with respect to the “new” working set.

3. µs = 0. The current iterate x may or may not be a solution of the original problem
(1.1); see the discussion in Section 2.1. We mention two possible strategies
for treating the “zero multiplier” case.
Strategy Z1. If µs = 0 at a minimizer, an inertia-controlling algorithm
may choose to terminate, since the necessary conditions (2.1) for optimality
are satisfied at x, with zero multipliers corresponding to any idle constraints.
(A constraint that is active at x but is not in the working set is called idle.)
This strategy has several virtues, including simplicity. As noted by Fletcher
[12], x is the unique solution of a QP whose objective function is a small
perturbation of ϕ. If the full Hessian H happens to be positive semidefinite,
termination is appropriate because x is necessarily a solution of the original
problem.
Strategy Z2. Alternatively, an inertia-controlling algorithm can delete a
constraint when µs = 0; this strategy is used in QPSOL ([22]). The unique-
ness of µ implies not only that x stays a stationary point after removal of
the chosen constraint, but also that the multipliers corresponding to the re-
maining constraints are unaltered. The algorithm may therefore continue to
delete constraints with zero multipliers until (i) a working set is found for
which µs > 0, or (ii) the reduced Hessian ceases to be positive definite. If the
reduced Hessian is positive definite after all constraints with zero multipliers
have been deleted, x satisfies the sufficient optimality conditions (2.2) and the
algorithm may terminate with an assured solution. Once the reduced Hessian
has ceased to be positive definite, the inertia-controlling strategy dictates that
no further constraints may be deleted.
Strategy Z2 does not ensure that a valid solution will be found; as indicated
in Section 2.1, the problem of verifying optimality under these circumstances
is NP-hard. However, it enlarges the set of problems for which the algorithm
can successfully move away from a non-optimal point—for example, let x be
the origin when minimizing x1x2 + 1

2x2
2 subject to x1 ≥ 0 and x1 + x2 ≥ 0.

With finite precision, it is impossible to devise an infallible numerical test
for a “zero” multiplier. But since a decision as to what constitutes “numer-
ical zero” must be made in any case to distinguish between “negative” and
“nonnegative” multipliers, the same criterion can be applied to designate a
“negligible” multiplier.

Following a nonzero step and a sequence of constraint additions, the next iterate
of an inertia-controlling method can be a stationary point only if the reduced Hessian
is positive definite (see Lemma 4.5). The only situation in which an iterate can be
a stationary point with a reduced Hessian that is positive semidefinite and singular
occurs when the present working set was obtained by deleting a constraint with a zero
multiplier from the previous working set; after such a deletion, the smallest multiplier
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must be nonnegative (otherwise, it would have been deleted previously), and the
algorithm terminates.

The pseudo-code in Figure 1 summarizes a constraint deletion procedure for the
k-th iteration, where we give the iteration count explicitly for clarity. Figure 1 treats
the zero-multiplier case with strategy Z2; an obvious change in the test on µs in the
third line would give the pseudo-code corresponding to strategy Z1.

The logical variables positive definite, positive semidefinite and singular are as-
sumed to be computed before starting the iteration; the logical variable complete is
used to terminate the overall algorithm (see Figure 3). The details of the boxed
computation (deleting a constraint from the working set) depend on the particular
inertia-controlling algorithm (see Section 5.1). When a constraint is deleted, the
working set is altered while x remains unchanged.

if stationary point and positive semidefinite then
µs ← smallest component of µk;
if singular or µs > 0 then

complete← true
else

delete constraint s from the working set;

Ik+1 ← Ik − {s}; xk+1 ← xk; k ← k + 1;
end if

end if

Figure 1. Pseudo-code for constraint deletion.

2.5. Adding constraints to the working set. Constraints are deleted from
the working set until the algorithm terminates or a nonzero p can be defined. Since
any nonzero p is always a direction of decrease, the goal of minimizing ϕ suggests that
the steplength α should be taken as the step along p that produces the largest decrease
in ϕ. Because p is a null-space direction, x + αp automatically remains feasible with
respect to constraints in the working set. However, α may need to be restricted to
retain feasibility with respect to constraints not in the working set, which are added
to the working set.

Let i be the index of a constraint not in the working set. The constraint will not
be violated at x + αp for any positive step α if aT

i p ≥ 0. If aT
i p < 0, however, the

constraint will become active at a certain nonnegative step. For every i /∈ I, αi is
defined as

(2.8) αi =

{
(βi − aT

i x)/aT
i p if aT

i p < 0;
+∞ otherwise.

The maximum feasible step αF (often called the step to the nearest constraint) is
defined as αF ≡ minαi. The value of αF is zero if and only if aT

i p < 0 for at least one
idle constraint i. If αF is infinite, the constraints do not restrict positive steps along
p.

In order to retain feasibility, α must satisfy α ≤ αF . If the reduced Hessian is
positive definite, the step of unity along p has special significance, since p in this case
is taken as −q of (2.7), and ϕ achieves its minimum value along p at α = 1 (see (2.6)).
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When the reduced Hessian is either indefinite or positive semidefinite and singular, ϕ
is monotonically decreasing along p (see Section 2.2). Hence, the nonnegative step α
along p that produces the maximum reduction in ϕ and retains feasibility is

α =

{
min(1, αF ) if ZTHZ is positive definite;
αF otherwise.

In order for the algorithm to proceed, α must be finite. If α = ∞, ϕ is unbounded
below in the feasible region, (1.1) has an infinite solution, and the algorithm termi-
nates.

Let r denote the index of a constraint for which αF = αr. The algorithm requires
a single value of r, so that some rule is necessary in case of ties—for example, r may
be chosen to improve the estimated condition of the working set. (Several topics
related to this choice are discussed in Gill et al. [24].) When α = αF , the constraint
with index r becomes active at the new iterate. In the inertia-controlling methods to
be considered, ar is added to the working set at this stage of the iteration, with one
exception: a constraint is not added when the reduced Hessian is positive definite and
αF = 1. In this case, x + p is automatically a minimizer with respect to the current
working set, which means that at least one constraint will be deleted at the beginning
of the next iteration (see Section 2.4).

Assuming the availability of a suitable direction of decrease p, the pseudo-code
in Figure 2 summarizes the constraint addition procedure during iteration k. As in
Figure 1, details of the boxed computation (adding a constraint to the working set)
depend on the particular inertia-controlling algorithm (see, e.g., Sections 6.1 and 6.2).
Even following a constraint addition, xk+1 may be the same as xk if αk = 0.

αF ← maximum feasible step along pk (to constraint r);
hit constraint← not positive definite or αF < 1;
if hit constraint then αk ← αF else αk ← 1 end if;
if α =∞ then stop
else

xk+1 ← xk + αkpk;
if hit constraint then

add constraint r to the working set;

Ik+1 ← Ik ∪ {r}
else
Ik+1 ← Ik

end if
k ← k + 1;

end if

Figure 2. Pseudo-code for constraint addition.

The following lemma shows that all working sets have full rank in methods that
satisfy the rules given above for choosing the initial working set and adding constraints
to the working set.

Lemma 2.1. Assume that the initial working set has full row rank. For an active-
set QP algorithm of the form described, any constraint added to the working set must
be linearly independent of the constraints in the working set.
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Proof. A constraint ar can be added to the working set A only if aT
rp < 0 (see

(2.8)). If ar were linearly dependent on the working set, we could express ar as
ar = ATr for some nonzero vector r. However, p is a null-space direction, and the
relation Ap = 0 would then imply that aT

rp = rTAp = 0, a contradiction.
Putting together the deletion and addition strategies, Figure 3 summarizes the

general structure of an inertia-controlling QP method. The logical variable complete
indicates whether the method has terminated.

complete← false; k ← 0;
repeat until complete

execute constraint deletion procedure (Figure 1);
if not complete then

compute pk;

if pk 6= 0 then
execute constraint addition procedure (Figure 2)

end if
end if

end repeat

Figure 3. Structure of an inertia-controlling method.

3. Theoretical Background. This section summarizes theoretical results used
in proving that inertia-controlling methods are well defined.

3.1. The Schur complement. Let T be the partitioned symmetric matrix

(3.1) T =
(

M WT

W G

)
,

where M is nonsingular, and M and G are symmetric. The Schur complement of M
in T , denoted by T/M , is defined as

(3.2) T/M ≡ G−WM−1WT .

We sometimes refer simply to “the” Schur complement when the relevant matrices
are evident.

An important application of the Schur complement is in solving Ty = d when T
has the form (3.1) and is nonsingular. Let the right-hand side d and the unknown y
be partitioned to conform with (3.1):

d =
(

d1

d2

)
, y =

(
y1

y2

)
.

Then y may be obtained by solving (in order)

Mw = d1(3.3a)
(T/M)y2 = d2 −Ww(3.3b)

My1 = d1 −WTy2.(3.3c)

A Schur complement analogous to (3.2) can be defined for a nonsymmetric matrix
T . When M is singular, the generalized Schur complement is obtained by substituting
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the generalized inverse of M for M−1 in (3.2), and by appropriate adjustment of (3.3).
The “classical” Schur complement (3.2) and its properties are discussed in detail by
Cottle [8]. For further details on the generalized Schur complement, see Carlson,
Haynsworth and Markham [6] and Ando [1]. Carlson [5] gives an interesting survey of
results on both classical and generalized Schur complements, along with an extensive
bibliography.

Let S be any symmetric matrix. We denote by ip(S), in(S) and iz(S) respectively
the (nonnegative) numbers of positive, negative and zero eigenvalues of S. The inertia
of S—denoted by In (S)—is the associated integer triple (ip, in, iz). For any suitably
dimensioned nonsingular matrix N , Sylvester’s law of inertia states that

(3.4) In (S) = In (NT SN).

The inertias of M and T from (3.1) and the Schur complement T/M of (3.2)
satisfy the following important equation:

(3.5) In (T ) = In (M) + In (T/M)

(see Haynsworth [30]).

3.2. The KKT matrix and the reduced Hessian. The eigenvalue structure
of the reduced Hessian determines the logic of an inertia-controlling method, and
the KKT matrix of (2.5) plays a central role in defining the search direction. The
following theorem gives an important relationship between the KKT matrix and the
reduced Hessian ZTHZ.

Theorem 3.1. Let H be an n× n symmetric matrix, A an m× n matrix of full
row rank, K the KKT matrix of (2.5), and Z a null-space basis for A. Then

In (K) = In
(

H AT

A

)
= In (ZTHZ) + (m,m, 0).

Proof. See Gould [27]. Since every basis for the null space may be written as ZS
for some nonsingular matrix S, Sylvester’s law of inertia (3.4) implies that the inertia
of the reduced Hessian is independent of the particular choice of Z. We emphasize
that the full rank of A is essential in this result.

Corollary 3.2. The KKT matrix K is nonsingular if and only if the reduced
Hessian ZTHZ is nonsingular.

3.3. Changes in the working set. The nature of the KKT matrix leads to
several results concerning the eigenvalue structure of the reduced Hessian following a
change in the working set.

Lemma 3.3. Let M and M+ denote symmetric matrices of the following form:

M =
(

H BT

B

)
and M+ =

(
H BT

+

B+

)
,

where B+ is B with one additional row. (The subscript “+” is intended to emphasize
which matrix has the extra row.) Then exactly one of the following cases holds:

(a) ip(M+) = ip(M) + 1, in(M+) = in(M) and iz(M+) = iz(M);
(b) ip(M+) = ip(M) + 1, in(M+) = in(M) + 1 and iz(M+) = iz(M)− 1;
(c) ip(M+) = ip(M), in(M+) = in(M) + 1 and iz(M+) = iz(M);
(d) ip(M+) = ip(M), in(M+) = in(M) and iz(M+) = iz(M) + 1.
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Proof. It is sufficient to prove the result for the case when

(3.6) B+ =
(

B
bT

)
,

where bT is a suitably dimensioned row vector. If the additional row of B+ occurs in
any position other than the last, there exists a permutation Π (representing a row
interchange) such that ΠB+ has the form (3.6). Let

(3.7) P =
(

I
Π

)
, which gives PM+PT =

H BT b
B
bT

 .

Because P is orthogonal, PM+PT is a similarity transform of M+, and has the same
eigenvalues (see Wilkinson [39], page 7). Thus the lemma applies equally to M+ and
PM+PT .

When B+ has the form (3.6), standard theory on the interlacing properties of the
eigenvalues of bordered symmetric matrices states that

λ+
1 ≥ λ1 ≥ λ+

2 ≥ · · · ≥ λ` ≥ λ+
`+1,

where ` is the dimension of M , and {λi} and {λ+
i } are the eigenvalues of M and M+

respectively, in decreasing order (see, e.g., Wilkinson [39], pages 96–97). The desired
results follow by analyzing the consequences of these inequalities.

By combining the general interlacing result of Lemma 3.3 with the specific prop-
erties of the KKT matrix from Theorem 3.1, we derive the following lemma, which
applies to either adding or deleting a single constraint from the working set.

Lemma 3.4. Let A be an m × n matrix of full row rank, and let A+ denote A
with one additional linearly independent row (so that A+ also has full row rank). The
matrices Z and Z+ denote null-space bases for A and A+, and HZ and HZ+ denote the
associated reduced Hessian matrices ZTHZ and ZT

+ HZ+. (Note that the dimension
of HZ+ is one less than the dimension of HZ .) Define K and K+ as

K =
(

H AT

A

)
and K+ =

(
H AT

+

A+

)
,

where H is an n×n symmetric matrix. Then exactly one of the following cases holds:
(a) ip(HZ+) = ip(HZ)− 1, in(HZ+) = in(HZ)− 1 and iz(HZ+) = iz(HZ) + 1;
(b) ip(HZ+) = ip(HZ)− 1, in(HZ+) = in(HZ) and iz(HZ+) = iz(HZ);
(c) ip(HZ+) = ip(HZ), in(HZ+) = in(HZ)− 1 and iz(HZ+) = iz(HZ);
(d) ip(HZ+) = ip(HZ), in(HZ+) = in(HZ) and iz(HZ+) = iz(HZ)− 1.
Proof. Since A and A+ have full row rank, Theorem 3.1 applies to both K and

K+, and gives ip(K) = ip(HZ) + m, ip(K+) = ip(HZ+) + m + 1, in(K) ≥ m and
in(K+) ≥ m + 1. Substituting from these relations into the four cases of Lemma 3.3,
we obtain the desired results.

When a constraint is added to the working set, A and A+ correspond to the “old”
and “new” working sets. Lemma 3.4 shows that adding a constraint to the working set
either leaves unchanged the number of nonpositive eigenvalues of the reduced Hessian,
or decreases the number of nonpositive eigenvalues by one. The following corollary
lists the possible outcomes of adding a constraint to the working set.

Corollary 3.5. Under the same assumptions as in Lemma 3.4:
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(a) if ZTHZ is positive definite and a constraint is added to the working set,
ZT

+ HZ+ must be positive definite;
(b) if ZTHZ is positive semidefinite and singular and a constraint is added to

the working set, ZT
+ HZ+ may be positive definite or positive semidefinite and

singular;
(c) if ZTHZ is indefinite and a constraint is added to the working set, ZT

+ HZ+

may be positive definite, positive semidefinite and singular, or indefinite.

For a constraint deletion, on the other hand, the roles of A and A+ are reversed
(K+ is the “old” KKT matrix and K is the “new”). In this case, Lemma 3.4 shows
that deleting a constraint from the working set can either leave unchanged the number
of nonpositive eigenvalues of ZTHZ, or increase the number of nonpositive eigenvalues
by one.

If constraints are deleted only when the reduced Hessian is positive definite,
Lemma 3.4 validates the inertia-controlling strategy by ensuring that the reduced
Hessian will never have more than one nonpositive eigenvalue following a deletion and
any number of additions. Accordingly, when the reduced Hessian matrix is hereafter
described as “indefinite”, it has a single negative eigenvalue, with all other eigenvalues
positive; and when the reduced Hessian matrix is described as “singular”, it has one
zero eigenvalue, with all other eigenvalues positive.

3.4. Relations involving the KKT matrix. We now prove several results
that will be used in Section 4. It should be emphasized that the following lemma
assumes nonsingularity of K+, but not of K.

Lemma 3.6. Let A and A+ be matrices with linearly independent rows, where A+

is A with a row added in position s. Let K, Z, K+ and Z+ be defined as in Lemma 3.4.
If K+ is nonsingular, then

In (K) + (1, 1, 0) = In (K+) + In (−σ),

where σ is the (n + s)-th diagonal element of K−1
+ , i.e., σ = eT

n+sK
−1
+ en+s.

Proof. Consider the matrix

Kaug ≡
(

K+ en+s

eT
n+s

)
,

where en+s is the (n + s)-th coordinate vector. Using definition (3.2) to obtain the
Schur complement of K+ in Kaug, we obtain

Kaug/K+ = −eT
n+sK

−1
+ en+s = −σ.

Since K+ is nonsingular, relation (3.5) applies with Kaug and K+ in the roles of T
and M , and we have

(3.8) In (Kaug) = In (K+) + In (−σ).

Because of the special forms of K and K+, it is possible to obtain an expression
that relates the inertias of K and Kaug. By assumption, the new row of A+ is row s
(denoted by aT

s ). As in (3.7), a permutation matrix P can be symmetrically applied to
Kaug so that aT

s becomes the last row in the upper left square block of size n+m+1.
Further permutations lead to the following symmetrically reordered version of Kaug:

K̃aug ≡ P̃TKaugP̃ =


0 1 as 0
1 0 0 0
aT

s 0 H AT

0 0 A

 ,
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where P̃ is a permutation matrix. Since K̃aug is a symmetric permutation of Kaug,
the two matrices have the same eigenvalues, and hence

(3.9) In (Kaug) = In (K̃aug).

The 2× 2 matrix in the upper left-hand corner of K̃aug (denoted by E) is nonsin-
gular, with eigenvalues ±1, and satisfies

In (E) = (1, 1, 0) with E−1 = E =
(

0 1
1 0

)
.

Using (3.2), we next verify algebraically that the Schur complement of E in K̃aug is
simply K:

K̃aug/E = K −
(

aT
s 0
0 0

)(
0 1
1 0

)−1(
as 0
0 0

)
= K.

Since In (Kaug) = In (K̃aug) (from (3.9)) and In (K̃aug) = In (E) + In (K̃aug/E)
(from (3.5)), we obtain

(3.10) In (Kaug) = In (E) + In (K̃aug/E) = (1, 1, 0) + In (K).

Combining (3.8) and (3.10) gives the desired result.
The following two corollaries state connections between successive reduced Hes-

sians and solutions of linear systems involving KKT matrices.
Corollary 3.7. Let K and K+ be defined as in Lemma 3.6. Consider the

nonsingular linear system

(3.11) K+

(
y
w

)
= en+s,

where y has n components. Let ws denote the s-th component of w. (Since the solution
of (3.11) is column n + s of K−1

+ , ws = σ of Lemma 3.6.) Then:
(a) if ZTHZ is positive definite and ZT

+ HZ+ is positive definite, ws must be
negative;

(b) if ZTHZ is singular and ZT
+ HZ+ is positive definite, ws must be zero;

(c) if ZTHZ is indefinite and ZT
+ HZ+ is positive definite, ws must be positive.

Lemma 3.8. Let K and K+ be defined as in Lemma 3.6, with the further as-
sumptions that ZT

+ HZ+ is positive definite and ZTHZ is indefinite. Let z denote the
first n components of the solution of

(3.12) K

(
z
t

)
=
(

H AT

A

)(
z
t

)
=
(

as

0

)
,

where aT
s is the additional row of A+. Then aT

sz < 0.
Proof. Because ZTHZ is indefinite, K is nonsingular (see Theorem 3.1). The

vectors z and t of (3.12) are therefore unique, and satisfy

(3.13) Hz + ATt− as = 0, Az = 0.

We now relate the solutions of (3.12) and (3.11). Because of the special structure of
K+, the unique solution of (3.11) satisfies

(3.14) Hy + ATwA + asws = 0, Ay = 0, aT
sy = 1,
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where wA denotes the subvector of w corresponding to A, and ws is the component
of w corresponding to as. Part (c) of Corollary 3.7 implies that ws > 0. Comparing
(3.14) and (3.13), we conclude that y = wsz. Since aT

sy = 1, this relation implies that
aT

sz = −1/ws < 0, which is the desired result.

4. Theoretical Properties of Inertia-Controlling Methods. In this section
we give the equations used to define the search direction after the working set has
been chosen (see Section 2.4), and then prove various properties of inertia-controlling
methods. When the reduced Hessian is positive definite and x is not a minimizer,
choosing p as −q from the KKT system (2.7) means that α = 1 (the step to the
minimizer of ϕ along p) can be viewed as the “natural” step. In contrast, if the
reduced Hessian is singular or indefinite, the search direction needs to be specified
only to within a positive multiple. Since ϕ is monotonically decreasing along p when
the reduced Hessian is not positive definite, the steplength α is determined not by ϕ,
but by the nearest constraint (see Section 2.5). Hence, multiplying p by any positive
number γ simply divides the steplength by γ, and produces the identical next iterate.

4.1. Definition of the search direction. The mathematical specification of
the search direction depends on the eigenvalue structure of the reduced Hessian, and,
in the indefinite case, on the nature of the current iteration.

Positive definite. If the reduced Hessian is positive definite, the search direction
p is taken as p = −q, where q is part of the solution of the KKT system (2.7):

(4.1)
(

H AT

A

)(
q
µ

)
=
(

g
0

)
.

An equivalent definition of p, which will be relevant in Sections 6.1 and 6.2, involves
the null-space equations:

p = ZpZ , where ZTHZpZ = −ZTg.

If x is a minimizer, p = q = 0.
Singular. If the reduced Hessian is singular and the algorithm does not terminate,

we shall show later that x cannot be a stationary point (see Lemma 4.5). The search
direction p is defined as βp̂, where p̂ is the unique nonzero direction satisfying

(4.2)
(

H AT

A

)(
p̂
ν

)
= 0

and β is chosen to make p a descent direction. Equivalently, p̂ is defined by

p̂ = ZpZ , where ZTHZpZ = 0, ‖pZ‖ 6= 0,

where the vector pZ is necessarily a multiple of the single eigenvector corresponding
to the zero eigenvalue of ZTHZ.

Indefinite. If the reduced Hessian is indefinite, it must be nonsingular, with ex-
actly one negative eigenvalue. In this case, p is defined in two different ways.

First, if the current working set was obtained either by deleting a constraint with
a negative multiplier from the immediately preceding working set, or by adding a
constraint, then p is taken as q from the KKT system (2.7), i.e., p satisfies

(4.3)
(

H AT

A

)(
p
µ

)
=
(

g
0

)
.
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Second, if the current working set is the result of deleting a constraint with a zero
multiplier from the immediately preceding working set, let as denote the normal of
the deleted constraint. The current point is still a stationary point with respect to
A (see Section 2.4), and hence g = ATµ for some vector µ. The search direction p is
defined by

(4.4)

H AT as

A
aT

s

 p
ν
ws

 =

g
0
1

 ,

which can also be written as

(4.5)

H AT as

A
aT

s

 p
w
ws

 =

0
0
1

 ,

where w = ν − µ. The KKT matrix including as must have been nonsingular to
allow a constraint deletion, so that the solution of either (4.4) or (4.5) is unique, and
Corollary 3.7 implies that ws > 0.

4.2. Intermediate iterations. Various properties of inertia-controlling meth-
ods have been proved by Fletcher and others (see, e.g., [12, 13, 18, 29]). In this section,
we use the Schur-complement results of Section 3 to analyze certain sequences of iter-
ates in an inertia-controlling method. The initial point x0 is assumed to be feasible;
the initial working set has full row rank and is chosen so that the reduced Hessian is
positive definite (see Section 4.4).

The following terminology is intended to characterize the relationship between an
iterate and a working set. Let x be an iterate of an inertia-controlling method and
A a valid working set for x, i.e. the rows of A are linearly independent normals of
constraints active at x. As usual, Z denotes a null-space basis for A. We say that

x is


standard if ZTHZ is positive definite;
nonstandard if ZTHZ is not positive definite;
intermediate if x is not a minimizer.

In each case, the term requires a specification of A, which is omitted only when its
meaning is obvious. We stress that the same point can be, for example, a minimizer
with respect to one working set A, but intermediate with respect to another (usually,
A with one or more constraints deleted).

We now examine the properties of intermediate iterates that occur after a con-
straint is deleted at one minimizer, but before the next minimizer is reached. Each
such iterate is associated with a unique most recently deleted constraint. Consider a
sequence of consecutive intermediate iterates {xk}, k = 0, . . . , N , with the following
three features:

I1. xk is intermediate with respect to the working set Ak;
I2. A0 is obtained by deleting the constraint with normal a∗ from the working

set A∗, so that x0 is a minimizer with respect to A∗;
I3. xk, 1 ≤ k ≤ N , is not a minimizer with respect to any valid working set.

At xk, pk is defined using Ak as A (and, if necessary, a∗ as as) in (4.1), (4.2), (4.3)
or (4.4). (Note that (4.4) may be used only at x0.)
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Let Z∗ denote a basis for the null space of A∗. For purposes of this discussion,
the position of aT

∗ in A∗ is irrelevant, and hence we assume that A∗ has the form

(4.6) A∗ =
(

A0

aT
∗

)
.

Because of the inertia-controlling strategy, the reduced Hessian ZT
∗ HZ∗ must be pos-

itive definite. Relation (4.6) implies that

(4.7) pTHp > 0 for any nonzero p such that A0p = 0 and aT
∗ p = 0.

If the iterate following xk is intermediate and the algorithm continues, αk is the
step to the nearest constraint, and a constraint is added to the working set at each
xk, k ≥ 1. If a constraint is added and xk is standard, it must hold that αk < 1.
(Otherwise, if αk = 1, xk + pk is a minimizer with respect to Ak, and the sequence of
intermediate iterates ends.) Let ak denote the normal of the constraint added to Ak

at xk+1 to produce Ak+1, so that the form of Ak+1 is

(4.8) Ak+1 =
(

Ak

aT
k

)
=


A0

aT
0
...

aT
k

 .

We now prove several lemmas leading to the result that the gradient at each in-
termediate iterate xk may be expressed as a linear combination of Ak and a∗. For
simplicity, whenever possible we adopt the convention that unbarred and barred quan-
tities are associated with intermediate iterates k and k + 1 respectively.

Lemma 4.1. Let g and A denote the gradient and working set at an intermediate
iterate x where p is defined by (4.1)–(4.3), and a∗ is the most recently deleted con-
straint. Let x̄ = x + αp, and assume that constraint a is added to A at x̄, giving the
working set Ā. If there exist a vector v and a scalar v∗ such that

(4.9) g = ATv − v∗a∗, with v∗ > 0,

then
(a) ḡ, the gradient at x̄, is also a linear combination of AT and a∗;
(b) there exist a vector v̄ and scalar v̄∗ such that

(4.10) ḡ = ĀTv̄ − v̄∗a∗, with v̄∗ > 0.

Proof. Because ϕ is quadratic,

(4.11) g(x + αp) = g + αHp.

We now consider the form of ḡ for the three possible definitions of p.
When the reduced Hessian is positive definite, p satisfies g + Hp = ATµ, so that

Hp = −g + ATµ. Substituting from this expression and (4.9) in (4.11), we obtain (a)
from

ḡ = g + αHp = (1− α)g + αATµ = ATλ− v̄∗a∗,

where λ = (1−α)v + αµ and v̄∗ = (1−α)v∗. Since α < 1, (b) is obtained by forming
v̄ from λ and a zero component corresponding to row aT in Ā.
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When the reduced Hessian is singular, p is defined as βp̂, where β 6= 0 and p̂
satisfies (4.2), so that Hp = −βATν. Substituting from this relation and (4.9) in
(4.11) gives

ḡ = g + αHp = g − αβATν = AT(v − αβν)− v∗a∗,

and (4.10) holds with v̄∗ = v∗ and v̄ formed by augmenting λ = v − αβν with a zero
component as above.

Finally, when the reduced Hessian is indefinite and the search direction is defined
by (4.3), Hp = g−ATµ. Substituting from this relation and (4.9) in (4.11), we obtain

ḡ = g + αHp = g + α(g −ATµ)
= (1 + α)g − αATµ

= (1 + α)ATv − αATµ− (1 + α)v∗a∗
= ATλ− v̄∗a∗,

where λ = (1 + α)v − αµ and v̄∗ = (1 + α)v∗. Since v∗ > 0, v̄∗ must be positive, and
ḡ has the desired form.

To begin the induction, note that if the multiplier associated with a∗ at x0 is
negative, then, from (4.6),

(4.12) g0 = AT
∗ µ = AT

0µ0 − v0
∗a∗,

where v0
∗ = −µ∗ > 0. The next lemma treats the other possibility, that a zero

multiplier was associated with a∗, i.e., that x0 is a stationary point with respect
to A0. The situation is possible only if the reduced Hessian associated with A0 is
indefinite. (If it were positive definite, the algorithm would delete further constraints;
if it were singular, the algorithm would terminate at x0.)

Lemma 4.2. Assume that the reduced Hessian is indefinite at the first interme-
diate iterate x0, and that a zero multiplier is associated with a∗. Then

(4.13) gT
0p0 = 0, pT

0Hp0 < 0 and aT
∗ p0 > 0.

If α0 > 0, then g1 = g(x0 + α0p0) may be written as a linear combination of a∗ and
the rows of A0. Moreover, there exist a vector v1 and scalar v1

∗ such that

(4.14) g1 = AT
1v

1 − v1
∗a∗,

with v1
∗ > 0.

Proof. Since a zero multiplier is associated with a∗, x0 is a stationary point with
respect to A0, i.e., g0 = AT

0µ0. Multiplying by pT
0 shows that pT

0g0 = 0. Using (4.5),
p0 satisfies

(4.15) Hp0 = −AT
0w0 − w∗a∗,

where w∗ > 0, so that

(4.16) pT
0Hp0 = −w∗a

T
∗ p0.

Rewriting the definition (4.5) of p as

(4.17)
(

H AT
0

A0

)(
p0

w0

)
= w∗

(
−a∗

0

)
with w∗ > 0,
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Lemma 3.8 implies that aT
∗ p0 > 0. It then follows from (4.16) that pT

0Hp0 < 0, which
completes verification of (4.13).

Now we assume that α0 > 0. Since g1 = g0 + α0Hp0, (4.15) and the relation
g0 = AT

0µ0 give

g1 = g0 + α0Hp0 = AT
0µ0 − α0A

T
0w0 − α0w∗a∗ = AT

0λ− v1
∗a∗,

where v1
∗ = α0w∗ and λ = µ0−α0w0. Since α0 > 0 and w∗ > 0, v1

∗ is strictly positive,
and g1 has the desired form. If constraint a0 is added to the working set at the new
iterate, g1 can equivalently be written as in (4.14) by forming v1 from an augmented
version of λ as in Lemma 4.1.

We are now able to derive some useful results concerning the sequence of inter-
mediate iterates.

Lemma 4.3. Given a sequence of consecutive intermediate iterates {xk} satisfying
properties I1–I3, the gradient gk satisfies (4.9) for k ≥ 0 if a constraint with a negative
multiplier is deleted at x0, and for k ≥ 1 if a constraint with a zero multiplier is deleted
at x0 and α0 > 0.

Proof. If a constraint with a negative multiplier is deleted at x0, (4.9) holds at
x0 by definition (see (4.12)). If a constraint with a zero multiplier is deleted at x0

and α0 > 0, Lemma 4.2 shows that (4.9) holds at x1. Lemma 4.1 therefore applies at
all subsequent intermediate iterates, where we adopt the convention that v increases
in dimension by one at each step to reflect the fact that Ak has one more row than
Ak−1.

Lemma 4.4. Let {xk} be a sequence of consecutive intermediate iterates satisfying
properties I1–I3. Given any vector p such that Akp = 0, the following two properties
hold for k ≥ 0 if a constraint with a negative multiplier is deleted at x0, and for k ≥ 1
if a constraint with a zero multiplier is deleted at x0 and α0 > 0:

(a) if gT
kp < 0, then aT

∗ p > 0;
(b) if aT

∗ p > 0, then gT
kp < 0.

Proof. We know from part (b) of Lemma 4.3 that, for the stated values of k, there
exist a vector vk and positive scalar vk

∗ such that

gk = AT
k vk − vk

∗a∗.

Therefore, gT
kp = −vk

∗a
T
∗ p and the desired results are immediate.

Lemma 4.5. Assume that {xk}, k = 0, . . . , N , is a sequence of consecutive
intermediate iterates satisfying I1–I3, where each xk, 1 ≤ k ≤ N , is not a stationary
point with respect to Ak. Assume further that α0 > 0 if a zero multiplier is deleted at
x0, and that αN is the step to the constraint with normal aN , which is added to AN

to form the working set AN+1. Let xN+1 = xN + αNpN .
(a) If xN+1 is a stationary point with respect to AN+1, then aN is linearly depen-

dent on AT
N and a∗, and ZT

N+1HZN+1 is positive definite;
(b) If aN is linearly dependent on AT

N and a∗, then xN+1 is a minimizer with
respect to AN+1.

Proof. By construction, the working set A∗ has full row rank, so that a∗ is linearly
independent of the rows of A0. We know from part (b) of Lemma 4.3 that

(4.18) gk = AT
kv

k − vk
∗a∗, k = 1, . . . , N,

where vk
∗ > 0. Since we have assumed that xk is not a stationary point with respect

to Ak for any 1 ≤ k ≤ N , (4.18) shows that aT
∗ is linearly independent of Ak.
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Furthermore, part (a) of Lemma 4.1 implies that there exists a vector λ such that

(4.19) gN+1 = AT
Nλ− vN+1

∗ a∗,

where vN+1
∗ > 0. It follows from the linear independence of aT

∗ and AN that xN+1

cannot be a stationary point with respect to the “old” working set AN .
To show part (a), assume that xN+1 is a stationary point with respect to AN+1

(which includes aN), i.e.,

(4.20) gN+1 = AT
Nµ + µNaN ,

where µN (the multiplier associated with aN) must be nonzero. Equating the right-
hand sides of (4.19) and (4.20), we obtain

(4.21) AT
Nλ− vN+1

∗ a∗ = AT
Nµ + µNaN .

Since vN+1
∗ 6= 0 and µN 6= 0, this expression implies that we may express a∗ as a linear

combination of AT
N and aN , where the coefficient of aN is nonzero:

(4.22) a∗ = AT
Nξ + γaN , with γ = − µN

vN+1
∗

6= 0

and ξ = (1/vN+1
∗ )(λ− µ).

Stationarity of xN+1 with respect to AN+1 thus implies a special relationship
among the most recently deleted constraint, the working set at xN and the newly
encountered constraint. Any nonzero vector p in the null space of AN+1 satisfies

(4.23) AN+1p =
(

AN

aT
N

)
p = 0.

For any such p, it follows from the structure of AN+1 (see (4.8)) that A0p = 0, and
from (4.22) that aT

∗ p = 0; hence, p lies in the null space of A∗. Since ZT
∗ HZ∗ is

positive definite (i.e., (4.7) holds), we conclude that pT Hp > 0 for p satisfying (4.23).
Thus, the reduced Hessian at xN+1 with respect to AN+1 is positive definite, and xN+1

is a minimizer with respect to AN+1.
To verify part (b), assume that aN is linearly dependent on AN and a∗, i.e., that

aN = AT
Nβ + a∗β∗, where β∗ 6= 0. Simple rearrangement then gives a∗ = (1/β∗)aN −

(1/β∗)AT
Nβ. Substituting in (4.19), we obtain

gN+1 = AT
Nλ− vN+1

∗
β∗

aN −
vN+1
∗
β∗

AT
Nβ,

which shows that xN+1 must be a stationary point with respect to AN+1. Positive-
definiteness of the reduced Hessian follows as before, and hence xN+1 is a minimizer
with respect to AN+1.

Lemma 4.5 is crucial in ensuring that adding a constraint in an inertia-controlling
algorithm cannot produce a stationary point where the reduced Hessian is not positive
definite.

4.3. Properties of the search direction. When the reduced Hessian is pos-
itive definite, it is straightforward to show that the search direction possesses the
feasibility and descent properties discussed in Section 2.3.

Theorem 4.6. Consider an iterate x and a valid working set A such that ZTHZ
is positive definite. If p as defined by (4.1) is nonzero, then p is a descent direction.
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Furthermore, if constraint a∗ is the most recently deleted constraint, it also holds that
aT
∗ p > 0.

Proof. See Fletcher [13, page 89]. Writing out the equations of (4.1), we have

g + Hp = ATµ and Ap = 0.

Multiplying the first equation by pT gives gTp = −pTHp. Since p = ZpZ for some
nonzero pZ and ZTHZ is positive definite, pTHp must be strictly positive, and hence
gTp < 0. If constraint a∗ is the most recently deleted constraint, x must be part of
a sequence of intermediate iterates satisfying properties I1–I3 (Section 4.2), where a
negative multiplier was deleted at the first point of the sequence. Lemma 4.4 thus
shows that aT

∗ p > 0.
We now wish to verify that the search direction at a nonstandard iterate (which

must be intermediate) possesses the desired properties. Lemma 4.2 shows that p is
a direction of negative curvature when a constraint with a zero multiplier has just
been deleted. The following theorems treat the two possible situations when the most
recently deleted constraint has a negative multiplier.

Theorem 4.7. When the reduced Hessian is singular at a nonstandard iterate x,
the search direction is a descent direction of zero curvature. If a∗ is the most recently
deleted constraint, it also holds that aT

∗ p > 0.
Proof. When ZTHZ is singular, p is defined by (4.2) and hence satisfies Hp =

−βATν. Multiplying this relation by pT , we obtain pTHp = 0, which verifies that p
is a direction of zero curvature. A nonstandard iterate x must be part of a sequence
of intermediate iterates satisfying properties I1–I3. We know from Lemma 4.5 that
any such x cannot be a stationary point, and hence gTp 6= 0. Thus, the sign of β can
always be chosen so that gTp < 0. Lemma 4.4 then implies that aT

∗ p > 0, where a∗ is
the normal of the most recently deleted constraint.

Theorem 4.8. When the reduced Hessian is indefinite at a nonstandard iter-
ate and the search direction is defined by (4.3), p is a descent direction of negative
curvature. If a∗ is the most recently deleted constraint, it also holds that aT

∗ p > 0.
Proof. Since p satisfies Hp + ATµ = g and Ap = 0, it follows that

(4.24) pTHp = gTp.

As in Theorem 4.7, x must be part of a sequence of intermediate iterates satisfying
properties I1–I3. Furthermore, Lemma 4.3 shows that

g = ATv − v∗a∗, with v∗ > 0,

where a∗ is the normal of the most recently deleted constraint. Substituting for g in
(4.3) and rearranging, we see that p satisfies

K

(
p
w

)
=
(

H AT

A

)(
p
w

)
= v∗

(
−a∗

0

)
,

and it follows from Lemma 3.8 that aT
∗ p > 0. This property implies first (from

Lemma 4.4) that gTp < 0, and then (from (4.24)) that pTHp < 0 as required.
If αF = 1 at a standard iterate, a constraint is not added to the working set at

the next iterate, which is automatically a minimizer with respect to the same working
set (see the logic for constraint addition in Figure 2). If a new iterate happens to be
a stationary point under any other circumstances, we now show that the multiplier
corresponding to the newly added constraint must be strictly positive.
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Lemma 4.9. Assume that x is a typical intermediate iterate, with associated
working set A, under the same conditions as in Lemma 4.5. Let x̄ = x + αp, where
α > 0 and constraint a is added to the working set at x̄, and let Ā denote the new
working set. If x̄ is a stationary point with respect to Ā, then the Lagrange multiplier
associated with the newly added constraint is positive.

Proof. If x̄ is a stationary point with respect to Ā, we have by definition that ḡ =
ATµA + aµa, where µa is the multiplier corresponding to the newly added constraint.
Since the conditions of this lemma are the same as those of Lemma 4.5,

(4.25) −v∗a∗ = ATλ + µaa, where v∗ > 0

(see (4.21)). Lemma 4.2 and Theorems 4.6–4.8 show that aT
∗ p > 0 at every interme-

diate iterate. Since constraint a is added to the working set, we know that aTp < 0.
Relation (4.25) shows that −v∗a

T
∗ p = µaaTp, and we conclude that µa > 0 as desired.

4.4. Choosing the initial working set. Inertia-controlling methods require a
procedure for finding an initial working set A0 that has full row rank and an associated
positive-definite reduced Hessian ZT

0HZ0. Two different inertia-controlling methods
starting with the same working set A0 will generate identical iterates. However,
procedures for finding A0 are usually dependent on the method used to solve the
KKT system and therefore A0 may vary substantially from one method to another.
Ironically, this implies that different inertia-controlling methods seldom generate the
same iterates in practice!

In order to ensure that the reduced Hessian is positive definite, the initial work-
ing set may need to include “new” constraints that are not specified in the original
problem. These have been called temporary constraints, pseudo-constraints (Fletcher
and Jackson [16]), or artificial constraints (Gill and Murray [18]). The only require-
ment for a temporary constraint is linear independence from constraints already in
the working set. The strategy for choosing temporary constraints depends on the
mechanics of the particular QP method.

Simple bounds involving the current values of variables are convenient temporary
constraints in certain contexts (see, e.g., Fletcher and Jackson [16]). For example,
suppose that the value of the first variable at the initial point is 6. The two “opposite”
temporary constraints x1 ≥ 6 and −x1 ≥ −6 (equivalently, x1 ≤ 6) are clearly active
at the initial point. The first coordinate vector e1 is thus a candidate for inclusion in
the initial working set if it satisfies the linear independence criterion. If such a bound
is included, the first variable is “temporarily” fixed at 6. The sign of the temporary
constraint normal does not affect the null space of the working set, and hence is
irrelevant until a minimizer is reached. At a minimizer, the sign of each temporary
constraint normal is chosen to make its multiplier nonpositive, so that the constraint
may be deleted. Temporary constraints are usually deleted first if there is a choice.

Since a reduced Hessian of dimension zero is positive definite, the strategy origi-
nally associated with inertia-controlling methods was always to start at a “temporary
vertex”, i.e., to choose an initial working set of n constraints, regardless of the nature
of the reduced Hessian (see Fletcher [12] and Gill and Murray [18]). However, this
approach may be inefficient because of the nontrivial effort that must be expended to
delete all the temporary constraints, and has been superseded by more sophisticated
strategies.

Ideally, the initial working set should be well conditioned and contain as few
temporary constraints as possible. A strategy that attempts to fulfill these aims



24 P. E. GILL, W. MURRAY, M. A. SAUNDERS, AND M. H. WRIGHT

is used in the method of QPSOL [22, 19]. Let A′ denote the subset of rows of A
corresponding to the set of constraints active at x0. A trial working set (the maximal
linearly independent subset of the rows of A′) is selected by computing an orthogonal-
triangular factorization in which one row is added at a time. If the diagonal of the
triangular factor resulting from addition of a particular constraint is “too small”, the
constraint is considered dependent and is not included.

Let AW denote the resulting trial working set, with ZW a null-space basis for
AW . If ZT

W HZW is positive definite, AW is an acceptable initial working set, and A0

is taken as AW . Otherwise, the requisite temporary constraint normals are taken as
the columns of ZW that lie in the subspace spanned by the eigenvectors associated
with the nonpositive eigenvalues of ZT

W HZW . With the TQ factorization (see (6.1)),
these columns can be identified by attempting to compute the Cholesky factorization
of ZT

W HZW with symmetric interchanges (for details, see Gill et al. [19]).
In contrast, methods that rely on sparse factorizations to solve KKT-related sys-

tems explicitly (see Section 5.1) have more difficulty in defining A0 efficiently, since
there is no guaranteed technique for minimizing the number of temporary constraints.
“Crash” procedures for choosing the initial working set in the context of sparse QP
are described in [29].

The task of finding A0 is also complicated in practice by the desirability of speci-
fying a “target” initial working set. For example, the QP may occur as a subproblem
within an SQP method for nonlinearly constrained optimization with a “warm start”
option; see Gill et al. [23].

4.5. Convergence. In all our discussion thus far, we have assumed at various
crucial junctures that α > 0, because of the theoretical (and practical) difficulties
in treating degenerate stationary points. A degenerate stationary point for (1.1) is
a point at which the gradient of ϕ is a linear combination of the active constraint
normals, but the active constraint normals are linearly dependent. A degenerate
vertex is the most familiar example of such a point.

At a stationary point, progress can be made only by deleting a constraint. If
the resulting search direction immediately “hits” an idle constraint, the algorithm is
forced to take a zero step and add a constraint to the working set without moving.
This situation cannot continue indefinitely if the active constraints are linearly in-
dependent. When the active constraints are linearly dependent, however, cycling (a
non-terminating sequence of working sets) may occur if “standard” choices are made
for the constraints to be deleted and added.

Practical techniques for moving away from degenerate stationary points in both
linear and quadratic programming are discussed in, for example, Fletcher [15, 14],
Busovac̆a [4], Dax [11], Osborne [35], Ryan and Osborne [37], Gill et al. [24] and
Gould [29].

Proofs of convergence for inertia-controlling methods if no degenerate stationary
points exist have been given in [12, 14, 18, 28]. We therefore simply state the result.

Theorem 4.10. If ϕ(x) is bounded below in the feasible region of (1.1) and
the feasible region contains no degenerate stationary points, an inertia-controlling
algorithm converges in a finite number of iterations to a point x where

1. ZTg = 0, ZTHZ is positive definite and µ > 0; or
2. ZTg = 0, ZTHZ is singular and µ ≥ 0.

5. The Formulation of Algorithms. Given the same initial working set,
inertia-controlling methods generate mathematically identical iterates. Practical inertia-
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controlling methods differ in the techniques used to determine the nature of the re-
duced Hessian and to compute the search direction and Lagrange multipliers.

5.1. Using a nonsingular extended KKT system. When solving a general
QP with an inertia-controlling method, the “real” KKT matrix (i.e., the KKT matrix
including the current working set) may be singular for any number of iterations. In
this section, we show how to define the vectors of interest in terms of linear systems
involving a nonsingular matrix that (optionally) includes the normal of the most
recently deleted constraint—in effect, an “extended” KKT matrix. Fletcher’s original
method [12] uses the approach to be described, although he describes the computations
in terms of a partitioned inverse. Any “black box” equation solver that provides the
necessary information may be used to solve these equations (see, e.g., Gould [29] and
Gill et al. [25]).

At a given iterate, let A∗ denote either the current working set A or a matrix
of full row rank whose i∗-th row is a∗ (the most recently deleted constraint) and
whose remaining rows are those of A. (If A∗ = A, i∗ is taken as zero.) The row
dimension of A∗ is denoted by m∗, which is m when A∗ = A and m+1 when A∗ 6= A.
Let Z and Z∗ be null-space bases for A and A∗. The inertia-controlling strategy
guarantees that the reduced Hessian ZT

∗ HZ∗ is positive definite. We allow A∗ to
be A only when ZTHZ is positive definite, in order to guarantee its nonsingularity
at intermediate iterates. (Recall that ZTHZ can change from indefinite to singular
following a constraint addition.) However, it may be convenient to retain a∗ in A∗
even in the positive-definite case.

The matrix K∗ is defined as

(5.1) K∗ =
(

H AT
∗

A∗

)
,

and we emphasize that K∗ must be nonsingular (see Corollary 3.2). Let u, v, y and
w be the (unique) solutions of(

H AT
∗

A∗

)(
u
v

)
=
(

g
0

)
,(5.2) (

H AT
∗

A∗

)(
y
w

)
=
(

0
e∗

)
,(5.3)

where u and y have n components, v and w have m∗ components, and e∗ denotes the
i∗-th coordinate vector of dimension m∗. When K∗ = K, y and w may be taken as
zero. Any vector name with subscript “A” denotes the subvector corresponding to
columns of AT , and similarly for the subscript “∗”. If i∗ = 0, the i∗-th component of
a vector is null.

The vectors q and µ associated with the KKT system (2.7) satisfy

(5.4) Hq + ATµ = g, Aq = 0,

so that q = u of (5.2) when K = K∗. In an inertia-controlling method, the search
direction p is taken as −q in the positive-definite case (see (4.1)), as y in the singular
case or in the indefinite case with a zero multiplier (see (4.2) and (4.4)), or as q
(see (4.3)). Thus, p is available directly from (5.2) or (5.3) in two situations: when
K∗ = K, in which case p must be −q since ZTHZ is positive definite; or when p = y.
The next lemma shows how to obtain q and µ from the vectors of (5.2) and (5.3)
when K∗ 6= K.
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Lemma 5.1. If K is nonsingular and K∗ 6= K, the vectors q and µ are given by

(5.5)
q = u + βy

µ = vA + βwA, where β = −v∗/w∗.

Proof. Writing out the equations of (5.2) and (5.3), we have

Hu + ATvA + a∗v∗ = g, Au = 0, aT
∗ u = 0;

Hy + ATwA + a∗w∗ = 0, Ay = 0, aT
∗ y = 1.

For any scalar β, the vectors u′ = u + βy and v′ = v + βw satisfy

(5.6) Hu′ + ATv′A + a∗(v∗ + βw∗) = g and ATu′ = 0.

Both K and K∗ are nonsingular, which implies that w∗ 6= 0 (see Corollary 3.7). If β
is chosen as −v∗/w∗, the coefficient of a∗ in (5.6) is zero, and u′ and v′A satisfy (5.4).
The desired result follows from the uniqueness of q and µ.

When K∗ 6= K, the following two lemmas indicate how to use u, v, y and w to
decide on the status of the reduced Hessian and of the current iterate.

Lemma 5.2. Assume that K∗ 6= K. Then: (a) if w∗ < 0, ZTHZ is positive
definite; (b) if w∗ = 0, ZTHZ is singular; and (c) if w∗ > 0, ZTHZ is indefinite.

Proof. Since A∗ is chosen so that ZT
∗ HZ∗ is positive definite, the results follow

from Corollary 3.7.
Lemma 5.3. Assume that K∗ 6= K. The point x is a stationary point with respect

to A if u = 0 and v∗ = 0.
Proof. The result is immediate from the definition of u and v.

5.2. Updating the required vectors. The next four lemmas specify how u,
v, y and w can be recurred from iteration to iteration. Note that “old” and “new”
versions of u and y always have n components.

Lemma 5.4 (Move to a new iterate). Suppose that x is an iterate of an inertia-
controlling method. Let x̄ = x + αp. The solution of

(5.7)
(

H AT
∗

A∗

)(
ū
v̄

)
=
(

ḡ
0

)
,

where ḡ = g(x̄) = g + αHp, is given by

(5.8) ū =


(1− α)u
(1 + α)u

u

, v̄∗ =


(1− α)v∗ if p = −q

(1 + α)v∗ if p = q

v∗ − αw∗ if p = y

v̄A = vA − α(aT
∗ p)wA.

Proof. In this lemma, the move from x to x̄ changes only the gradient (not the
working set). The desired result can be verified by substitution from Lemma 5.1 and
the various definitions of p.

Following the addition of a constraint (say, a) to the working set, the “real”
reduced Hessian may become positive definite, so that strictly speaking a∗ is no longer
necessary. Nonetheless, it may be desirable to retain a∗ in A∗ for numerical reasons;
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various strategies for making this decision are discussed in [12]. Updates can be
performed in either case, using the n-vector z and m∗-vector t defined by

(5.9)
(

H AT
∗

A∗

)(
z
t

)
=
(

a
0

)
,

i.e., such that

(5.10) Hz + ATtA + t∗a∗ = a, Az = 0 and aT
∗ z = 0.

We first consider the case when a can be added directly to A∗. Following the
updates given in the next lemma, m∗ increases by one and the “new” v and w have
one additional component.

Lemma 5.5 (Constraint addition; independent case). Let x denote an iterate of
an inertia-controlling method. Assume that constraint a is to be added to the working
set at x, where AT

∗ and a are linearly independent. Let

(5.11) ρ =
aTu

aTz
and η =

aTy

aTz
.

Then the vectors ū, v̄, ȳ and w̄ defined by

(5.12)
ū = u− ρz, v̄ =

(
v − ρt

ρ

)
ȳ = y − ηz, w̄ =

(
w − ηt

η

)
satisfy

(5.13)

H AT
∗ a

A∗
aT

(ū
v̄

)
=
(

g
0

)
,

H AT
∗ a

A∗
aT

( ȳ
w̄

)
=

 0
e∗
0

 .

If A∗ = A, y and w have dimension zero, and are not updated.
Proof. When a and AT

∗ are linearly independent, (5.10) shows that z must be
nonzero. Since A∗z = 0 and ZT

∗ HZ∗ is positive definite, aTz = zTHz > 0, so that ρ
and η are well defined.

For any scalar ρ, (5.2) and (5.10) imply that

(5.14)

H AT
∗ a

A∗
aT

u− ρz
v − ρt

ρ

 =

 g
0

aTu− ρaTz

 .

The linear independence of a and AT
∗ means that the solution vectors of (5.13) are

unique. By choosing ρ so that the last component of the right-hand side of (5.14)
vanishes, we see that ū and v̄ of (5.12) satisfy the first equation of (5.13). A similar
argument gives the updates for ȳ and w̄.

If ZTHZ is positive definite and K∗ 6= K, a∗ can be deleted from A∗, and K∗
then becomes K itself. The following lemma may be applied in two situations: when a
constraint is deleted from the working set at a minimizer and the reduced Hessian re-
mains positive definite after deletion; and at an intermediate iterate after a constraint
has been added that makes ZTHZ positive definite.
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Lemma 5.6 (Deleting a∗ from A∗). Suppose that: x is an iterate of an inertia-
controlling method, K∗ 6= K, and ZTHZ is positive definite. Then the vectors ū and
v̄ defined by

(5.15) ū = u + ζy, v̄A = vA + ζwA, where ζ = − v∗
w∗

,

satisfy

(5.16) Hū + ATv̄ = g, Aū = 0.

Proof. Let u′ = u + ζy, v′ = v + ζw for some scalar ζ. Substituting these values
in (5.2), we have

H(u + ζy) + AT(vA + ζwA) + a∗(v∗ + ζw∗) = g.

It follows that (5.16) will be satisfied by u′ and v′A if v∗ + ζw∗ = 0. It is permissible
to delete a∗ from A∗ only if ZTHZ is positive definite, which means that w∗ < 0, and
hence ζ is well defined.

Note that y and w are no longer needed to define the search direction after a∗
has been removed.

The only remaining possibility occurs when a, the constraint to be added, is
linearly dependent on AT

∗ ; in this case, z = 0 in (5.9). We know from Lemma 4.5 that
the iterate just reached must be a minimizer with respect to the working set composed
of AT and a, which means that a∗ is no longer necessary. However, it is not possible
to update u using Lemma 5.5 (because aTz = 0), nor to apply Lemma 5.6 (because
w∗ may be zero). The following lemma gives an update that simultaneously removes
a∗ from A∗ and adds a to the working set. After application of these updates, Ā is the
“real” working set at x̄, and the algorithm either terminates or deletes a constraint
(which cannot be a; see Lemma 4.9).

Lemma 5.7 (Constraint addition; dependent case). Suppose that x is an iterate
of an inertia-controlling method and that K∗ 6= K. Assume that a is to be added to
the working set at x, and that a and AT

∗ are linearly dependent. Let Ā denote A with
aT as an additional row, and define ω = v∗/t∗. The vectors ū and v̄ specified by

(5.17) ū = 0, v̄A = vA − ωtA, v̄a = ω,

where v̄a denotes the component of v̄ corresponding to a, satisfy

(5.18)
(

H ĀT

Ā

)(
ū
v̄

)
=
(

g
0

)
.

Proof. First, observe that linear dependence of AT
∗ and a means that z = 0.

Lemma 2.1 shows that a cannot be linearly dependent on AT , which implies that
t∗ 6= 0. Lemma 4.5 tells us that x must be a minimizer with respect to a working set,
so that ū = 0. The desired results follow from substitution.

The algorithmic implications of these lemmas are summarized in the following
theorem. The ability to recur the required vectors has previously been proved only
under the assumption that the initial point is a minimizer (see Lemma 5.9).

Theorem 5.8. In an inertia-controlling method based on using a nonsingular
matrix K∗ as described, the linear system (5.2) needs to be solved explicitly for u and
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v only once (at the first iterate); these vectors can thereafter be updated. The vectors
y and w must be computed by solving (5.3) at each minimizer, since w is used to
determine the nature of the reduced Hessian when a constraint is deleted; y and w
may be updated when a constraint is added to the working set. The vectors z and t
must be computed by solving (5.9) whenever a constraint is added to the working set.

Figures 4 and 5 specify the computations associated with deleting and adding a
constraint (the boxed portions of Figures 1 and 2).

a∗ ← as; A∗ ← A;
compute y and w by solving (5.3);
determine the nature of ZTHZ (Lemma 5.2);
if positive definite then

(optionally) delete a∗ from A∗;
update u and v (Lemma 5.6);

end if

Figure 4. Deleting constraint as from the working set.

solve (5.9) to obtain z and t;
if z 6= 0 then

add a to A∗; update u, v, y and w (Lemma 5.5);
determine the nature of ZTHZ (Lemma 5.2);
if positive definite then

(optionally) delete a∗ from A∗;
update u and v (Lemma 5.6);

end if
else (z = 0)

remove a∗ from A∗ and add a to the working set;
update u and v (Lemma 5.7);
positive definite← true;

end if

Figure 5. Adding constraint a to the working set.

For simplicity, two special circumstances are not shown: in Figure 4, a∗ is always
deleted from A∗ when µ∗ = 0 and the reduced Hessian remains positive definite after
deletion, to allow the algorithm to proceed if another constraint is deleted; and if
A∗ = A in Figure 5, it is not necessary to test the nature of the reduced Hessian,
which must be positive definite.

A final lemma indicates a further efficiency that may be achieved once a minimizer
has been reached.

Lemma 5.9. If an iterate x is a minimizer with respect to A, the vector u is zero
for all subsequent iterations.

Proof. When x is a minimizer with respect to a working set A, g is a linear
combination of the columns of AT , so that u = 0. The result of the lemma follows by
noting that none of the recurrence relations for u alters this value. Hence, only v, y
and w need to be stored and updated thereafter.
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6. Two Specific Methods. In this section we give details concerning two spe-
cific inertia-controlling methods. The new method of Section 6.1 is based directly on
the recurrence relations of Section 5, and always retains a positive-definite reduced
Hessian. In contrast, Section 6.2 describes a method [22, 19] in which the reduced
Hessian is allowed to be positive definite, singular or indefinite.

6.1. Updating an explicit positive-definite reduced Hessian. We now
discuss an algorithm in which factorizations of A∗ and of the (necessarily positive
definite) matrix ZT

∗ HZ∗ are used to solve the equations given in Section 5.1. We
consider factorizations of A∗ of the form

(6.1) A∗Q∗ = A∗
(
Z∗ Y∗

)
=
(
0 T

)
,

where T is a nonsingular m∗×m∗ matrix, Q∗ is an n×n nonsingular matrix, and Z∗
and Y∗ are the first n−m∗ and last m∗ columns of Q.

Representing A∗ by this factorization leads to simplification of the equations to
be solved. In many implementations, Q∗ is chosen so that T is triangular (see, e.g.,
Gill et al. [20]). In the reduced-gradient method, Q∗ is defined so that T is the usual
basis matrix B. The columns of Z∗ form a basis for the null space of A∗. The columns
of Y∗ form a basis for the range space of AT

∗ only if Y T
∗ Z∗ = 0.

Let nZ = n−m∗. Let Q denote the (nonsingular) matrix

Q =
(

Q∗
I

)
,

where I is the identity of dimension m∗. The nZ-vector uZ and the m∗-vector uY are
defined by

(6.2) u = Q∗

(
uZ

uY

)
= Z∗uZ + Y∗uY .

Similarly,

(6.3) y = Q∗

(
yZ

yY

)
and z = Q∗

(
zZ

zY

)
.

Multiplying (5.2) by QT and substituting from (6.1) and (6.2), we obtain(
QT
∗

I

)(
H AT

∗
A∗

)(
u
v

)
=
(

QT
∗

I

)(
g
0

)
=ZT

∗ HZ∗ ZT
∗ HY∗ 0

Y T
∗ HZ∗ Y T

∗ HY∗ TT

0 T

uZ

uY

v

 =

ZTg
Y Tg
0

 .(6.4)

Since T is nonsingular, the third equation of the partitioned system (6.4) implies
that uY = 0, so that u and v are obtained by solving

(6.5) ZT
∗ HZ∗uZ = ZT

∗ g, TTv = Y T
∗ g + Y T

∗ HZ∗uZ ,

and setting u = Z∗uZ . The vectors z and t of (5.9) can similarly be found by solving

(6.6) ZT
∗ HZ∗zZ = ZT

∗ a, TTt = Y T
∗ a + Y T

∗ HZ∗zZ ,



INERTIA-CONTROLLING METHODS FOR QP 31

and setting z = Z∗zZ .
We also need to compute the vectors y and w of (5.3) at a minimizer. Applying

the same transformation as above and substituting from (6.3) gives the following
equations to be solved:

(6.7) TyY = e∗, ZT
∗ HZ∗yZ = −ZT

∗ HY∗yY , TTw = −Y T
∗ Hy,

where y = Z∗yZ + Y∗yY .
By construction, the reduced Hessian ZT

∗ HZ∗ is positive definite; let its Cholesky
factorization be

(6.8) ZT
∗ HZ∗ = RT

∗ R∗,

where R∗ is an upper-triangular matrix. An obvious strategy for a practical imple-
mentation is to retain the matrices T , Z∗ and Y∗ and the Cholesky factor R∗. As
the iterations proceed, T , Z∗ and Y∗ can be updated to reflect changes in A∗, using
Householder transformations or plane rotations if Q is orthogonal, and elementary
transformations if Q is non-orthogonal; orthogonal transformations are needed in
part of the update for R∗ (see Gill et al. [20]).

For illustration, we sketch a particular updating technique in which T is chosen
as upper triangular. In this discussion, barred quantities correspond to the “new”
working set. When a constraint a added to the working set, a becomes the first row
of A∗. To restore triangular form, we seek a matrix Q̃ that annihilates the first m∗−1
elements of aTQ∗, i.e., such that

(6.9) aT Q∗Q̃ =
(
aTZ∗ aT Y∗

)
Q̃ =

(
0 σ aT Y∗

)
.

This result is achieved by choosing Q̃ of the form

(6.10) Q̃ =

(
P̃ 0
0 I

)
,

where the m∗ ×m∗ matrix P̃ is composed of a sequence of orthogonal or elementary
transformations. Substituting from (6.10) into (6.9), we have

(6.11) P̃TZT
∗ a = σenz ,

where enz is the nZ-th coordinate vector. The result is that

Q̄∗ = Q∗Q̃ =
(
Z∗P̃ Y∗

)
=
(
Z̄∗ Ȳ∗

)
,

where
Z∗P̃ =

(
Z̄∗ ỹ

)
,(6.12)

and Ȳ∗ is Y∗ with a new first column (the transformed last column of Z∗).
When a constraint is deleted from A∗, the deleted row is moved to the first

position by a sequence of cyclic row permutations, which need be applied only to T
and Y∗. (The columns of Z∗ are orthogonal to the rows of A∗ in any order.) The first
row of A∗ may then be removed and the permuted triangle restored to proper form
by transformations on the right without affecting the last m∗ − 1 columns of Q∗ or
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T . The result is that Ȳ ∗ is a row-permuted version of the last m∗ − 1 columns of Y∗,
and Z̄∗ is given by

(6.13) Z̄∗ =
(
Z∗ z̃

)
,

where z̃ is a transformed version of the first column of Y∗.
This updating scheme leads to additional computational simplifications. For ex-

ample, consider calculation of z and t from the first equation of (6.6) when a constraint
is added to A∗. Multiplying by P̃T , substituting from (6.11), and letting z̃ = P̃TzZ ,
Z̃ = Z∗P̃ , we have

(6.14) Z̃THZ̃z̃ = Z̃Ta = σenz .

The Cholesky factors R̃TR̃ of Z̃THZ̃ will be available from the updating (see (6.12)),
and the special form of the right-hand side of (6.14) means that the solve with the
lower-triangular matrix R̃T reduces to only a single division.

6.2. Updating a general reduced Hessian. In this section we briefly discuss
the method of QPSOL [22], an inertia-controlling method based on maintaining an
LDLT factorization of the reduced Hessian

(6.15) ZTHZ = LDLT ,

where L is unit lower triangular and D = diag(dj). When ZTHZ can be represented
in the form (6.15), Sylvester’s law of inertia (3.4) shows that In (ZTHZ) = In (D),
and our inertia-controlling strategy thus ensures that D has at most one non-positive
element. The following theorem states that, if the starting point is a minimizer, a
null-space matrix Z exists such that only the last diagonal of D may be non-positive.

Theorem 6.1. Consider an inertia-controlling method in which the initial iterate
x0 is a minimizer. Then at every subsequent iterate there exist an upper-triangular
matrix T , a unit lower-triangular matrix L, a diagonal matrix D and a null-space
matrix Z with nZ columns such that

A
(
Z Y

)
=
(
0 T

)
,

ZTHZ = LDLT ,

ZTg = σenz ,(6.16)

where dj > 0 for j = 1, . . . , nZ − 1, and enz is the nZ-th coordinate vector.
Proof. An analogous result is proved by Gill and Murray [18] for a permuted form

of the TQ factorization.
We emphasize that the vector ZTg has the simple form (6.16) only when the TQ

factorization of A is updated with elementary or plane rotation matrices applied in
a certain order. In this sense, the method depends critically on the associated linear
algebraic procedures.

The search direction p is always taken as a multiple of ZpZ , where pZ is the unique
nonzero vector satisfying

(6.17) LTpZ = enz .

The special structures of D and the reduced gradient are crucial to the following
theorem.
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Theorem 6.2. Assume that the conditions of Theorem 6.1 hold, and let Z, L
and D denote the matrices defined therein. Let pZ be the solution of LTpZ = enz

,
and let dnz denote the nz-th diagonal element of D. Then the vector p = ZpZ is a
multiple of q of (5.4) if ZTg 6= 0 and dnz 6= 0, and is a multiple of y of (5.3) if either
(a) ZTg 6= 0 and dnz = 0, or (b) ZTg = 0 and dnz < 0.

Proof. In all cases, the definition (6.17) of pZ and the structure of L and D imply
that

(6.18) LDLTpZ = dnzenz .

First, assume that ZTg 6= 0 and dnz
6= 0, so that ZTHZ is nonsingular and q is

unique. Recall that q = ZqZ , where ZTHZqZ = ZTg. We know from Theorem 6.1
that ZTHZ = LDLT and ZTg = σenz , with σ 6= 0 by hypothesis. Relation (6.18) and
the uniqueness of p and q thus imply that each is a multiple of the other, as required.

We now treat the second case, ZTg 6= 0 and dnz
= 0, so that ZTHZ is singular.

The vector y of (5.3) can be written as y = ZyZ , where yZ is a nonzero vector
satisfying ZTHZyZ = 0. (Recall that ZTHZ has exactly one zero eigenvalue.) Since
dnz = 0, (6.18) gives

LDLTpZ = ZTHZpZ = 0,

as required.
Finally, assume that ZTg = 0 and dnz < 0, which occurs when the reduced

Hessian becomes indefinite immediately following deletion of a constraint with a zero
multiplier. Let a∗ be the normal of the deleted constraint with the zero multiplier.
The vector y of (5.3) is given by y = ZyZ , where yZ satisfies

(6.19) ZTHZyZ = −w∗Z
Ta∗ and aT

∗ y = 1,

with w∗ > 0. The nature of the updates to Z following a constraint deletion (see
(6.13)) shows that the vector ZTa∗ is given by

(6.20) ZTa∗ = ξenz ,

where ξ = aT
∗ z̃, with z̃ the new column of Z created by the deletion of a∗. Because

of the full rank of the working set, ξ 6= 0. Thus, yZ satisfies

(6.21) ZTHZyZ = −w∗ξenz 6= 0.

It follows from (6.18) that either p or −p is a direction of negative curvature,
since

pTHp = pT
Z ZTHZpZ = dnz < 0.

If the sign of pnz
(the last component of pZ) is chosen so that

aT
∗ p = aT

∗ ZpZ = ξpnz > 0,

then examination of (6.18), (6.19) and (6.21) implies that p is a multiple of y, as
required.

Standard techniques are used to update the Cholesky factors (when the reduced
Hessian is positive definite) and the LDLT factors when the reduced Hessian is singu-
lar or indefinite. The test for “numerical” positive-definiteness is unavoidably scale-
dependent, and involves a tolerance based on machine precision and the norm of the
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reduced Hessian. Because the usual bounds ensuring numerical stability do not apply
when the reduced Hessian is indefinite, the last row and column of the reduced Hessian
are recomputed if the last diagonal element of D is negative and “too large” following
a constraint deletion (see the discussion in Gill and Murray [18]). Recomputation
occurs when the last diagonal element is negative and its square exceeds a factor β
(β > 1) times a measure of the norm of the reduced Hessian. (In the present version
of QPSOL, β = 10.)

7. Conclusions and Topics for Further Research. This paper has explored
in detail the nature of a family of methods for general quadratic programming. Our
aims have been to describe the overall “feel” of an idealized active-set strategy (Sec-
tion 2), to provide theoretical validation of the inertia-controlling strategy (Section 3),
to formulate in a uniform notation the equations satisfied by the search direction (Sec-
tion 4), and to discuss selected computational aspects of inertia-controlling methods
(Section 5 and Section 6).

Many interesting topics remain to be explored, particularly in the efficient imple-
mentation of these methods. For example, the method of Section 6.1 is identical in
motivation to Fletcher’s original method [12], but has not been implemented in the
form described, which avoids the need to update factors of a singular or indefinite
symmetric matrix. Various methods for sparse quadratic programming could be de-
vised based on the equations of Section 5.1, in addition to those already suggested by
Gould [28] and Gill et al. [25].

As noted in Section 4.4, an open question remains concerning the crucial task of
finding an initial working set in an efficient fashion consistent with the linear algebraic
procedures of the main iterations.
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