
LIMITED-MEMORY REDUCED-HESSIAN METHODS FOR
LARGE-SCALE UNCONSTRAINED OPTIMIZATION

PHILIP E. GILL∗ AND MICHAEL W. LEONARD†

Abstract. Limited-memory BFGS quasi-Newton methods approximate the Hessian matrix of
second derivatives by the sum of a diagonal matrix and a fixed number of rank-one matrices. These
methods are particularly effective for large problems in which the approximate Hessian cannot be
stored explicitly.

It can be shown that the conventional BFGS method accumulates approximate curvature in a
sequence of expanding subspaces. This allows an approximate Hessian to be represented using a
smaller reduced matrix that increases in dimension at each iteration. When the number of variables
is large, this feature may be used to define limited-memory reduced-Hessian methods in which
the dimension of the reduced Hessian is limited to save storage. Limited-memory reduced-Hessian
methods have the benefit of requiring half the storage of conventional limited-memory methods.

In this paper, we propose a particular reduced-Hessian method with substantial computational
advantages compared to previous reduced-Hessian methods. Numerical results from a set of uncon-
strained problems in the CUTE test collection indicate that our implementation is competitive with
the limited-memory codes L-BFGS and L-BFGS-B.

Key words. Unconstrained optimization, quasi-Newton methods, BFGS method, reduced-
Hessian methods, conjugate-direction methods

AMS subject classifications. 65K05, 90C30

1. Introduction. BFGS quasi-Newton methods have proved reliable and effi-
cient for the unconstrained minimization of a smooth nonlinear function f : Rn → R.
However, the need to store an n × n approximate Hessian has limited their applica-
tion to problems with a small-to-moderate number of variables (say, less than 500).
For larger n it is necessary to use methods that do not require the storage of a full
n × n matrix. Sparse quasi-Newton updates can be applied if the Hessian has a
significant number of zero entries (see, e.g., Powell and Toint [29], Fletcher [10]).
However, if the Hessian is dense, as is often the case for certain subproblems arising
in nonlinearly constrained optimization, other methods must be used. Such meth-
ods include conjugate-gradient methods, limited-memory quasi-Newton methods, and
limited-memory reduced-Hessian quasi-Newton methods.

Conjugate-gradient methods require storage for only a few n-vectors (see, e.g.,
Gill, Murray, and Wright [17, pp. 144–150]). These methods can be equivalent to
the BFGS quasi-Newton method on a quadratic function, but they are generally
acknowledged to be less robust on general nonlinear problems (see Gill and Murray
[14] for some numerical comparisons). Limited-memory quasi-Newton methods also
require storage of few n-vectors but have a more explicit relationship with quasi-
Newton methods. Limited-memory methods exploit the fact that the approximate
Hessian (or its inverse) can be written as the sum of a diagonal matrix and a number
of rank-one matrices. This allows the search direction to be calculated as a simple
linear combination of the vectors that define each rank-one update. The idea of

∗Department of Mathematics, University of California, San Diego, La Jolla, California 92093-
0112, USA (pgill@ucsd.edu). Research supported by the National Science Foundation grants DMI-
9424639, CCR-9896198, and DMS-9973276 and Office of Naval Research grant N00014-96-1-0274.

†Department of Mathematics, University of California, San Diego, La Jolla, California 92093-
0112, USA (mleonard@na-net.ornl.gov). Research supported by National Science Foundation grant
DMI-9424639.

1

2 P. E. GILL AND M. W. LEONARD

a limited-memory method is to store a fixed number m (m � n) of pairs of update
vectors and to discard older pairs as new ones are computed. These methods appeared
in the early 1980s (see, e.g., Shanno [30] and Nocedal [26]), and they have now been
developed to a considerable level of sophistication (see Byrd, Nocedal, and Schnabel [5]
and Kaufman [19]). Limited-memory approximate Hessians may be used directly in
a conventional quasi-Newton method, or they may be used as preconditioners for
a nonlinear conjugate-gradient method (see, e.g., Buckley [2, 3], Gill, Murray, and
Wright [17, pp. 151–152], Morales and Nocedal [22], and Nazareth [25]).

A different approach has been taken by Fenelon [8] and Siegel [33], who indepen-
dently proposed methods in which the curvature is accumulated in a subspace spanned
by a set of m independent vectors. These reduced-Hessian methods exploit the fact
that quasi-Newton methods accumulate approximate curvature in a sequence of ex-
panding subspaces (see Gill and Leonard [13]). Reduced-Hessian methods represent
the approximate Hessian using a smaller reduced matrix that increases in dimension at
each iteration. This reduced matrix incorporates curvature information that has been
accumulated during earlier iterations and allows the search direction to be calculated
from a linear system that is smaller than that used in conventional methods.

In this paper we propose the limited-memory method L-RHR, which may be
viewed as a limited-memory variant of the reduced-Hessian method RHR of Gill and
Leonard [13]. L-RHR has two features in common with the limited-memory method of
Siegel [33]: a basis of search directions is maintained for the sequence of m-dimensional
subspaces, and an implicit orthogonal decomposition is used to define an orthonor-
mal basis for each subspace. However, L-RHR is different from Seigel’s algorithm in
several ways: (i) L-RHR updates the Cholesky factor of the reduced Hessian instead
of updating an explicit reduced inverse Hessian; (ii) the formulation of L-RHR as a
modification of RHR allows the application of Hessian reinitialization, which is shown
to greatly enhance performance on large problems; and (iii) L-RHR employs selective
basis reorthogonalization to improve robustness for moderate values of the subspace
dimension. Property (i) implies that in exact arithmetic, even if implemented with-
out Hessian reinitialization and selective reorthogonalization, the L-RHR iterates are
different from those of Siegel’s method (see section 3.6). Properties (i)–(iii) not only
provide substantial improvements in efficiency compared to Siegel’s method, but also
make reduced-Hessian methods competitive with the state-of-the-art limited-memory
method L-BFGS-B of Zhu et al. [34]. L-RHR requires the storage of an n×m matrix,
two m×m nonsingular upper-triangular matrices, and a fixed number of n- and m-
vectors. For a given m, this is approximately half the storage required for L-BFGS-B

to represent essentially the same amount of second-derivative information. Moreover,
L-RHR requires fewer floating-point operations per iteration, which results in smaller
overall computation times on many problems.

The paper is organized as follows. In section 2 we briefly review various theoretical
aspects of reduced-Hessian quasi-Newton methods, including the definition of Algo-
rithm RHR, a reduced-Hessian method with Hessian reinitialization. Algorithm RHR

provides the theoretical framework for the limited-memory algorithm L-RHR proposed
in section 3. We give algorithms for maintaining both gradient- and search-direction
subspace bases, and it is shown that L-RHR has the property of finite termination
on a strictly convex quadratic function. To simplify the discussion, the algorithms of
sections 2–3 are stated with the assumption that all computations are performed in
exact arithmetic. The effects of rounding error and the use of reorthogonalization are
discussed in sections 4.1, 4.2, and 4.3. Finally, section 5 includes some numerical re-

LIMITED-MEMORY METHODS 3

sults obtained when various limited-memory reduced-Hessian algorithms are applied
to test problems from the CUTE test collection of Bongartz et al. [1]. It is shown
that reinitialization and selective reorthogonalization (in conjunction with an explicit
factorization for the subspace basis) give, respectively, significantly fewer function
evaluations and increased robustness compared to Siegel’s method. Section 5 also
includes comparisons of L-RHR with two alternative implementations of the conven-
tional limited-memory BFGS method.

Unless explicitly indicated otherwise, ‖ · ‖ denotes the vector two-norm or its
subordinate matrix norm.

2. Motivation. The BFGS method generates a sequence of iterates {xk} such
that xk+1 = xk +αkpk, where pk is the search direction and αk is a scalar step length.
The search direction satisfies Hkpk = −∇f(xk), where Hk is an approximate Hessian.
The application of the BFGS update to Hk gives a matrix H ′

k such that

H ′
k = Hk −

1
δT
k Hkδk

HkδkδT
k Hk +

1
γT

k δk
γkγT

k ,(2.1)

where δk = xk+1−xk, gk = ∇f(xk), and γk = gk+1−gk. A conventional BFGS method
then defines Hk+1 = H ′

k (another choice for Hk+1 is discussed in section 2.2). If H0 is
symmetric and positive definite, and if αk is such that the approximate curvature γT

k δk

is positive, then Hk is symmetric positive definite for all k ≥ 0. Conditions imposed
on the step length by practical step-length algorithms can ensure both positivity of
the approximate curvature and sufficient descent. This is the case, for example, for
any αk satisfying the Wolfe conditions

f(xk + αkpk) ≤ f(xk) + µαkgT
kpk and gT

k+1pk ≥ ηgT
kpk,(2.2)

where the constants µ and η are chosen so that 0 ≤ µ < η < 1 and µ < 1
2 .

The need to solve a linear system for pk makes it convenient to use the upper-
triangular Cholesky factor Ck such that Hk = CT

k Ck. In this case, the Cholesky factor
Ck+1 of Hk+1 is obtained from a rank-one change to Ck (see Dennis and Schnabel [7]).
We omit the details of this procedure and simply write Ck+1 = update(Ck, δk, γk).

2.1. Reduced-Hessian methods. Reduced-Hessian methods provide an al-
ternative way of implementing the BFGS method. Let Gk denote the subspace
Gk = span{g0, g1, . . . , gk}, and let G⊥k denote the orthogonal complement of Gk in
Rn. Reduced-Hessian methods are based on the following result (see, e.g., Fletcher
and Powell [11], Fenelon [8], and Siegel [33]).

Lemma 2.1. Consider the BFGS method applied to a general nonlinear function.
If H0 = σI (σ > 0) and Hkpk = −gk, then pk ∈ Gk for all k. Moreover, if z ∈ Gk and
w ∈ G⊥k , then Hkz ∈ Gk and Hkw = σw.

Let rk denote dim(Gk), and let Bk (B for “basis”) denote an n× rk matrix whose
columns form a basis for Gk. An orthonormal basis Zk can be defined from the QR
decomposition Bk = ZkTk, where Tk is a nonsingular upper-triangular matrix. Let
the n− rk columns of Wk define an orthonormal basis for G⊥k . If Qk is the orthogonal
matrix Qk = (Zk Wk), then the transformation x = QkxQ defines a transformed
approximate Hessian QT

kHkQk and a transformed gradient QT
kgk. If H0 = σI (σ > 0),

it follows from (2.1) and Lemma 2.1 that the transformation induces a block-diagonal
structure, with

QT
kHkQk =

(
ZT

kHkZk 0
0 σIn−rk

)
and QT

kgk =

(
ZT

kgk

0

)
.(2.3)

4 P. E. GILL AND M. W. LEONARD

The positive-definite matrix ZT
kHkZk is known as a reduced approximate Hessian (or

just reduced Hessian). The vector ZT
kgk is known as a reduced gradient.

If we write the equation for the search direction as (QT
kHkQk)QT

k pk = −QT
k gk, it

follows from (2.3) that

pk = Zkqk, where qk satisfies ZT
k HkZkqk = −ZT

kgk.(2.4)

If the Cholesky factorization ZT
k HkZk = RT

k Rk is known, qk can be computed from
the forward substitution RT

k dk = −ZT
k gk and back-substitution Rkqk = dk. The

practical benefit of this approach is that, if k � n, the matrices Zk and Rk require
much less storage than Hk.

There are a number of alternative choices for Bk (see Gill and Leonard [13, The-
orem 2.3]). Both Fenelon and Siegel propose that Bk be formed from a linearly
independent subset of {g0, g1, . . . , gk}. With this choice, the orthonormal basis can
be accumulated columnwise as the iterations proceed using Gram–Schmidt orthogo-
nalization (see, e.g., Golub and Van Loan [18, pp. 218–220]). During iteration k, the
number of columns of Zk either remains unchanged or increases by one, depending on
the value of the scalar ρk+1 such that ρk+1 = ‖(I−ZkZT

k)gk+1‖. If ρk+1 = 0, the new
gradient has no component outside range(Zk) and gk+1 is said to be rejected. Thus,
if ρk+1 = 0, Zk already provides a basis for Gk+1 with rk+1 = rk and Zk+1 = Zk.
Otherwise, rk+1 = rk +1 and the gradient gk+1 is said to be accepted. In this case, Zk

gains a new column zk+1 defined by the identity ρk+1zk+1 = (I − ZkZT
k)gk+1. The

calculation of zk+1 also provides the rk-vector uk = ZT
k gk+1 and the scalar zT

k+1gk+1

(= ρk+1), which are the components of the reduced gradient ZT
k+1gk+1 for the next

iteration. For simplicity, we write (Zk+1, uk, ρk+1, rk+1) = orthog(Zk, gk+1, rk) in
the algorithms that follow. This orthogonalization procedure requires approximately
2nrk flops. Gram–Schmidt orthogonalization may be considered as an algorithm for
computing the QR decomposition of Bk without storing Tk. Suppose that at the start
of iteration k there exists a nonsingular Tk with Bk = ZkTk. If gk+1 is accepted, then

Bk+1 = (Bk gk+1) = (Zk zk+1)

(
Tk ZT

k gk+1

0 ρk+1

)
= Zk+1Tk+1,(2.5)

where the last equality defines Tk+1, which is nonsingular since ρk+1 6= 0. Otherwise,
Tk+1 = Tk.

Definition (2.4) of each search direction implies that pj ∈ Gk for all 0 ≤ j ≤ k.
This leads naturally to another basis for Gk based on orthogonalizing the search
directions p0, p1, . . . , pk. The next theorem implies that the columns of Zk constitute
an orthonormal basis for Pk, the span of all search directions {p0, p1, . . . , pk} (for a
proof, see Gill and Leonard [13]).

Theorem 2.2. If H0 = σI (σ > 0), then the subspaces Gk and Pk generated by
the gradients and search directions of the conventional BFGS method are identical.

This result implies that Zk can be generated from either gradients or search
directions, a point that will be used to advantage in section 3.

Given Zk+1 and Hk, the calculation of the search direction for the next iteration
requires the Cholesky factor of ZT

k+1Hk+1Zk+1.1 This factor can be obtained from
Rk in a two-step process without the need to know Hk. The first step, which is not

1As mentioned earlier, Hk+1 is usually H′
k, which is defined by (2.1) However, we will implicitly

alter H′
k further, as described in section 2.2.

LIMITED-MEMORY METHODS 5

needed if gk+1 is rejected, is to compute the factor R′k of ZT
k+1HkZk+1. This step

involves adding a row and column to Rk to account for the new last column of Zk+1.
It follows from Lemma 2.1 and (2.3) that

ZT
k+1HkZk+1 =

(
ZT

k HkZk ZT
k Hkzk+1

zT
k+1HkZk zT

k+1Hkzk+1

)
=

(
ZT

k HkZk 0
0 σ

)
,

giving an expanded block-diagonal factor R′k defined by

R′k =


Rk if rk+1 = rk;(

Rk 0
0 σ1/2

)
if rk+1 = rk + 1.

(2.6)

The algorithm that defines R′k from Rk will be denoted by expand for obvious
reasons. This expansion also involves vectors vk = ZT

k gk, uk = ZT
k gk+1, and qk =

ZT
k pk, which are updated to give v′k = ZT

k+1gk, u′k = ZT
k+1gk+1, and q′k = ZT

k+1pk. As
both pk and gk lie in range(Zk), if gk+1 is accepted, the vectors v′k and q′k are trivially
defined from vk and qk by appending a zero component (see (2.3)). Similarly, the
vector u′k is formed from uk and ρk+1. If gk+1 is rejected, v′k = vk, u′k = uk, and
q′k = qk. In either case, vk+1 is equal to u′k and need not be calculated at the start of
iteration k + 1 (see Algorithm 2.1 below).

The second step of the modification alters R′k to reflect the BFGS update to
Hk. This update gives a modified factor R′′k = update(R′k, sk, yk), where sk =
ZT

k+1(xk+1 − xk) = αkq′k, and yk = ZT
k+1(gk+1 − gk) = u′k − v′k.

2.2. Reinitialization. The initial approximate Hessian can greatly influence
the practical performance of quasi-Newton methods. The usual choice H0 = σI
(σ > 0) can result in many iterations and function evaluations—especially if the
iterates tend toward a minimizer at which the Hessian of f is ill-conditioned (see,
e.g., Powell [27] and Siegel [33]). This is sometimes associated with “stalling” of the
iterates, a phenomenon that can greatly increase the overall cpu time for solution
(or termination). The form of the transformed Hessian QT

k HkQk (see (2.3)) reveals
the influence of H0 on the approximate Hessian. In particular, the scale factor σ
represents the approximate curvature along all directions in G⊥k . However, in the
reduced-Hessian formulation, this initial approximate curvature is not installed until
the end of iteration k, when it is used in the expand procedure according to (2.6).
Our idea is to replace σ whenever gk+1 is accepted with a value more representative
of the approximated curvature. This has the effect of reinitializing the approximate
curvature along zk+1 and is meant to alleviate inefficiencies resulting from poor choices
of H0. An estimate σk of the approximate curvature is maintained and updated as
new curvature information is obtained. Some popular choices for σk are considered
by Leonard [20, pp. 44–48]. In section 5 we discuss values that have been proposed
for limited-memory methods.

The initial approximate curvature can be reinitialized by using some σk+1 in place
of σk in the expand procedure. Gill and Leonard [13] show that reinitialization can
be done either before or after the expand , but they recommend the latter because
it results in a simpler convergence result. Here, the reinitialization is performed
after update to be consistent with that article. The procedure reinitialize involves
simply changing the trailing diagonal element of R′′k from σ

1/2
k to σ

1/2
k+1 whenever gk+1

is accepted.

6 P. E. GILL AND M. W. LEONARD

2.3. Summary. We conclude this section by defining a generic reduced-Hessian
method that is the basis of the limited-memory method proposed in section 3. As
described above, the reduced-Hessian method involves four main procedures: an or-
thogonalize, which determines Zk+1 using the Gram–Schmidt QR process; an expand,
which increases the order of the reduced Hessian by one; an update, which applies a
BFGS update directly to the reduced Hessian; and a reinitialize, which reinitializes
the last diagonal of the reduced Hessian factor.

Algorithm 2.1. (RHR) Reduced-Hessian method with reinitialization.
Choose x0 and σ0 (σ0 > 0);
k = 0; r0 = 1; g0 = ∇f(x0);
Z0 =

(
g0/‖g0‖

)
; R0 =

(
σ

1/2
0

)
; v0 = ‖g0‖;

while not converged do
Solve RT

k dk = −vk; Rkqk = dk;
pk = Zkqk;
Find αk satisfying the Wolfe conditions (2.2);
xk+1 = xk + αkpk; gk+1 = ∇f(xk + αkpk);
(Zk+1, uk, ρk+1, rk+1) = orthog(Zk, gk+1, rk);
(R′k, u′k, v′k, q′k) = expand(Rk, uk, vk, qk, ρk+1, σk);
sk = αkq′k; yk = u′k − v′k; R′′k = update(R′k, sk, yk);
Compute σk+1; Rk+1 = reinitialize(R′′k , σk+1);
vk+1 = u′k;
k = k + 1;

end do

When no reinitialization is done, this algorithm generates the same iterates as the
conventional BFGS method with H0 = σ0I. In exact arithmetic, the methods differ
only in the storage needed and the number of operations per iteration. It can be
shown that both with and without reinitialization, the algorithm retains two impor-
tant properties of the BFGS method: it has quadratic termination, and it converges
globally and Q-superlinearly on strongly convex functions (see Gill and Leonard [13]).

Algorithm RHR implicitly defines a full-sized BFGS approximate Hessian Hk. Let
Zk and Rk be defined at the start of the kth iteration, and let Qk = (Zk Wk) denote
an orthogonal matrix whose first rk columns are the columns of Zk. The full-sized
approximate Hessian is given by

Hk = Qk

(
RT

k 0
0 σ

1/2
k In−rk

)(
Rk 0
0 σ

1/2
k In−rk

)
QT

k .(2.7)

Given Rk, Zk, and any n-vector v, the identity

Hkv = ZkRT
k RkZT

k v + σk(I − ZkZT
k)v

implies that products Hkv can be calculated. This allows the reduced-Hessian ap-
proach to be used in constrained optimization algorithms that use Hk as an operator
via products of the form Hkv (see, e.g., Gill, Murray, and Saunders [15]).

3. A limited-memory reduced-Hessian method. In this section we propose
a limited-memory method that may be viewed as a reduced-Hessian method in which
only the most recent curvature information is retained. As in Algorithm RHR, a

LIMITED-MEMORY METHODS 7

triangular factor of the reduced Hessian is updated and reinitialized at each iteration—
the crucial difference is that the number of basis vectors (and hence the dimension
of the reduced Hessian) is limited by a preassigned value m. For problems with
many variables, a choice of m � n gives significant savings in storage compared to
conventional quasi-Newton methods.

A simple limited-memory version of RHR can be defined by discarding the oldest
gradient when the storage limit is reached. However, algorithms based on this idea
have proved to be inefficient in practice. One explanation of this inefficiency is that
discarding the oldest gradient invalidates RHR’s property of finite termination on
a quadratic function (see Theorem 3.1 and the concluding remarks of section 3.7).
There is considerable numerical evidence that quadratic termination is beneficial when
minimizing general functions; see, e.g., Siegel [31] and Leonard [20]. The limited-
memory method proposed here retains the property of finite termination by following
Siegel’s suggestion of using a basis of search directions rather than gradients. This
strategy is sufficient to maintain quadratic termination when the oldest basis vector
is discarded (see section 3.3).

An important feature of the method is that it is necessary to store and update
the triangular factor Tk associated with the orthogonal factorization Bk = ZkTk. In
practice, we store Tk and either Zk or Bk.

3.1. The search-direction basis and its factorization. We start by describ-
ing how the orthogonal factorization is maintained as directions are added to the basis.
Initially, this procedure is described in the context of building an m-dimensional basis
before a search direction is discarded, where m is assumed to satisfy m ≥ 2. The usual
context is to add and remove a vector at every iteration. The procedure for removing
a direction from the basis is described in section 3.2. To simplify the discussion, we
assume that every gradient is accepted.

In order to allow for the fact that Zk is used in the equations that define pk,
the gradient gk is used as a temporary basis vector until it can be replaced by pk.
This implies that the kth iteration involves three basis matrices: Bk, B′

k, and B′′
k .

The starting basis is Bk = (p0 · · · pk−1 gk). The matrix B′
k is obtained from

Bk by replacing gk by pk as soon as it is computed, and B′′
k is found by adding the

accepted gradient to B′
k. The matrices Bk and B′

k differ by a single column, yet, by
Theorem 2.2, their columns span the same subspace during the build process.

The procedure starts with B0 =
(
g0

)
, T0 =

(
‖g0‖

)
, and Z0 =

(
z0

)
, where

z0 = g0/‖g0‖. Once p0 is calculated, it is swapped into the basis to give B′
0 =

(
p0

)
and T ′0 =

(
‖p0‖

)
. After the line search, g1 is accepted (by assumption) and we define

B′′
0 = (p0 g1), T ′′0 =

(
‖p0‖ u0

0 ρ1

)
, and Z ′0 = (z0 z1)

(see (2.5) and recall that uk = ZT
k gk+1). With our assumption that m ≥ 2, no

vector need be discarded and these matrices define B1, T1, and Z1. The kth iteration
(1 ≤ k ≤ m− 1) proceeds in a similar way, with

Bk = (p0 · · · pk−1 gk), Tk = (T ′k−1 vk), T ′k−1 =

(
T ′k−1

0

)
,

and Zk = (z0 · · · zk−1 zk) (the form of the last column of Tk follows from the
definition of vk as ZT

k gk). Once pk is computed, it is swapped with gk in the basis

8 P. E. GILL AND M. W. LEONARD

with no computation required, yielding

B′
k = (p0 · · · pk−1 pk) and T ′k =

(
T ′k−1 qk

)
,

where qk = ZT
k pk. The matrix Zk is unchanged. While building the basis, the last

component of qk is nonzero and the swap can always be done (see Leonard [20, pp. 94–
99]). After the line search, gk+1 is accepted and the orthogonalization procedure yields

B′′
k = (B′

k gk+1) = (p0 · · · pk−1 pk gk+1), T ′′k =

(
T ′k uk

0 ρk+1

)
,

and Z ′k = (z0 · · · zk−1 zk zk+1). These matrices are then passed to iteration k +1
as Bk+1, Tk+1, and Zk+1, respectively.

3.2. Discarding the oldest basis vector. Now suppose that k = m−1. Given
the assumption that every gradient is accepted, there are m + 1 vectors in the basis
at the end of this iteration. At this point, p0, the oldest search direction, must be
discarded before starting iteration k + 1. This gives the new basis

Bk+1 = (p1 · · · pk gk+1).

(On the other hand, if at least one gradient is rejected, then no vector is discarded
at iteration m. In this case, Bk+1 contains rk+1 (rk+1 ≤ m) linearly independent
vectors consisting of at most one gradient (the vector gk+1) and a linearly indepen-
dent set of search directions. If gk+1 is rejected, Bk+1 will consist of rk+1 linearly
independent search directions.) Discarding a vector from the basis will decrease the
rank by one. Hence, a symbol r′k is needed for the intermediate rank determined by
the orthogonalization procedure orthog . The final rank rk+1 is then either r′k − 1 or
r′k depending upon whether or not a basis vector is discarded.

When the oldest direction p0 is discarded, the removal of its associated column
from the basis must be reflected in all factorizations associated with B′′

k . To simplify
the description, the subscript k is suppressed, and a bar is used to denote quantities
with subscript k + 1.

The relationship between the old and new bases B′′ and B̄ (= Bk+1) is given by
B′′ = (p0 B̄), where B̄ is n×m. Associated with B̄, we require Z̄ and T̄ such that
B̄ = Z̄T̄ . Moreover, the change from Z ′ to Z̄ induces a corresponding change to the
Cholesky factor. If R′′′ denotes the factor defined by the reinitialize procedure, then
we require the factor R̄ such that R̄TR̄ = Z̄TH ′′Z̄, where H ′′ is defined as in (2.7) but
in terms of σ̄, Z ′, and R′′′. The matrix H ′′ is the Hk+1 defined in section 2.2.

Daniel et al. [6] give the following method for updating Z ′ and T ′′. Given any
orthogonal S, the orthogonal factorization of B′′ may be written as B′′ = Z ′T ′′ =
Z ′ST ST ′′ = ZSTS (say). The matrix S is constructed so that TS has the partitioned
form

TS =

(
t T̄

τ 0

)
,

where T̄ is the desired m ×m upper-triangular matrix, t is an m-vector, and τ is a
scalar. In particular, S = Pm,m+1Pm−1,m · · ·P12, where Pi,i+1 is an (m+1)× (m+1)
plane rotation in the (i, i + 1) plane that annihilates the (i + 1, i + 1) element of
Pi−1,i · · ·P12T

′′.

LIMITED-MEMORY METHODS 9

The matrix Z̄ consists of the first m columns of ZS, i.e., ZS = (Z̄ z), where z
is an n-vector. From the definition of B′′, we have

B′′ = (p0 B̄) = ZSTS = (Z̄t + τz Z̄T̄),

and it follows that B̄ = Z̄T̄ is the required orthogonal factorization.
Next, we propose how to update R′′′ when the first column of B′′ is discarded.

The old and new orthogonal bases are related by the identity Z̄ = ZSEm, where
Em comprises the first m columns of the identity matrix of order m + 1. From the
definitions of Z̄ and H ′′, the new reduced Hessian is given by

Z̄T H ′′Z̄ = ET
mZT

S H ′′ZSEm = ET
mSZ ′T H ′′Z ′ST Em = ET

mSR′′′T R′′′ST Em.

In general, R′′′ST is not upper triangular, but it may be restored to upper-triangular
form by a second sweep of plane rotations S̃. The (m + 1) × (m + 1) matrix S̃

is orthogonal and is chosen so that S̃R′′′ST is upper triangular. If RS = S̃R′′′ST

denotes the resulting product, then Z̄T H ′′Z̄ = ET
mRT

S RSEm, which implies that the
leading m×m block of RS is the required factor R̄. Note that at this point, we can
define H̄ (= Hk+1) in terms of R̄, Z̄, and σ̄.

The matrix S̃ is the product P̃m,m+1 · · · P̃ 23P̃ 12, where P̃ i,i+1 is an (m + 1) ×
(m + 1) plane rotation in the (i, i + 1) plane that annihilates the (i, i + 1) element of
P̃ i−1,i · · · P̃ 12R

′′′PT
12 · · ·PT

i,i+1. In practice, the two sweeps S̃ and S are interlaced so
that only O(m2) operations are required.

It remains to show how u′ (= Z ′T ḡ) is updated, thereby avoiding the mn opera-
tions necessary to compute the new reduced gradient u′′ (= Z̄T ḡ) from scratch. The
identity u′′ = Z̄T ḡ = (ZSEm)T ḡ = ET

mS(Z ′T ḡ) = ET
mSu′ implies that u′′ comprises

the first m components of Su′.

3.3. Comparison of the bases. We now revert to using subscripts to denote
iteration indices. Under the assumption that every gradient is accepted, the gradient
and search-direction bases at the start of iteration m − 1 are given by Gm−1 =
(g0 g1 · · · gm−1) and Pm−1 = (p0 p1 · · · pm−2 gm−1). Theorem 2.2 implies
that range(Gm−1) = range(Pm−1), and we can expect that the value of pm−1 is
independent of the choice of basis. However, the following argument shows that this
is not necessarily true for pm, and hence the gradient and search-direction bases are
not necessarily the same in the limited-memory context.

At the end of iteration m − 1, both bases will have m + 1 vectors. In the
limited-memory context, the oldest basis vector must be discarded, giving bases
Gm = (g1 g2 · · · gm) and Pm = (p1 p2 · · · pm−1 gm). These bases do
not include g0 and p0 (which is parallel to g0), respectively. Note that pm−1 is not
necessarily in range(Gm) because pm−1 may have a nonzero component of g0, which
has been discarded from the gradient basis. Since pm−1 ∈ range(Pm) by construction,
it follows that range(Gm) 6= range(Pm). We will discuss a specific implication of this
phenomenon in section 3.7.

3.4. An implicit representation of Z. When a basis vector is discarded, the
application of the plane rotations to the right of Z ′k requires approximately 4mn
operations. Although it is possible to reduce this to 3mn operations (see Daniel et
al. [6]), the update to Z ′k dominates the time to perform an iteration and reduces the
efficiency compared to other methods. For example, the total number of operations
for an iteration of the limited-memory method of Nocedal [26] is approximately 4mn.

10 P. E. GILL AND M. W. LEONARD

Our limited-memory reduced-Hessian method is substantially faster if, as pro-
posed by Siegel, the basis matrix Bk is stored instead of Zk. In this case, products
involving Zk are computed as needed using Tk and Bk, and the number of operations
required to drop a column from the basis is reduced to O(r2

k).
With an implicit definition of Zk, the orthogonalization procedure becomes a

method for updating the orthogonal factorization of Bk without storing Zk. Given
Bk and a new gradient gk+1, the first step is to compute uk = ZT

k gk+1 from the
equations T ′Tk uk = B′T

k gk+1. Once uk is known, ρk+1 can be computed from the
identity ρ2

k+1 = ‖gk+1‖2 − ‖uk‖2. The updated triangular factor T ′′k is defined by
augmenting T ′k by a column formed from uk = ZT

k gk+1 and ρk+1 (see (2.5)). Note
that the column zk+1 is not needed. The implicit form of Zk reduces the cost of the
orthogonalization procedure by half to approximately nrk operations.

3.5. The limited-memory algorithm. We have described a reduced-Hessian
limited-memory algorithm that needs three procedures in addition to those needed
by Algorithm RHR: a swap, which replaces an accepted gradient gk with pk in the
definition of Bk, giving a basis defined by B′

k and T ′k; a new orthogonalize, which
orthogonalizes gk+1 with respect to Zk, giving a new orthonormal basis defined by
B′′

k and T ′′k ; and a discard, which drops the oldest search direction from the basis.
As in Algorithm RHR, statements of the form (B′

k, T ′k) = swap(Bk, Tk) indicate
computed quantities and their dependencies associated with a given procedure. Simi-
larly, the results of the implicit orthogonalization and discard procedures are denoted
by (B′′

k , T ′′k , uk, ρk+1, r
′
k) = iorthog(B′

k, T ′k, gk+1, rk) and (Bk+1, Tk+1, Rk+1, u
′′
k) =

drop(B′′
k , T ′′k , R′′′k , u′k).

Algorithm 3.1. (L-RHR) Limited-memory version of Algorithm RHR.

Choose x0, σ0 (σ0 > 0), and m (m ≥ 2);
k = 0; r0 = 1; g0 = ∇f(x0);
B0 =

(
g0

)
; T0 =

(
‖g0‖

)
; v0 = ‖g0‖; R0 =

(
σ

1/2
0

)
;

while not converged do
Solve RT

k dk = −vk; Rkqk = dk;
Solve Tkw = qk; pk = Bkw;
if gk was accepted then (B′

k, T ′k) = swap(Bk, Tk);
Find αk satisfying the Wolfe conditions (2.2);
xk+1 = xk + αkpk; gk+1 = ∇f(xk + αkpk);
(B′′

k , T ′′k , uk, ρk+1, r
′
k) = iorthog(B′

k, T ′k, gk+1, rk);
(R′k, u′k, v′k, q′k) = expand(Rk, uk, vk, qk, ρk+1, σk);
sk = αkq′k; yk = u′k − v′k; R′′k = update(R′k, sk, yk);
Compute σk+1; R′′′k = reinitialize(R′′k , σk+1);
if r′k equals m + 1 then

(Bk+1, Tk+1, Rk+1, u
′′
k) = drop(B′′

k , T ′′k , R′′′k , u′k); rk+1 = m;
else

Rk+1 = R′′′k ; Bk+1 = B′′
k ; Tk+1 = T ′′k ; u′′k = u′k; rk+1 = r′k;

end if
vk+1 = u′′k ;
k = k + 1;

end do

LIMITED-MEMORY METHODS 11

Iteration k of Algorithm L-RHR requires 2nrk+2n+O(r2
k) operations. (This total

includes the work required for the swap, iorthog , update , and drop procedures but
does not include any overhead incurred during the line search.)

3.6. Keeping the reduced Hessian vs. the reduced inverse Hessian. If
Siegel’s algorithm and an un-reinitialized version of L-RHR are applied with the same
line search, then the same search directions and subspace bases are generated for the
first m iterations. During these iterations the full n×n Hessian of L-RHR (see (2.7)) is
the inverse of the full inverse Hessian of Siegel’s method. However, once a basis vector
is discarded, the methods generate different search directions. In both algorithms,
the updating procedures associated with a discard relegate curvature information
associated with the oldest basis vector to the last row and column of their respective
reduced matrices. The off-diagonal entries of this row and column are replaced by
zero, and the diagonal element is set to either σ or 1/σ depending on the method. At
this point the two basis matrices generate the same subspace, but because the leading
m×m principal submatrices of a symmetric matrix and its inverse are not generally
the inverse of each other, the full Hessian of L-RHR is no longer the inverse of the
full inverse Hessian of Siegel’s method. At the next iteration, the methods generate
different search directions, and subsequent bases and reduced matrices are no longer
related.

3.7. Finite termination on quadratics. Next we briefly discuss the properties
of Algorithm L-RHR when it is applied with an exact line search to a strictly convex
quadratic function.

Theorem 3.1. Consider Algorithm L-RHR implemented with an exact line search
and σ0 = 1. If this algorithm is applied to a strictly convex quadratic function, then
Rk, Bk, and Tk (k ≥ 1) satisfy

Rk =



al/hl bl 0 · · · 0

al+1 bl+1
. . .

...
. 0

ak−1 bk−1

σ
1/2
k


, Bk =

(
pl pl+1 · · · pk−1 gk

)
,

and

Tk =



hldl hltl,l+1 hltl,l+2 · · · hltl,k−1 0
dl+1 tl+1,l+2 · · · tl+1,k−1 0

dl+2

...
...

. . . tk−2,k−1 0
dk−1 0

‖gk‖


,

where l = max{0, k −m + 1} and the scalars aj, bj, tij, dj, and hj are given by

aj =
‖gj‖

(yT
j sj)1/2

, bj = − ‖gj+1‖
(yT

j sj)1/2
, tij = − ‖gj‖2

σj‖gi‖
, dj = −‖gj‖

σj
, hj = δj

‖pj‖σj

‖gj‖

12 P. E. GILL AND M. W. LEONARD

with δj = 1 if j = 0, and δj = −1 otherwise. Furthermore, the search directions are
given by

p0 = −g0; pk = − 1
σk

gk + βk−1pk−1, βk−1 =
σk−1

σk

‖gk‖2

‖gk−1‖2
, k ≥ 1.

Proof. See Leonard [20].
Corollary 3.2. If Algorithm L-RHR is used to minimize a strictly convex

quadratic under the conditions of Theorem 3.1, then the method converges to the
minimizer in at most n iterations.

Proof. We show by induction that the search directions are parallel to the
conjugate-gradient directions {dk}. Specifically, σkpk = dk for all k. This is true
for k = 0 since 1 · p0 = −g0 = d0. Assume that σk−1pk−1 = dk−1. Using Theorem 3.1
and the inductive hypothesis, we find

σkpk = −gk + σk−1
‖gk‖2

‖gk−1‖2
pk−1 = −gk +

‖gk‖2

‖gk−1‖2
dk−1 = dk,

which completes the induction. The result now follows from the quadratic termination
property of the conjugate-gradient method.

We remark that the specific form of L-RHR discussed in Theorem 3.1 defines a
“rescaled” form of the classical Fletcher–Reeves conjugate-gradient method [12].

Let pG
m and pP

m denote the search directions defined during iteration m of the
gradient- and search-direction variants of the limited-memory algorithm. Observe
that pm−1 is parallel to dm−1, regardless of which basis is used. However, since
gm ∈ range(Gm), but possibly pm−1 6∈ range(Gm), the vector pG

m may not be parallel
to dm and the gradient-basis variant does not have quadratic termination.

4. Implementation details. In this section, we describe some details associ-
ated with a particular implementation of Algorithm L-RHR. We outline a method
for improving the orthonormal basis and discuss a practical criterion for accepting a
gradient. We also provide information about the line search, the BFGS update, and
restarts.

4.1. Reorthogonalization. For general applications the implicit QR version
of Zk is recommended, with default memory size m = 5. For larger values of m
(e.g., m ≥ 15), it is often beneficial to use reorthogonalization in combination with
the explicit QR. L-RHR employs the following reorthogonalization scheme proposed
by Daniel et al. [6]. Let uk and wk denote the computed values of ZT

k gk+1 and
gk+1−Zkuk, respectively. The vectors uk and wk may be improved using one or more
steps of the iterative refinement scheme:

∆uk = ZT
k wk, uk ← uk + ∆uk;

and

∆wk = −Zk∆uk, wk ← wk + ∆wk.

L-RHR uses criteria suggested by Daniel et al. [6] for invoking and terminating the
reorthogonalization. Each step of reorthogonalization adds approximately 2nrk op-
erations to the cost of an iteration. Moreover, the use of an explicit Zk requires an
additional nrk operations for the calculation of zk+1 and an extra 3nrk operations
when a basis vector is discarded (since the plane rotations associated with a discard
must be applied to Zk as well as Tk).

LIMITED-MEMORY METHODS 13

4.2. The criterion for gradient acceptance. In exact arithmetic, a gradient
is accepted for the basis if ρk+1 > 0, where ρk+1 is the norm of (I − ZkZT

k)gk+1.
This condition ensures that the basis vectors are linearly independent, and hence that
T ′′k is nonsingular. When ρk+1 is computed in finite-precision, gradients with small
(but nonzero) ρk+1 must be rejected to prevent Tk+1 and Bk+1 from being too ill-
conditioned. In practice, an accepted gradient must satisfy ρk+1 ≥ ε‖gk+1‖, where
ε is a preassigned positive constant. In the results of section 5, ε was set to 10−4.
Rounding error in the calculation of ρk+1 is exacerbated by the use of an implicit
form for Zk—for example, it is necessary to reject gk+1 if the computed value of
ρ2

k+1 = ‖gk+1‖2 − ‖uk‖2 is negative. However, a negative computed value of ρ2
k+1

rarely occurred in our experiments, and when it did, it did not prevent the method
from terminating successfully (see section 5 for the criterion used). For example, a
negative value was computed 268 times during the 69747 iterations in the runs of
Table 5.6 below. Moreover, of the 10 problems in which a negative value occurred, all
were solved successfully.

4.3. The line search, the BFGS update, and restarts. The line search is
a slightly modified version of the one used in the package NPSOL [16]. It is designed
to ensure that αk satisfies the so-called strong Wolfe conditions,

f(xk + αkpk) ≤ f(xk) + µαkgT
kpk and |gT

k+1pk| ≤ η|gT
kpk|,(4.1)

where the constants µ and η are chosen so that 0 ≤ µ < η < 1 and µ < 1
2 (see Gill

et al. [16] or Fletcher [9, pp. 26–30]). The step-length parameters are µ = 10−4 and
η = 0.9. The line search is based on using a safeguarded polynomial interpolation to
find an approximate minimizer of the univariate function

φk(α) = f(xk + αpk)− f(xk)− µαgT
kpk

(see Moré and Sorensen [23]). The step αk is the first member of a minimizing sequence
{αi

k} that satisfies the Wolfe conditions. The sequence is usually started with α0
k = 1

(see below).
If αk satisfies the strong Wolfe conditions, it follows that yT

ksk ≥ −(1−η)gT
ksk > 0

and the BFGS update can be applied without difficulty. On very difficult problems,
however, the combination of a poor search direction and rounding error in f may
prevent the line search from satisfying the line search conditions within 20 function
evaluations. In this case, the search terminates with the step corresponding to the
best value of f found so far. If this αk defines a strict decrease in f , the minimization
continues. In this case, the BFGS update is skipped unless yT

ksk ≥ εM |gT
ksk|, where

εM is the machine precision. If a strict decrease is not obtained after 20 function
evaluations, the algorithm is restarted with Tk =

(
‖gk‖

)
, vk = ‖gk‖, and Rk =(

σ
1/2
k

)
. To prevent the method from degenerating into steepest descent, no more

restarts are allowed until the reduced Hessian has built up to its full size of m rows
and columns. In practice, a restart is rarely invoked. For example, in the experiments
of Table 5.6, L-RHR used only one restart (on problem freuroth, which was not solved
successfully). For comparison, L-BFGS-B used two restarts (on problem bdqrtic, again
without success).

If pk is a poorly scaled version of the steepest-descent direction, the step to a
minimizer of φk(α) may be very small relative to one, and a large number of func-
tion evaluations may be needed to find an acceptable step length. To prevent this
inefficiency, the initial step for the first line search and each line search immediately

14 P. E. GILL AND M. W. LEONARD

following a restart is limited so that α0
k ≤ min{∆/‖pk‖, 1}, where ∆ is a preassigned

constant (∆ = 2 in the experiments described in the next section). This procedure
ensures that the initial change in x does not exceed ∆.

5. Numerical results. In this section, we give numerical results for most of the
large unconstrained problems in the CUTE2 collection (see Bongartz et al. [1]). After
some discussion of the test problems, we compare L-RHR with and without reinitial-
ization. Next, we illustrate the differences between L-RHR and Siegel’s Algorithm 6
[33], which we refer to as ALG6. This is followed by results that compare L-RHR with
L-BFGS and L-BFGS-B, which are two alternative implementations of the limited-
memory BFGS method. L-BFGS is based on an algorithm that maintains an implicit
approximate inverse Hessian as a sequence of update pairs. L-BFGS-B employs an al-
gorithm that updates an approximate Hessian in factored form θI −WMWT , where
θ is a scalar and WMWT is a matrix of low rank. L-BFGS-B is intended for problems
with upper and lower bounds on the variables but is also recommended over L-BFGS-B

for unconstrained problems (see Zhu et al. [34]).
Throughout, we use mLB to denote the number of update pairs to be kept in

memory by L-BFGS and L-BFGS-B. This should not be confused with m, the number
of vectors stored by L-RHR.

5.1. Test problem selection. The test set was constructed using the CUTE

interactive select tool, which allows the identification of groups of problems with
certain features. In our case, the select tool was first used to locate the twice-
continuously differentiable unconstrained problems for which the number of variables
in the data file can be varied. Of these problems, the number of variables was set to
a value in the range 100 ≤ n ≤ 1500 according to criteria that we discuss below. The
input for the select tool was as follows:

Objective function type : *
Constraints type : U (No constraints)
Regularity : R (twice-cont. differentiable)
Degree of available derivatives : *
Problem interest : *
Explicit internal variables : *
Number of variables : v (variable dimension)
Number of constraints : 0.

A total of 87 problems was obtained from this selection. Six fixed-dimension problems
were obtained by using the select tool with the number of variables set as follows:

Number of variables : in [50, 1000].
Additional criteria were used to determine the suitability of these 93 problems, as we
now explain.

After using the select tool, it remained to determine a suitable value of n for
the problems with variable dimension. The value n = 1500 was used for the twelve
problems dixmaana–dixmaanl , as suggested by Zhu et al. [34]. Values n ≈ 1000 were
used for most of the remaining problems, but it was necessary to choose significantly
smaller values of n in some cases. The problems chnrosnb, errinros, and watson
have limits on the size of n, and the mandated maximum values of 50, 50, and 31,
respectively, were used in these cases. It was also necessary to limit n to be less than

2The version of CUTE used was obtained September 7, 2001.

LIMITED-MEMORY METHODS 15

1000 if a problem could not be decoded using the CUTE decoder sifdec (compiled
with the option tobig). For any such problem, the values n = 300 and n = 100
were tried successively until the decoding succeeded. Problems in this category were
arglina–arglinc, brownal , hilberta, hilbertb, mancino, penalty3 , and sensors. The
value n = 300 was used for arglina, brownal , hilberta, and hilbertb. The value n = 100
was used for mancino, penalty3 , and sensors. The problems arglinb (n = 300) and
arglinc (n = 100) and penalty3 (n = 100) were successfully decoded but were removed
from the set for reasons described below.

A value of n such that n < 1000 was also used if both L-BFGS-B and L-RHR

failed to meet the termination criterion with m, mLB = 5, 15, 30, and 45. (The
termination criterion will not be satisfied if there is a failure in the line search or
40, 000 iterations are completed.) In this case, 300 and 100 were tried successively
to determine an acceptable value for n. The problems arglinb, arglinc, curly10 ,
curly20 , curly30 , fletchbv , hydc20ls (fixed n = 99), indef , nonmsqrt , penalty3 ,
sbrybnd , scosine, scurly10 , scurly20 , and scurly30 were removed from the test set
since, even with n = 100, neither method could meet the termination criterion. The
value n = 100 was used for penalty2 since neither L-RHR nor L-BFGS-B could achieve
the termination criterion with n = 1000 or n = 300.

These selection criteria had the effect of removing 15 problems from the list gen-
erated by the select tool. This left 78 problems suitable for testing. For complete-
ness, we list the problems not already mentioned, with their associated values of
n. There were 44 variable-dimension problems with n = 1000: arwhead , bdqrtic,
broydn7d , brybnd , chainwoo, cosine, cragglvy , dixon3dq , dqdrtic, dqrtic, edensch,
engval1 , extrosnb, fletcbv2 , fletcbv3 , fletchcr , freuroth, genhumps, genrose, liarwhd ,
morebv , ncb20 , ncb20b, noncvxu2 , noncvxun, nondia, nondquar , penalty1 , powellsg ,
power , quartc, schmvett , sinquad , sparsine, sparsqur , spmsrtls, srosenbr , testquad ,
tointgss, tquartic, tridia, vardim, vareigvl , and woods. There were four problems with
n = 1024: fminsrf2 , fminsurf , msqrtals, and msqrtbls. The remaining three variable-
dimension problems were eigenals (n = 1056), eigenbls (n = 1056), and eigencls
(n = 1122). Finally, the names and numbers of variables of the five fixed-dimension
problems included in the test set were deconvu (n = 61), eg2 (n = 1000), tointgor
(n = 50), tointpsp (n = 50), and tointqor (n = 50).

All runs were made on a Sun UltraSPARC-IIi (single cpu at 333MHz) with 256MB
of RAM. The algorithms L-RHR, L-BFGS-B, and L-BFGS are coded in Fortran and
were compiled using g77. ALG6 is coded in C and was compiled using gcc. Full
compiler optimization was used in all cases. The caption of each table specifies the
amount of limited memory used and indicates whether or not reinitialization and/or
reorthogonalization was used. All methods were terminated when ‖gk‖∞ < 10−5, as
proposed by Zhu et al. [34].

5.2. L-RHR with and without reinitialization. Table 5.1 gives the results
of running L-RHR both with and without reinitialization. Without reinitialization,
the parameter σ was fixed at yT

0s0/‖s0‖2 (see (2.6)).3 This is the scheme proposed
by Siegel [33]. With reinitialization, σ0 = 1 and σk = yT

kyk/yT
ksk (k ≥ 1), which are

the reciprocals of the parameters used by Liu and Nocedal [21]. Of the 78 problems
attempted, L-RHR with reinitialization solved 74 problems satisfactorily and reduced
the gradient to within two orders of magnitude of the 10−5 target value on three

3The steepest-descent direction is used for the first iteration. After the first step, σ is set to
yT
0s0/‖s0‖2 and R is defined accordingly.

16 P. E. GILL AND M. W. LEONARD

others (bdqrtic, freuroth, and noncvxun). The algorithm was unable to reduce ‖gk‖∞
below 1.5×10−2 for fletcbv3 . Without reinitialization, L-RHR was able to solve only 70
problems and required considerably more function and gradient evaluations on almost
every problem attempted. (The additional four unsolved problems were chainwoo,
cragglvy , edensch, and penalty2 .) Table 5.1 gives the total number of iterations,
function evaluations and cpu seconds for L-RHR with and without reinitialization on
the 70 problems that could be solved by both versions. These results indicate that
reinitialization provides substantial practical benefits and indicates an advantage of
L-RHR compared to Siegel’s method, which does not include reinitialization. A direct
comparison between L-RHR and Siegel’s method is given in the next section.

Table 5.1
L-RHRa with and without reinitialization on 70 CUTE problems.

L-RHR Itns Fncs Cpu Fail

with reinitialization 65115 66914 1567 4
without reinitialization 83611 107253 1884 8

a m = 5; without reorthogonalization.

5.3. L-RHR compared with ALG6. Next we compare L-RHR with Siegel’s
ALG6. In the first set of runs, ALG6 uses the recommended value of ε = 10−3 for the
gradient acceptance parameter (see [32, p. 8]). The line search in ALG6 is a slightly
modified version of the one in Powell’s Fortran package TOLMIN [28]. It attempts
to satisfy the Wolfe conditions (see (2.2)) with µ = 10−2 and η = 0.9 but allows
f(xk+1) ≥ f(xk) to within a small tolerance. ALG6 is not optimized for cpu time,
and it may be possible to improve the performance by making appropriate changes
to the code. However, the relative differences in cpu times are unlikely to be altered
by recoding because many of the run times are dominated by the cumulative cost of
the function evaluations (see section 5.5).

Table 5.2 gives the results of comparing ALG6 with a version of L-RHR imple-
mented without reinitialization. Algorithm L-RHR succeeded on 70 of the 78 test
problems and reduced the gradient norm to at most 10−3 on seven others: bdqrtic,
chainwoo, cragglvy , edensch, freuroth, noncvxun, and penalty2 . On the other unsuc-
cessful case, fletcbv3 , the final gradient norm was 1.1× 10−1. ALG6 succeeded on 74
out of the 78 problems. On arwhead , bdqrtic, and noncvxun, ALG6 was able to reduce
the gradient norm to at most 10−3. On fletcbv3 , ALG6 reduced the gradient norm to
4.7× 10−2. Table 5.2 summarizes the results for the 69 problems that both methods
were able to solve successfully. If the L-RHR line search is made to conform to ALG6

by allowing f(xk+1) ≥ f(xk) to within a prescribed tolerance, then L-RHR is able to
solve three more problems, chainwoo, edensch, and penalty2 .

Table 5.2
L-RHRa compared with ALG6b on 69 CUTE problems.

Method Itns Fncs Cpu Fail

L-RHR 83601 107237 1884 8
ALG6 101959 194091 5744 4

a m = 5; with no reinitialization and no reorthogonalization; ε = 10−4.
b m = 5; with Siegel’s version of the TOLMIN line search; ε = 10−3.

LIMITED-MEMORY METHODS 17

Since the L-RHR and ALG6 directions have similar definitions when L-RHR does
not use reinitialization, it might seem surprising that L-RHR requires significantly
fewer function evaluations than ALG6. This phenomenon can be partly explained by
differences in the line search and the different choice of ε. To illustrate these effects,
Table 5.3 gives a comparison between L-RHR and ALG6 when both algorithms are
implemented with the NPSOL line search and ε = 10−4. Note that the number of
function evaluations for ALG6 decreases dramatically, though the stricter requirement
that f(xk+1) < f(xk) results in a few more failures.

Table 5.3
L-RHRa compared with ALG6b on 69 CUTE problems.

Method Itns Fncs Cpu Fail

L-RHR 82363 105997 1884 8
ALG6 86970 138512 3620 8

a m = 5; with no reinitialization and no reorthogonalization; ε = 10−4.
b m = 5; with the line search from NPSOL; ε = 10−4.

The results are closer, but Table 5.3 illustrates that the methods are still gener-
ating different iterates. This is because, in the limited-memory context, an algorithm
based on updating a reduced Hessian is fundamentally different from an algorithm
based on updating a reduced inverse Hessian. The directions generated by ALG6

and an un-reinitialized version of L-RHR are only the same until a basis vector is
discarded. From this point, the Hessian of L-RHR is no longer related to the inverse
Hessian of ALG6 (see section 3.6). For example, Table 5.4 illustrates that if L-RHR

and ALG6 are applied to problem msqrtals with m = 30, the function values and
gradient norms are in close agreement at iteration 30. At the next iteration the first
discard is made and most of the agreement is lost. By iteration 50, only 1 significant
digit of agreement remains. The total numbers of iterations required are 2556 and
3133 for L-RHR and ALG6, respectively. It follows that L-RHR’s significant advantage
in the “Fncs” column of Table 5.3 results from the use of a reduced Hessian instead
of a reduced inverse Hessian.

Table 5.4
L-RHRa and ALG6b applied to msqrtals with m = 30.

L-RHR ALG6

k fk ‖gk‖∞ fk ‖gk‖∞

30 0.387222166177969 0.583990052575414 0.387222166177971 0.583990052575427

31 0.341636067001799 0.569093782828364 0.341694835004789 0.569019238515868

50 0.096802831009406 0.126889757489794 0.097640019163964 0.140754040816826

a m = 5; with no reinitialization and no reorthogonalization; ε = 10−4.
b m = 5; with the line search from NPSOL; ε = 10−4.

We provide one final comparison in which L-RHR uses reinitialization. In this
case, both L-RHR and ALG6 succeed on 74 problems, and there are 73 problems that
are solved by both methods. Table 5.5 shows the overall results for these 73 problems.
Note that, overall, the use of reinitialization by L-RHR results in significantly fewer
function evaluations compared to ALG6.

18 P. E. GILL AND M. W. LEONARD

Table 5.5
L-RHRa compared with ALG6b on 73 CUTE problems.

Method Itns Fncs Cpu Fail

L-RHR 69737 71782 1592 4
ALG6 103217 195405 5752 4

a m = 5; with reinitialization; without reorthogonalization.
b m = 5; with Siegel’s implementation of the TOLMIN line search.

5.4. L-RHR compared with L-BFGS-B. L-RHR and Seigel’s method are re-
lated to the limited-memory BFGS method of Byrd et al. [4] because all three meth-
ods consolidate the quasi-Newton updates into dense matrices. By contrast, L-BFGS

keeps an implicit inverse Hessian by storing a fixed number of vector pairs (γk, δk)
(see (2.1) for the definitions of γk and δk). Products of the inverse Hessian with a
vector are then formed without the need to keep an explicit Hk (see Nocedal [26]).
Consolidation of the updates is crucial for efficiency if a limited-memory method is
to be extended to handle upper and lower bounds on the variables. In this section we
compare L-RHR with Version 2.1 of the code L-BFGS-B (see Zhu et al. [34]), which is
an implementation of the method of Byrd, Lu, Nocedal and Zhu. L-BFGS-B applies
the strong Wolfe conditions (4.1) using the line search of Moré and Thuente [24] with
line search parameters µ = 10−4 and η = 0.9. The memory for L-BFGS-B was limited
to mLB = 5 pairs of vectors, which is twice the storage used by L-RHR.

Table 5.6 summarizes the performance of L-RHR and L-BFGS-B on the 74 CUTE

problems on which both methods succeed. On these 74 problems, L-RHR requires
fewer function evaluations than L-BFGS-B on 27 problems and more function evalua-
tions on 43 problems. L-RHR requires less cpu time than L-BFGS-B on 55 problems
and more cpu time than L-BFGS-B on 16 problems. L-BFGS-B was able to solve one
more problem than L-RHR, namely, fletcbv3 (L-RHR reduced the gradient norm to
1.5× 10−2 in this case). Neither method was able to satisfy the termination criterion
on bdqrtic, freuroth, and noncvxun. In these cases, the final gradient norms for L-RHR

(L-BFGS-B) were 2.90×10−4 (6.08×10−4), 3.40×10−4 (1.60×10−5), and 1.00×10−3

(1.66×10−3), respectively. Overall, L-RHR requires a comparable number of function
evaluations and has a significant advantage in terms of cpu time.

Table 5.6
L-RHRa and L-BFGS-Bb on 74 CUTE problems.

Method Itns Fcns Cpu Fail

L-RHR 69747 71798 1592 4
L-BFGS-B 66717 72264 1916 3

a m = 5 n-vectors; with reinitialization; without reorthogonalization.
b mLB = 5 pairs of n-vectors.

Although the values m = 5 and mLB = 5 are recommended for L-RHR and
L-BFGS-B, it is of interest to investigate the relative performance of the algorithms as
the memory size is increased. For example, the overhead required to solve an unsym-
metric 2mLB × 2mLB system every iteration of L-BFGS-B might suggest that L-RHR

would have a greater cpu time advantage as m and mLB are increased. Table 5.7 gives
the performance of L-RHR and L-BFGS-B with increasing memory-size parameters m
and mLB . When m ≥ 15 it is recommended that L-RHR uses reorthogonalization to
maintain a good basis and improve robustness (see section 4.1). However, to illustrate

LIMITED-MEMORY METHODS 19

the difference when L-RHR with m = 5 does and does not use reorthogonalization,
the results of Table 5.7 use reorthogonalization for all memory sizes. For m = 5, 15,
30, and 45, the numbers of failures for L-RHR without reorthogonalization are 4, 5,
7, and 11, respectively. With reorthogonalization, these numbers drop to 4, 4, 3, and
3, respectively. Table 5.7 provides the total number of reorthogonalizations required
for each value of m. Although the amount of work per iteration is more than doubled
with reorthogonalization, the cpu seconds required for m = 5 decreases from 1590 to
1580. In this case, the reductions in iterations and function evaluations compensates
for the increased cost of computing the search direction.

All 78 problems were attempted, but the totals in each row include only the
statistics for problems that could be solved by both methods. The cpu time advantage
for L-RHR increases from 82% of the time required by L-BFGS-B to 59% as m and
mLB are increased from 5 to 45. However, L-BFGS-B gains an advantage in terms of
the number of function evaluations. The interpretation of these results is complicated
by the sharp increase in function evaluations when m is increased from 15 to 30.
This increase occurs because both methods are able to solve problem noncvxun when
m = 30. If noncvxun is removed from the problem set, a total of 69,522 (72,264),
67,293 (62,470), 64,808 (57,114), and 58,075 (54,391) evaluations are required by
L-RHR (L-BFGS-B) for m (mLB) with the values 5, 15, 30, and 45, respectively. These
results indicate that for both methods, the number of function evaluations generally
decreases as the limited-memory size is increased.

Table 5.7
L-RHRa and L-BFGS-B with various memory sizes for 78 CUTE problems.

L-RHR L-BFGS-B

Mem Itns Fcns Reors Cpu Fail Itns Fcns Cpu Fail

5 67573 69522 42018 1580 4 66717 72264 1916 3

15 65050 67293 57662 1951 4 57302 62470 2155 5

30 99122 101432 95445 2866 3 80669 86304 3744 2

45 78344 80550 76173 2782 3 65859 70962 4686 3

a With reinitialization and reorthogonalization.

5.5. L-RHR compared with L-BFGS. We conclude this section by providing
a comparison of L-RHR with L-BFGS, which is a limited-memory BFGS method that
maintains an implicit inverse approximate Hessian as a sequence of mLB update pairs
(see Nocedal [26] and Liu and Nocedal [21]). The recommended memory size is
mLB = 5. The search direction requires approximately 4nmLB operations, which is
roughly twice the work required by L-RHR. L-BFGS uses the Moré and Thuente line
search with the same parameter settings as L-BFGS-B.

Table 5.8 summarizes the performance of L-RHR and L-BFGS on the 74 prob-
lems that both methods solved successfully. Of these 74 problems, L-RHR required
fewer function evaluations on 27 problems and L-BFGS required fewer evaluations
on 43 problems. L-RHR required less cpu time on 30 problems and more time on
41 problems. Overall, L-BFGS and L-RHR required comparable numbers of function
evaluations and iterations. However, even though L-RHR requires roughly half as
much work to compute the search direction, the overall cpu time was very close to
that of L-BFGS. Further investigation using a performance profiler indicated that the
cost of evaluating the objective for seven of the problems (eigenals, eigenbls, eigencls,
msqrtals, msqrtbls, ncb20 , and ncb20b) dominated the overall computation time. The

20 P. E. GILL AND M. W. LEONARD

cpu time required by L-RHR to compute the search direction was less than 60% of
that needed by L-BFGS. However, on these seven critical problems, the calculation of
the search direction constitutes less than 10% of the solve time.

Table 5.8
L-RHRa and L-BFGSb on 74 CUTE problems.

Method Itns Fcns Cpu Fail

L-RHR 69747 71798 1592 4
L-BFGS 66445 71978 1670 4

a m = 5 n-vectors; with reinitialization; without reorthogonalization.
b mLB = 5 pairs of n-vectors.

In order to compare L-RHR with L-BFGS as m and mLB are increased, L-RHR

uses reorthogonalization for improved robustness. As m and mLB take on the values
5, 15, 30, and 45, the total function evaluations on the problems solved by both
methods L-RHR (L-BFGS) are 69,522 (71,978), 67,293 (63,466), 101,432 (80,832), and
80,550 (88,717). As in the comparison with L-BFGS-B, L-RHR is competitive in terms
of function evaluations, but in this case L-RHR requires more cpu time when m ≥ 15.
Although some of the functions dominate the overall cpu time when m = 5, their
evaluation carries less weight with increasing m. This effect, when combined with the
cost of reorthogonalization, is why L-RHR is slower than L-BFGS when m = 45, even
though L-RHR requires significantly fewer function evaluations. We reemphasize that
L-RHR requires approximately half the storage of L-BFGS.

6. Summary and conclusions. We have presented theoretical and practical
details of a limited-memory reduced-Hessian method for large-scale smooth uncon-
strained optimization problems for which first derivatives are available. The method
maintains the Cholesky factor of a reduced Hessian and requires roughly half the
storage of conventional limited-memory methods.

The numerical results of Section 5 confirm that L-RHR is efficient and reliable on
a set of large test problems from the CUTE collection. Moreover, it is shown that
Hessian reinitialization and selective reorthogonalization are vital components of an
efficient and robust reduced-Hessian method.

When compared to the state-of-the-art code L-BFGS-B on our test set, L-RHR con-
verges in less cpu time, while requiring comparable numbers of function evaluations.
Compared to the code L-BFGS, L-RHR required comparable numbers of function eval-
uations and iterations when both algorithms were applied with their default memory
sizes.

Acknowledgments. We thank Dirk Siegel for graciously providing a copy of
his limited-memory code. We also appreciate many suggestions from the referees and
Associate Editor Jorge Nocedal.

REFERENCES

[1] I. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint, CUTE: Constrained and
unconstrained testing environment, ACM Trans. Math. Software, 21 (1995), pp. 123–160.

[2] A. G. Buckley, A combined conjugate-gradient quasi-Newton minimization algorithm, Math.
Program., 15 (1978), pp. 200–210.

[3] , Extending the relationship between the conjugate-gradient and BFGS algorithms, Math.
Program., 15 (1978), pp. 343–348.

[4] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound con-
strained optimization, SIAM J. Sci. Comput., 16 (1995), pp. 1190–1208.

LIMITED-MEMORY METHODS 21

[5] R. H. Byrd, J. Nocedal, and R. B. Schnabel, Representations of quasi-Newton matrices
and their use in limited-memory methods, Math. Program., 63 (1994), pp. 129–156.

[6] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogonalization and
stable algorithms for updating the Gram-Schmidt QR factorization, Math. Comput., 30
(1976), pp. 772–795.

[7] J. E. Dennis, Jr. and R. B. Schnabel, A new derivation of symmetric positive definite secant
updates, in Nonlinear programming, 4 (Proc. Sympos., Special Interest Group on Math.
Programming, Univ. Wisconsin, Madison, Wis., 1980), Academic Press, New York, 1981,
pp. 167–199.

[8] M. C. Fenelon, Preconditioned Conjugate-Gradient-Type Methods for Large-Scale Uncon-
strained Optimization, PhD thesis, Department of Operations Research, Stanford Univer-
sity, Stanford, CA, 1981.

[9] R. Fletcher, Practical Methods of Optimization, John Wiley and Sons, Chichester and New
York, second ed., 1987.

[10] , An optimal positive definite update for sparse Hessian matrices, SIAM J. Optim., 5
(1995), pp. 192–218.

[11] R. Fletcher and M. J. D. Powell, A rapidly convergent descent method for minimization,
Computer Journal, 6 (1963), pp. 163–168.

[12] R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, Computer
Journal, 7 (1964), pp. 149–154.

[13] P. E. Gill and M. W. Leonard, Reduced-Hessian quasi-Newton methods for unconstrained
optimization, SIAM J. Optim., 12 (2001), pp. 209–237.

[14] P. E. Gill and W. Murray, Conjugate-gradient methods for large-scale nonlinear optimiza-
tion, Report SOL 79-15, Department of Operations Research, Stanford University, Stan-
ford, CA, 1979.

[15] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale
constrained optimization, SIAM J. Optim., 12 (2002), pp. 979–1006.

[16] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, User’s guide for NPSOL (Ver-
sion 4.0): a Fortran package for nonlinear programming, Report SOL 86-2, Department
of Operations Research, Stanford University, Stanford, CA, 1986.

[17] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London
and New York, 1981.

[18] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore, MD, second ed., 1989.

[19] L. Kaufman, Reduced storage, quasi-Newton trust region approaches to function optimization,
SIAM J. Optim., 10 (1999), pp. 56–69.

[20] M. W. Leonard, Reduced Hessian Quasi-Newton Methods for Optimization, PhD thesis, De-
partment of Mathematics, University of California, San Diego, 1995.

[21] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,
Math. Program., 45 (1989), pp. 503–528.

[22] J. L. Morales and J. Nocedal, Automatic preconditioning by limited memory quasi-Newton
updating, SIAM J. Optim., 10 (2000), pp. 1079–1096.

[23] J. J. Moré and D. C. Sorensen, Newton’s method, in Studies in Mathematics, Volume 24.
Studies in Numerical Analysis, Math. Assoc. America, Washington, DC, 1984, pp. 29–82.

[24] J. J. Moré and D. J. Thuente, Line search algorithms with guaranteed sufficient decrease,
ACM Trans. Math. Software, 20 (1994), pp. 286–307.

[25] L. Nazareth, A relationship between the BFGS and conjugate gradient algorithms and its
implications for new algorithms, SIAM J. Numer. Anal., 16 (1979), pp. 794–800.

[26] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comput., 35 (1980),
pp. 773–782.

[27] M. J. D. Powell, Updating conjugate directions by the BFGS formula, Math. Program., 38
(1987), pp. 693–726.

[28] , TOLMIN: A Fortran package for linearly constrained optimization calculations, Re-
port DAMTP/1989/NA2, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, 1989.

[29] M. J. D. Powell and P. L. Toint, On the estimation of sparse Hessian matrices, SIAM J.
Numer. Anal., 16 (1979), pp. 1060–1074.

[30] D. F. Shanno, Conjugate-gradient methods with inexact searches, Math. Oper. Res., 3 (1978),
pp. 244–256.

[31] D. Siegel, Modifying the BFGS update by a new column scaling technique, Report
DAMTP/1991/NA5, Department of Applied Mathematics and Theoretical Physics, Uni-
versity of Cambridge, May 1991.

22 P. E. GILL AND M. W. LEONARD

[32] , Implementing and modifying Broyden class updates for large scale optimization, Re-
port DAMTP/1992/NA12, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, December 1992.

[33] , Modifying the BFGS update by a new column scaling technique, Mathematical Pro-
gramming, 66 (1994), pp. 45–78. Ser. A.

[34] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, Algorithm 778: L-BFGS-B: Fortran subroutines
for large-scale bound-constrained optimization, ACM Trans. Math. Software, 23 (1997),
pp. 550–560.

