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Abstract

Sequential quadratic programming (SQP) methods for nonlinearly constrained op-
timization typically use a merit function to enforce convergence from an arbitrary
starting point. We define a smooth augmented Lagrangian merit function in which
the Lagrange multiplier estimate is treated as a separate variable, and inequality con-
straints are handled by means of non-negative slack variables that are included in the
linesearch. Global convergence is proved for an SQP algorithm that uses this merit
function. We also prove that steps of unity are accepted in a neighborhood of the
solution when this merit function is used in a suitable superlinearly convergent algo-
rithm. Finally, some numerical results are presented to illustrate the performance of
the associated SQP method.

Keywords: constrained optimization, sequential quadratic programming method,
nonlinear programming method, quadratic programming.

1. Sequential Quadratic Programming Methods

Sequential quadratic programming (SQP) methods are widely considered to be effective
general techniques for solving optimization problems with nonlinear constraints. (For a
survey of results and references on SQP methods, see Powell [28].) One of the major issues
of interest in recent research on SQP methods has been the choice of merit function—the
measure of progress at each iteration. This paper describes some properties of a theoretical
SQP algorithm (NPSQP) that uses a smooth augmented Lagrangian merit function. NPSQP
is a simplified version of an SQP algorithm that has been implemented as the Fortran code
NPSOL (Gill et al. [15]). (The main simplifications involve the form of the problem, use of
a single penalty parameter, and strengthened assumptions.)

For ease of presentation, we assume that all the constraints are nonlinear inequalities.
(The theory applies in a straightforward fashion to equality constraints.) The problem to
be solved is thus:

(NP) minimize
x∈Rn

f(x)

subject to ci(x) ≥ 0, i = 1, . . . ,m,
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where f and {ci} are twice-continuously differentiable. Let g(x) denote the gradient of f(x),
and A(x) denote the Jacobian matrix of the constraint vector c(x). A solution of NP will
be denoted by x∗, and we assume that there are a finite number of solutions.

We assume that the second-order Kuhn-Tucker conditions hold (with strict complemen-
tarity) at x∗. Thus, there exists a Lagrange multiplier vector λ∗ such that

g(x∗) = A(x∗)Tλ∗, (1.1a)
c(x∗)Tλ∗ = 0, (1.1b)

λ∗i > 0 if ci(x∗) = 0. (1.1c)

(For a detailed discussion of optimality conditions, see, for example, Fiacco and McCormick [11],
and Powell [26].) Conditions (1.1a) and (1.1b) may equivalently be stated as

Z(x∗)T g(x∗) = 0,

where the columns of the matrix Z form a basis for the null space of constraints active at
x∗.

At the k-th iteration, the new iterate xk+1 is defined as

xk+1 = xk + αkpk, (1.2)

where xk is the current iterate, pk is an n-vector (the search direction), and αk is a non-
negative step length (0 < αk ≤ 1). For simplicity of notation, we henceforth suppress the
subscript k, which will be implicit on unbarred quantities. A barred quantity denotes one
evaluated at iteration k + 1.

The central feature of an SQP method is that the search direction p in (1.2) is the
solution of a quadratic programming subproblem whose objective function approximates the
Lagrangian function and whose constraints are linearizations of the nonlinear constraints.
The usual definition of the QP subproblem is the following:

minimize
p∈Rn

gTp+ 1
2p

THp (1.3a)

subject to Ap ≥ −c, (1.3b)

where g, c and A denote the relevant quantities evaluated at x. The matrix H is a symmetric
positive-definite quasi-Newton approximation to the Hessian of the Lagrangian function.
The Lagrange multiplier vector µ of (1.3) satisfies

g +Hp = ATµ, (1.4a)
µT (Ap+ c) = 0, (1.4b)

µ ≥ 0. (1.4c)

The remainder of this paper is organized as follows. Section 2 gives some background on
the role of merit functions within SQP methods, and introduces the augmented Lagrangian
merit function used in NPSQP. In Section 3 we state the assumptions about the problem
and present the algorithm. Global convergence results are given in Section 4. Section 5
shows that the chosen merit function will not impede superlinear convergence. In Section 6
we present a selection of numerical results to indicate the robustness of the implementation
NPSOL.

2. Background on Merit Functions

2.1. Introduction

Many authors have studied the choice of steplength in (1.2). Usually, α is chosen by a
linesearch procedure to ensure a “sufficient decrease” (Ortega and Rheinboldt [23]) in a
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merit function that combines the objective and constraint functions in some way. A popular
merit function for several years (Han [17, 18]; Powell [27] has been the `1 penalty function
(Pietrzykowski [24]):

P (x, ρ) = f(x) + ρ

m∑
i=1

max
(
0,−ci(x)

)
. (2.1)

This merit function has the property that, for ρ sufficiently large, x∗ is an unconstrained
minimum of P (x, ρ). In addition, ρ can always be chosen so that the SQP search direction p
is a descent direction for P (x, ρ). However, Maratos [21] observed that requiring a decrease
in P (x, ρ) at every iteration could lead to the inhibition of superlinear convergence. (See
Chamberlain et al., [7], for a procedure designed to avoid this difficulty.) Furthermore,
P (x, ρ) is not differentiable at the solution, and linesearch techniques based on smooth
polynomial interpolation are therefore not applicable.

An alternative merit function that has recently received attention is the augmented
Lagrangian function, whose development we now review. If all the constraints of (NP) are
equalities, the associated augmented Lagrangian function is:

L(x, λ, ρ) ≡ f(x)− λT c(x) + 1
2ρc(x)

T c(x), (2.2)

where λ is a multiplier estimate and ρ is a non-negative penalty parameter. Augmented
Lagrangian functions were first introduced by Hestenes [19] and Powell [25] as a means
of creating a sequence of unconstrained subproblems for the equality-constraint case. A
property of (2.2) is that there exists a finite ρ̂ such that for all ρ ≥ ρ̂, x∗ is an unconstrained
minimum of (2.2) when λ = λ∗(see, e.g., Fletcher [13]). The use of (2.2) as a merit function
within an SQP method was suggested by Wright [35] and Schittkowski [32].

2.2. The Lagrange multiplier estimate

When (2.2) is used as a merit function, it is not obvious—even in the equality-constraint
case— how the multiplier estimate λ should be defined at each iteration.

Most SQP methods (e.g., Han [17]; Powell [27]) define the approximate Hessian of the
Lagrangian function using the QP multiplier µ (cf. (1.4)), which can be interpreted as the
“latest” (and presumably “best”) multiplier estimate, and requires no additional computa-
tion. However, using µ as the multiplier estimate in (2.2) has the effect of redefining the
merit function at every iteration. Thus, since there is no monotonicity property with respect
to a single function, difficulties may arise in proving global convergence of the algorithm.

Powell and Yuan [29] have recently studied an augmented Lagrangian merit function
for the equality-constraint case in which λ in (2.2) is defined as the least-squares multiplier
estimate, and hence is treated as a function of x rather than as a separate variable. (An
augmented Lagrangian function of this type was first introduced and analyzed as an exact
penalty function by Fletcher [12].) Powell and Yuan [29] prove several global and local
convergence properties for this merit function.

Other smooth merit functions have been considered by Dixon [10], DiPillo and Grippo [9],
Bartholomew-Biggs [3, 1, 2], and Boggs and Tolle [4, 5] (the latter only for the equality-
constraint case).

An approach that makes an alternative use of the QP multiplier µ is to treat the elements
of λ as additional variables (rather than to reset λ at every iteration). Thus, µ is used to
define a “search direction” ξ for the multiplier estimate λ, and the linesearch is performed
with respect to both x and λ. This idea was suggested by Tapia [34] in the context of an
unconstrained subproblem and by Schittkowski [32] within an SQP method. This approach
will also be taken in NPSQP.
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2.3. Treatment of inequality constraints

When defining a merit function for a problem with inequality constraints, it is necessary to
identify which constraints are “active”. The `1 merit function (2.1) includes only the violated
constraints. The original formulation of an augmented Lagrangian function for inequality
constraints is due to Rockafellar [31]:

L(x, λ, ρ) = f(x)− λT c+(x) + 1
2ρc+(x)T c+(x), (2.3)

where

(c+)i =

{
ci if ρci ≤ λi;
λi/ρ otherwise.

Some global results are given for this merit function in Schittkowski [32, 33].
When used as a merit function, (2.3) has two disadvantages: it is difficult to derive a

convenient formulation for the choice of penalty parameter (see Lemma 4.3, below); and
discontinuities in the second derivative may cause inefficiency in linesearch techniques based
on polynomial interpolation. To avoid these difficulties, we augment the variables (x, λ) by
a set of slack variables that are used only in the linesearch. At the k-th major iteration, a
vector triple

y =

 p

ξ

q

 (2.4)

is computed to serve as a direction of search for the variables (x, λ, s). The new values are
defined by  x̄

λ̄

s̄

 =

 x

λ

s

+ α

 p

ξ

q

 , (2.5)

and the vectors p, ξ and q are found from the QP subproblem (1.3), as described below.
In our algorithm (as in Schittkowski [32]), ξ is defined as

ξ ≡ µ− λ, (2.6)

so that if α = 1, λ̄ = µ. We take λ0 as µ0 (the QP multipliers at x0), so that λ1 = µ0

regardless of α0.
The definition of s and q can be interpreted in terms of an idea originally given by

Rockafellar [31] in the derivation of (2.3). In our algorithm, the augmented Lagrangian
function includes a set of non-negative slack variables:

L(x, λ, s, ρ) = f(x)− λT
(
c(x)− s

)
+ 1

2ρ
(
c(x)− s

)T (
c(x)− s

)
, with s ≥ 0. (2.7)

The vector s at the beginning of iteration k is taken as

si =

{
max (0, ci) if ρ = 0;
max (0, ci − λi/ρ) otherwise,

(2.8)

where ρ is the initial penalty parameter for that iteration (see Lemma 4.3, below). (When
ρ is nonzero, the vector s defined by (2.8) yields the value of L minimized with respect to
the slack variables alone, subject to the non-negativity restriction s ≥ 0.) The vector q in
(2.5) is then defined by

Ap− q = −(c− s), (2.9a)
so that Ap+ c = s+ q. (2.9b)
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We see from (2.9) that s+ q is simply the residual of the inequality constraints from the QP
(1.3). Therefore, it follows from (1.3) and (1.4) that

s+ q ≥ 0 and µT (s+ q) = 0. (2.10)

2.4. Choice of the penalty parameter

Finally, we consider the definition of the penalty parameter in (2.7). Our numerical exper-
iments have suggested strongly that efficient performance is linked to keeping the penalty
parameter as small as possible, subject to satisfying the conditions needed for convergence.
Hence, our strategy is to maintain a “current” ρ that is increased only when necessary to
satisfy a condition that assures global convergence.

Several authors have stated that the need to choose a penalty parameter adds an ar-
bitrary element to an SQP algorithm, or leads to difficulties in implementation. On the
contrary, we shall see (Lemma 4.3) that in NPSQP the penalty parameter is based directly
on a condition needed for global convergence, and hence should not be considered as arbitrary
or heuristic.

3. Statement of the Algorithm

We make the following assumptions:

(i) x and x+ p lie in a closed, bounded region Ω of Rn for all k;

(ii) f , {ci}, and their first and second derivatives are uniformly bounded in norm in Ω;

(iii) H is positive definite, with bounded condition number, and smallest eigenvalue uni-
formly bounded away from zero, i.e., there exists γ > 0 such that, for all k,

pTHp ≥ γ‖p‖2;

(iv) In every quadratic program (1.3), the active set is linearly independent, and strict
complementarity holds.

(v) The quadratic program (1.3) always has a solution.

The following notation will be used in the remainder of this section. Given x, λ, s,
p, ξ, q and ρ, we let φ(α, ρ) denote L(x + αp, λ + αξ, s + αq, ρ), i.e., the merit function
as a function of the steplength, with the convention that φk(ρ) denotes evaluation of L at
(xk, λk, sk). (The argument ρ may be omitted when its value is obvious.) The derivative
of φ with respect to α will be denoted by φ′. Let v denote the “extended” iterate (x, λ, s),
and let y denote the associated search direction (p, ξ, q). For brevity, we sometimes use the
notation “(α)” to denote evaluation at v + αy.

The steps of each iteration of algorithm NPSQP are:

1. Solve (1.3) for p. If p = 0, set λ = µ and terminate. Otherwise, define ξ = µ− λ.

2. Compute s from (2.8). Find ρ such that φ′(0) ≤ −1
2p

THp (see Lemma 4.3, below).

3. Compute the steplength α, as follows. If

φ(1)− φ(0) ≤ σφ′(0) (3.1a)
and φ′(1) ≤ ηφ′(0) or |φ′(1)| ≤ −ηφ′(0), (3.1b)
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where 0 < σ ≤ η < 1
2 , set α = 1. Otherwise, use safeguarded cubic interpolation (see,

e.g., Gill and Murray [14], to find an α ∈ (0, 1) such that

φ(α)− φ(0) ≤ σαφ′(0) (3.2a)
and |φ′(α)| ≤ −ηφ′(0). (3.2b)

4. Update H so that (iii) is satisfied (e.g., using a suitably modified BFGS update; see
Gill et al. [15], for the update used in NPSOL).

5. Update x and λ using (2.5).

4. Global Convergence Results

In order to prove global convergence, we first prove a set of lemmas that establish various
properties of the algorithm.

Lemma 4.1. When assumptions (i)–(v) are satisfied, the following properties hold for Al-
gorithm NPSQP:

(a) ‖p‖ = 0 if and only if x is a Kuhn-Tucker point of NP;

(b) There exists ε̄ such that if ‖p‖ ≤ ε̄, the active set of the QP (1.3) is the same as the
set of nonlinear constraints active at x∗;

(c) There exists a constant Mp, independent of k, such that

‖x∗ − xk‖ ≤Mp‖pk‖. (4.1)

Proof. The proofs of (a) and (b) are given in Robinson [30]. To show that (c) is true, let
ĉ(·) denote the vector of constraints active at x∗, Â the Jacobian of the active constraints,
and Z an orthogonal basis for the null space of Â. Expanding ĉ and ZT g about x∗, and
noting that ĉ(x∗) = 0 and Z(x∗)T g(x∗) = 0, we obtain(

ĉ(x)
Z(x)T g(x)

)
=

(
Â
(
x∗ + θ(x− x∗)

)
V
(
x∗ + θ(x− x∗)

) ) (x− x∗) ≡ S
(
x∗ + θ(x− x∗)

)
(x− x∗), (4.2)

where 0 < θ < 1, for an appropriate matrix function V . (See Goodman [16] for a discussion
of the definition of V .)

For suitably small ε̄ in (b), S
(
x∗ + θ(xk − x∗)

)
is nonsingular, with smallest singular

value uniformly bounded below (see, e.g., Robinson [30]). Because of assumption (i), the
relation (4.1) is immediate if ‖pk‖ ≥ ε̄, and we henceforth consider only iterations k such
that ‖pk‖ < ε̄.

Taking x = xk in (4.2), and using the nonsingularity of S and norm inequalities, we
obtain:

‖xk − x∗‖ ≤ β(‖ĉk‖+ ‖ZT
k gk‖) (4.3)

for some bounded β. We now seek an upper bound on the right-hand side of (4.3). Since
the QP (1.3) identifies the correct active set, pk satisfies the equations

Âkpk = −ĉk and ZT
k Hkpk = −ZT

k gk. (4.4)

From (4.4), assumption (iii) and the property of S mentioned above, it follows that there
must exist β̃ > 0 such that

β̃(‖ĉk‖+ ‖ZT
k gk‖) ≤ ‖pk‖. (4.5)

Since β and β̃ are independent of k, combining (4.4) and (4.5) gives the desired result.
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Lemma 4.2. For all k ≥ 1,
‖λk‖ ≤ max

1≤j≤k−1
‖µj‖,

and hence ‖λk‖ is bounded for all k. In addition, ‖ξk‖ is uniformly bounded for all k.

Proof. By definition,

λ1 = µ0;
λk+1 = λk + αk(µk − λk), k ≥ 1. (4.6)

The proof is by induction. The result holds for λ1 because of assumption (iv), which implies
the boundedness of ‖µk‖ for all k. Assume that the lemma holds for λk. From (4.6) and
norm inequalities, we have

‖λk+1‖ ≤ αk‖µk‖+ (1− αk)‖λk‖.

Since 0 < α ≤ 1, applying the inductive hypothesis gives

‖λk+1‖ ≤ max ‖µj‖, j = 1, . . . , k,

which gives the first desired result.
The boundedness of ‖ξk‖ follows immediately from its definition (2.6), assumption (iv),

and the first result of this lemma.

The next lemma establishes the existence of a non-negative penalty parameter such that
the projected gradient of the merit function at each iterate satisfies a condition associated
with global convergence.

Lemma 4.3. . There exists ρ̂ ≥ 0 such that

φ′(0, ρ) ≤ −1
2p

THp (4.7)

for all ρ ≥ ρ̂.

Proof. The gradient of L with respect to x, λ and s is given by

∇L(x, λ, s) ≡

 g(x)−A(x)Tλ+ ρA(x)T
(
c(x)− s

)
−
(
c(x)− s

)
λ− ρ

(
c(x)− s

)
 , (4.8)

and it follows that φ′(0) is given by

φ′(0) = pT g − pTATλ+ ρ pTAT (c− s)− (c− s)T ξ + λT q − ρqT (c− s), (4.9)

where g, A, and c are evaluated at x.
Multiplying (1.4a) by pT gives

gT p = pTATµ− pTHp. (4.10)

Substituting (2.6), (2.9a) and (4.10) in (4.9), we obtain

φ′(0) = −pTHp+ qTµ− 2(c− s)T ξ − ρ(c− s)T (c− s). (4.11)

Substituting (4.11) in the desired inequality (4.7) and rearranging, we obtain as the condition
to be satisfied:

qTµ− 2(c− s)T ξ − ρ(c− s)T (c− s) ≤ 1
2p

THp. (4.12)
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The complementarity conditions (1.4) and definition (2.9) imply that qTµ ≤ 0. Hence,
if 1

2p
THp > −2(c − s)T ξ, then (4.12) holds for all non-negative ρ, and ρ̂ may be taken as

zero. (Note that this applies when c− s is zero.) The determination of ρ̂ is non-trivial only
if

1
2p

THp ≤ −2(c− s)T ξ. (4.13)

When (4.13) holds, rearrangement of (4.12) shows that ρ must satisfy

ρ(c− s)T (c− s) ≥ qTµ− 1
2p

THp− 2(c− s)T ξ. (4.14)

A value ρ̂ such that (4.14) holds for all ρ ≥ ρ̂ is

ρ̂ =
2‖ξ‖
‖c− s‖

. (4.15)

The value ρ̂ is taken as (4.15) if (4.13) holds, and as zero otherwise.

The penalty parameter in NPSQP is determined by retaining a “current” value, which
is increased if necessary to satisfy (4.7). At iteration k, the penalty parameter ρk is thus
defined by

ρk =

{
ρk−1 if φ′(0, ρk−1) ≤ −1

2p
T
kHkpk;

max(ρ̂k, 2ρk−1) otherwise.
(4.16)

where ρ0 = 0 and ρ̂k is defined by Lemma 4.3.
Because of the definition of ρ̂ and the strategy (4.16) for choosing ρ, there are two possible

cases. When the value of ρ at every iteration is uniformly bounded, (4.16) implies that ρk

eventually becomes fixed at some value, which is retained for all subsequent iterations. (This
situation will be called the bounded case.)

Otherwise, when there is no upper bound on the penalty parameter, ρ̂ (4.15) must also
be tending to infinity. In this unbounded case, an infinite subsequence of iterations exists at
which ρ is increased, with a finite number of iterations between each such increase. Let {kl},
l = 0, 1, . . . , denote the indices of the subsequence of iterations when the penalty parameter
is increased. Thus, for any l ≥ 1,

ρkl
= max(ρ̂kl

, 2ρkl−1), (4.17)

and
ρkl

> ρkl−1 . (4.18)

Note that (4.16) and the properties of ρ̂ imply that

ρkl
≤ 2ρ̂kl

. (4.19)

In the proof of global convergence, it will be crucial to develop uniform bounds on various
quantities multiplied by ρ. (Such bounds are immediate in the bounded case.) The next
four lemmas provide the needed results.

Lemma 4.4. . At any iteration kl in which the penalty parameter is defined by (4.17),

ρkl
‖pkl

‖2 ≤ N (4.20)
and ρkl

‖ckl
− skl

‖ ≤ N (4.21)

for some uniformly bounded N .
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Proof. Let unbarred quantities denote those associated with iteration kl. When ρ is defined
by (4.17), (4.13) must hold. From (4.13) and norm inequalities, we have

1
2p

THp ≤ −2(c− s)T ξ ≤ 2‖c− s‖‖ξ‖, (4.22)

which implies

‖c− s‖ ≥
1
4p

THp

‖ξ‖
. (4.23)

Let γ denote a lower bound on the smallest eigenvalue ofH (cf. assumption (iii)). Combining
(4.15) and (4.23) and noting that pTHp ≥ γ‖p‖2, we obtain

ρ̂ ≤ 2‖ξ‖2
1
4p

THp
≤ 8‖ξ‖2

γ‖p‖2
.

Using Lemma 4.2 and (4.19), (4.20) follows immediately. The relation (4.21) follows from
(4.19) and the definition (4.15) of ρ̂.

In the unbounded case, the discussion following Lemma 4.3 shows that, given any C > 0,
we can find l̄ such that for all l ≥ l̄,

ρkl
> C.

Lemma 4.5 thus implies that, in the unbounded case, given any ε > 0, we can find l̄ such
that, for l ≥ l̄,

‖pkl
‖ ≤ ε. (4.24)

Hence, the norm of the search direction becomes arbitrarily small at a subsequence of
iterations—namely, those at which the penalty parameter is increased. We now derive
certain results for the intervening iterations during which the penalty parameter remains
unchanged. We shall henceforth use “M” to denote a generic uniformly bounded constant
(whose particular value can be deduced from the context).

Lemma 4.5. . There exists a bounded constant M such that, for all l,

ρkl

(
φkl

(ρkl
)− φkl+1(ρkl

)
)
< M. (4.25)

Proof. To simplify notation in this proof, we shall use the subscripts 0 and K to denote
quantities associated with iterations kl and kl+1 respectively. Thus, the penalty parameter
is increased at x0 and xK in order to satisfy condition (4.12), and remains fixed at ρ0 for
iterations 1, . . . , K − 1.

Consider the following identity:

φ0 − φK =
K−1∑
k=0

(φk − φk+1), (4.26)

where φk denotes φk(ρ0). Because the merit function is decreased at iterations 0, 1, . . . ,K−1,
(4.26) implies

φ0 − φK > 0. (4.27)

Using definition (2.7), note that

ρ0φ = ρ0f − ρ0λ
T (c− s) + 1

2ρ
2
0(c− s)T (c− s), (4.28)

and recall from Lemma 4.4 that

ρ0‖c0 − s0‖ < M and ρK‖cK − sK‖ < M. (4.29)
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Since ‖λ‖ is bounded (Lemma 4.2), the only term in (4.28) that might become unbounded
is ρ0f . Because of the lower bound (4.27), the desired relation (4.25) will follow if an upper
bound exists for ρ0(f0 − fK).

Expanding f about x∗, we have:

f0 = f∗ + (x0 − x∗)T g∗ +O(‖x0 − x∗‖2) (4.30a)
and fK = f∗ + (xK − x∗)T g∗ +O(‖xK − x∗‖2). (4.30b)

Subtraction of these two expressions gives:

f0 − fK =
(
(x0 − x∗)− (xK − x∗)

)T
g∗ +O

(
max(‖x0 − x∗‖2, ‖xK − x∗‖2)

)
. (4.31)

Similarly, we expand c about x∗:

c0 = c∗ +A∗(x0 − x∗) +O(‖x0 − x∗‖2) (4.32a)
and cK = c∗ +A∗(xK − x∗) +O(‖xK − x∗‖2). (4.32b)

Substituting the expression g∗ = A∗T
λ∗ and (4.32a)–(4.32b) in (4.31), we obtain

f0 − fK = (c0 − cK)Tλ∗ +O
(
max(‖x0 − x∗‖2, ‖xK − x∗‖2)

)
. (4.33)

We thus seek to bound

ρ0(f0 − fK) = ρ0c
T
0λ
∗ − ρ0c

T
Kλ
∗ + ρ0O

(
max(‖x0 − x∗‖2, ‖xK − x∗‖2)

)
. (4.34)

To derive a bound for the first term on the right-hand side of (4.34), we first bound a
similar term involving µ0. Let ρ−0 denote the penalty parameter at the beginning of iteration
0 that was “too small” to satisfy (4.7). Following the discussion in the proof of Lemma 4.3,
it must hold that

φ′0(ρ
−
0 ) > − 1

2p
T
0 H0p0. (4.35)

Using (4.35) and expression (4.9), and noting that µT
0 (s0 + q0) = 0, we obtain the following

inequality:

sT
0 µ0 < − 1

2p
T
0 H0p0 − 2(c0 − s0)

T (λ0 − µ0)− ρ−0 (c0 − s0)
T (c0 − s0). (4.36)

Since s0 ≥ 0 and µ0 ≥ 0, the left-hand side of (4.36) is non-negative. The only term on the
right-hand side of (4.36) that can be positive is the middle term, and so the following must
hold:

ρ0s
T
0 µ0 < −2ρ0(c0 − s0)

T (λ0 − µ0).

Because ρ0‖c0 − s0‖, ‖λ0‖ and ‖µ0‖ are bounded, we conclude that

ρ0s
T
0µ0 < M. (4.37)

Because of Lemma 4.1 and strict complementarity, (4.37) implies that

ρ0s
T
0λ
∗ < M. (4.38)

We know from Lemma 4.4 that ρ0‖c0 − s0‖ < M . Hence, the boundedness of ‖λ∗‖ shows
that

ρ0|(c0 − s0)Tλ∗| < M. (4.39)

Combining (4.38) and (4.39) gives
ρ0c

T
0λ
∗ < M. (4.40)
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Now consider the second term on the right-hand side of (4.34). For sufficiently large l̄,
pK will be small enough so that Lemma 4.1 implies that the inactive constraints at x∗ are
also inactive at xK , i.e., ci(xK) > 0 for all i such that ci(x∗) > 0. Since λ∗i = 0 for an
inactive constraint, it follows that

− ρ0c
T
Kλ
∗ = −ρ0ĉ

T
Kλ̂
∗, (4.41)

where ĉ and λ̂ denote the components associated with the constraints active at x∗. The only
terms in the sum on the right-hand side of (4.41) that affect the upper bound are those for
which ĉi(xK) < 0. Let c̃ denote the subvector of strictly negative components of ĉ, so that

−ρ0c
T
Kλ
∗ ≤ −ρ0c̃

T
Kλ̃
∗.

Since the associated slack variables are zero, the definition of c̃ implies

‖c̃K‖ = ‖c̃K − s̃K‖ ≤ ‖cK − sK‖. (4.42)

Applying Lemma 4.4 and the relation ρ0 < ρK to (4.42), it follows that ρ0‖c̃(xK)‖ is
bounded. Consequently, because ‖λ∗‖ is bounded, we conclude that

− ρ0c
T
Kλ
∗ < M. (4.43)

Finally, consider the third term on the right-hand side of (4.34). Recall from Lemma 4.1
that

‖x0 − x∗‖ ≤Mp‖p0‖ and ‖xK − x∗‖ ≤Mp‖pK‖. (4.44)

It follows from Lemma 4.4 and the relation ρ0 < ρK that

ρ0‖p0‖2 < N and ρ0‖pK‖2 < N,

and hence
ρ0O

(
max(‖x0 − x∗‖2, ‖xK − x∗‖2)

)
< M. (4.45)

Combining (4.40), (4.43) and (4.45), we obtain the bound

ρ0(f0 − fK) < M,

which implies the desired result.

Lemma 4.6. There exists a bounded constant M such that, for all l,

ρkl

kl+1−1∑
k=kl

‖αkpk‖2 < M. (4.46)

Proof. As in the previous lemma, we shall use the subscripts 0 and K to denote quantities
associated with iterations kl and kl+1 respectively. Using the identity (4.26)

φ0 − φK =
K−1∑
k=0

(φk − φk+1),

observe that properties (3.1) and (3.2) imposed by the choice of αk imply that for 0 ≤ k ≤
K − 1,

φk − φk+1 ≥ −σαkφ
′
k, (4.47)
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where 0 < σ < 1. Because the penalty parameter is not increased, (4.7) must hold for k = 0,
. . . , K − 1. It follows from (4.7) and assumption (iii) that

φ′k ≤ −γ‖pk‖2. (4.48)

Since αk, η and γ are positive, combining (4.26), (4.47) and (4.48) gives

K−1∑
k=0

γσαk‖pk‖2 ≤ φ0 − φK . (4.49)

Rearranging and using the property that 0 < αk ≤ 1, we obtain

γσ

K−1∑
k=0

‖αkpk‖2 ≤ φ0 − φK . (4.50)

Since γ and σ are positive and bounded away from zero, the desired result follows by
multiplying (4.50) by ρ0 and using Lemma 4.5.

Lemma 4.7. . There exists a bounded constant M such that, for all k,

ρk‖ck − sk‖ ≤M. (4.51)

Proof. The result is nontrivial only for the unbounded case. Using the notation of the two
previous lemmas, we note that (4.51) is immediate from Lemma 4.4 for k = 0 and k = K.

To verify a bound for k = 1, . . . ,K − 1 (iterations at which the penalty parameter is not
increased), we first consider x1. Let unbarred and barred quantities denote evaluation at x0

and x1 respectively. If c̄i ≥ 0, a bound on ρ0|c̄i − s̄i| follows from definition (2.8) and the
boundedness of ‖λ‖. Therefore, assume that c̄i < 0, and expand the i-th constraint function
about x0:

c̄i = ci + α0a
T
i p+O(‖α0p0‖2). (4.52)

We substitute from (2.9) into (4.52), noting that s̄i = 0, and obtain:

c̄i = c̄i − s̄i = ci + α0(−ci + si + qi) +O(‖α0p0‖2)
= (1− α0)ci + α0(si + qi) +O(‖α0p0‖2). (4.53)

Adding and subtracting (1− α0)si on the right-hand side of (4.53) gives

c̄i − s̄i = (1− α0)(ci − si) + (1− α0)si + α0(si + qi) +O(‖α0p0‖2). (4.54)

The properties of α0, si and qi imply that

(1− α0)si + α0(si + qi) ≥ 0.

Since the quantity (c̄i − s̄i) is strictly negative, (4.54) gives the following inequality that
holds when ci < 0:

ρ0|c̄i − s̄i| ≤ ρ0(1− α0)|ci − si|+ ρ0O(‖α0p0‖2). (4.55)

There are two cases to consider in analyzing (4.55). First, when ci ≥ 0, the term ρ|ci−si|
is bounded above, using (2.8). The second term on the right-hand side of (4.55) is bounded
above, using Lemma 4.6. Thus, the desired bound

ρ0|c̄i − s̄i| < M
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follows if ci ≥ 0. Extending this reasoning over the sequence k = 1, . . . ,K − 1, we see that
the quantity ρ0|ci(xk)− si(xk)| is bounded whenever ci(xk) ≥ 0 or ci(xk−1) ≥ 0.

Consequently, the only remaining case involves components of c that are negative at two
or more consecutive iterations. Let c̃ denote the subvector of such components of c. Using
the componentwise inequality (4.55) and the fact that 0 < α ≤ 1, we have

ρ0‖c̃(x1)− s̃(x1)‖ ≤ ρ0‖c̃(x0)− s̃(x0)‖+ ρ0O(‖α0p0‖2). (4.56)

Proceeding over the relevant sequence of iterations, the following inequality must hold
for k = 1, . . . ,K − 1:

ρ0‖c̃(xk)− s̃(xk)‖ ≤ ρ0‖c̃(x0)− s̃(x0)‖+ ρ0O
( k−1∑

j=0

‖αjpj‖2
)
. (4.57)

The desired result then follows by applying Lemmas 4.4 and 4.6 to (4.57).

The next two lemmas establish the existence of a step bounded away from zero, inde-
pendent of k and the size of ρ, for which a sufficient decrease condition is satisfied.

Lemma 4.8. For 0 ≤ θ ≤ α,

φ′′(θ) ≤ −φ′(0) + qTµ+N‖p‖2,

where N is bounded and independent of k.

Proof. Using (4.8), we have

∇2L =

 ∇2f −
∑(

λi + ρ(ci − si)
)
∇2ci + ρATA −AT −ρAT

−A 0 I

−ρA I ρI

 ,

so that

φ′′(θ) = yT∇2L(v + θy)y = pTW (θ)p−
∑

ρ
(
ci(θ)− si(θ)

)
pT∇2ci(θ)p

+ ρ
(
A(θ)p− q

)T (
A(θ)p− q

)
− 2ξT

(
A(θ)p− q

)
, (4.58)

where
W (θ) = ∇2f(θ)−

∑
(λi + θξi)∇2ci(θ).

We now derive bounds on the first two terms on the right-hand side of (4.58). The first
term is bounded in magnitude by a constant multiple of ‖p‖2 because of assumption (ii) and
the boundedness of ‖λ‖ (from Lemma 4.2). For the second term, we expand ci in a Taylor
series about x:

ci(x+ θp) = ci(x) + θai(x)T p+ 1
2θ

2pT∇2ci(x+ θip)p, (4.59)

where 0 < θi < θ. Since si(θ) = si + θqi, using (2.9a) and multiplying by ρ, we have

ρ
(
ci(x+ θp)− (si + θqi)

)
= ρ (1− θ)

(
ci(x)− si) + ρ 1

2θ
2pT∇2ci(x+ θip)p. (4.60)

We know from Lemma 4.7 that
∣∣ρ(ci(x)−si

)∣∣ is bounded, and from Lemma 4.6 that ρ‖αp‖2
is bounded. Therefore,

ρ
∣∣(ci(θ)− si(θ)

)∣∣ ≤ Ji, (4.61)
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where Ji is bounded and independent of the iteration. Using (4.61), we obtain the overall
bound ∑

|ρ
(
ci(θ)− si(θ)

)
pT∇2ci(θ)p| ≤ J‖p‖2, (4.62)

where J is bounded and independent of the iteration.
Now we examine the third term on the right-hand side of (4.58). Using Taylor series, we

have
ai(x+ θp)T p = aT

i p+ θpT∇2ci(θ̄i)p, (4.63)

where 0 < θ̄i < θ. Using (2.9b) and Lemmas 4.6 and 4.7, we obtain

ρ
(
A(θ)p− q

)T (
A(θ)p− q

)
≤ ρ(c− s)T (c− s) + L‖p‖2, (4.64)

where |L| is bounded and independent of the iteration.
Using (4.63) and the boundedness of ‖ξ‖, the final term on the right-hand side of (4.58)

can be written as
− 2ξT

(
A(θ)p− q

)
≤ 2ξT

(
c(x)− s

)
+M‖p‖2, (4.65)

where |M | is bounded and independent of the iteration.
Combining (4.64) and (4.65), the last two terms on the right-hand side of (4.58) become

ρ
(
A(θ)p− q

)T (
A(θ)p− q

)
− 2ξT

(
A(θ)p− q

)
≤ ρ (c− s)T (c− s) + 2ξT (c− s) + M̃‖p‖2

≤ −φ′(0) + qTµ+ M̄‖p‖2,

where |M̄ | is bounded and independent of the iteration (using (4.11) and noting that the
largest eigenvalue of H is bounded).

Combining all these bounds gives the required result.

Lemma 4.9. The line search in Step 3 of the algorithm defines a step length α (0 < α ≤ 1)
such that

φ(α)− φ(0) ≤ σαφ′(0), (4.66)

and α ≥ ᾱ, where 0 < σ < 1, and ᾱ > 0 is bounded away from zero and independent of the
iteration.

Proof. If both conditions (3.1) are satisfied at a given iteration, then α = 1 and (4.66)
holds with α trivially bounded away from zero.

Assume that (3.1) does not hold (i.e., α is computed by safeguarded cubic interpolation).
The existence of a step length α that satisfies conditions (3.2) is guaranteed from standard
analysis (see, for example, Moré and Sorensen [22]). We need to show that α is uniformly
bounded away from zero. There are two cases to consider.

First, assume that (3.1a) does not hold, i.e., φ(1)− φ(0) > σφ′(0). Since φ′(0) < 0, this
implies the existence of at least one positive zero of the function

ψ(α) = φ(α)− φ(0)− σαφ′(0).

Let α∗ denote the smallest such zero. Since ψ vanishes at zero and α∗, and ψ′(0) < 0, the
mean-value theorem implies the existence of a point α̂ (0 < α̂ < α∗) such that ψ′(α̂) = 0,
i.e., for which

φ′(α̂) = σφ′(0).

Because σ ≤ η, it follows that

φ′(α̂)− ηφ′(0) = (σ − η)φ′(0) ≥ 0.
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Therefore, since the function φ′(α)−ηφ′(0) is negative at α = 0, and non-negative at α̂, the
mean-value theorem again implies the existence of a smallest value ᾱ (0 < ᾱ ≤ α̂) such that

φ′(ᾱ) = ηφ′(0). (4.67)

The point ᾱ is the required lower bound on the step length because (4.67) implies that
(3.2b) will not be satisfied for any α ∈ [0, ᾱ).

Expanding φ′ in a Taylor series gives

φ′(ᾱ) = φ′(0) + ᾱφ′′(θ),

where 0 < θ < ᾱ. Therefore, using (4.67) and noting that η < 1 and φ′(0) < 0, we obtain

ᾱ =
φ′(ᾱ)− φ′(0)

φ′′(θ)
= (1− η)

|φ′(0)|
φ′′(θ)

. (4.68)

(Since ᾱ > 0, θ must be such that φ′′(θ) > 0.) We seek a lower bound on ᾱ, and hence an
upper bound on the denominator of (4.68). We know from Lemma 4.8 that

φ′′(θ) = −φ′(0) + qTµ+N‖p‖2,

and from (2.10) that qTµ ≤ 0. Therefore,

φ′′(θ) ≤ |φ′(0)|+ |N |‖p‖2,

and hence

ᾱ ≥ (1− η)|φ′(0)|
|φ′(0)|+ |N |‖p‖2

.

Dividing by |φ′(0)| gives

ᾱ ≥ (1− η)

1 +
|N |‖p‖2

|φ′(0)|

. (4.69)

Since the algorithm guarantees that φ′(0) ≤ −1
2p

THp, it follows that

|φ′(0)| ≥ 1
2p

THp ≥ 1
2γ‖p‖

2, (4.70)

where γ is bounded below. Thus, the denominator of (4.69) may be bounded above as
follows:

1 +
|N |‖p‖2

|φ′(0)|
≤ 1 +

|N |‖p‖2
1
2γ‖p‖2

= 1 +
2|N |
γ

.

A uniform lower bound on ᾱ is accordingly given by

ᾱ ≥ γ(1− η)
γ + 2|N |

. (4.71)

In the second case, we assume that (3.1a) is satisfied, but (3.1b) is not. In this case, it
must hold that φ′(1) ≥ 0, and hence φ′(α) must have at least one zero in (0, 1]. If ᾱ denotes
the smallest of these zeros, ᾱ satisfies (4.67), and (4.71) is again a uniform lower bound on
the step length.

The proof of a global convergence theorem is now straightforward.
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Theorem 4.1. Under assumptions (i)–(v), the algorithm defined by (1.2), (1.3), (4.7), and
(4.66) has the property that

lim
k→∞

‖pk‖ = 0. (4.72)

Proof. If ‖pk‖ = 0 for any finite k, the algorithm terminates and the theorem is true.
Hence we assume that ‖pk‖ 6= 0 for any k.

When there is no upper bound on the penalty parameter, the uniform lower bound on α
of Lemma 4.9 and (4.46) imply that, for any δ > 0, we can find an iteration index K such
that

‖pk‖ ≤ δ for k ≥ K,

which implies that ‖pk‖ → 0, as required.
In the bounded case, we know that there exists a value ρ̃ and an iteration index K̃ such

that ρ = ρ̃ for all k ≥ K̃. We consider henceforth only such values of k.
The proof is by contradiction. We assume that there exists ε > 0 and K ≥ K̃ such that

‖pk‖ ≥ ε for k ≥ K. Every subsequent iteration must therefore yield a strict decrease in the
merit function (2.7) with ρ = ρ̃, because, using (4.66),

φ(α)− φ(0) ≤ ηαφ′(0) ≤ 1
2ηᾱγε

2 < 0.

The two final inequalities are derived from Lemma 4.9, since α ≥ ᾱ, which is uniformly
bounded away from zero. The adjustment of the slack variables s in Step 2 of the algorithm
can only lead to a further reduction in the merit function. Therefore, since the merit function
with ρ = ρ̃ decreases by at least a fixed quantity at every iteration, it must be unbounded
below. But this is impossible, from assumptions (i)–(ii) and Lemma 4.2. Therefore, (4.72)
must hold.

Corollary 4.1.
lim

k→∞
‖xk − x∗‖ = 0.

Proof. The result follows immediately from Theorem 4.1 and Lemma 4.1.

The second theorem shows that Algorithm NPSQP also exhibits convergence of the
multiplier estimates {λk}.

Theorem 4.2.
lim

k→∞
‖λk − λ∗‖ = 0.

Proof. If ‖pk‖ = 0, then µk = λ∗ (using (1.1) and (1.4)); in Step 1 of Algorithm NPSQP,
λk+1 is set to λ∗, and the algorithm terminates. Thus, the theorem is true if pk = 0 for any
k. We therefore assume that ‖pk‖ 6= 0 for any k.

The definition (4.6) gives

λk+1 =
k∑

j=0

γjkµj , (4.73)

where

γkk = α′k and γjk = α′j

k∏
r=j+1

(1− α′r), j < k, (4.74)
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with α′0 = 1 and α′j = αj , j ≥ 1. (This convention is used because of the special initial
condition that λ0 = µ0.) From Lemma 4.9 and (4.74), we observe that

0 < ᾱ ≤ α′j ≤ 1 for all j, (4.75a)
k∑

j=0

γjk = 1 (4.75b)

and γjk ≤ (1− ᾱ)k−j , j < k. (4.75c)

Since we know from Theorem 4.1 that xk → x∗, the iterates will eventually reach a
neighborhood of x∗ in which the QP subproblem identifies the correct active set (Lemma 4.1)
and Â(xk) has full rank (assumption (iv)). Assume that these properties hold for k ≥ K1.
From the definition (1.4) of µ and assumptions (ii)–(iii), we have for k ≥ K1 that there
exists a bounded scalar M such that

µk = λ∗ +Mkdktk, (4.76)

with |Mk| ≤ M , dk = max(‖pk‖, ‖x∗ − xk‖) and ‖tk‖ = 1. Given any ε > 0, Theorem 4.1
and Corollary 4.1 also imply that K1 can be chosen so that, for k ≥ K1,

|Mkdk| ≤ 1
2ε. (4.77)

We can also define an iteration index K2 with the following property:

(1− ᾱ)k ≤ ε

2(k + 1)(1 + µ̄+ ‖λ∗‖)
(4.78)

for k ≥ K2 + 1, where µ̄ is an upper bound on ‖µ‖ for all k. Let K = max(K1,K2). Then,
from (4.73) and (4.76), we have for k ≥ 2K,

λk+1 =
K∑

j=0

γjkµj +
k∑

j=K+1

γjk(λ∗ +Mjdjtj).

Hence it follows from (4.75b) that:

λk+1 − λ∗ =
K∑

j=0

γjk(µj − λ∗) +
k∑

i=K+1

γjkMjdjtj .

From the bounds on ‖µj‖ and ‖tj‖ we then obtain

‖λk+1 − λ∗‖ ≤ (µ̄+ ‖λ∗‖)
K∑

j=0

γjk +
k∑

j=K+1

γjk|Mjdj |. (4.79)

Since k ≥ 2K, it follows from (4.75a) and (4.75c) that

K∑
j=0

γjk ≤
K∑

j=0

(1− ᾱ)k−j ≤
K∑

j=0

(1− ᾱ)2K−j ≤ (K + 1)(1− ᾱ)K .

Using (4.78), we thus obtain the following bound for the first term on the right-hand side
of (4.79):

(µ̄+ ‖λ∗‖)
K∑

j=0

γjk ≤ 1
2ε. (4.80)
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To bound the second term in (4.79), we use (4.75b) and (4.77):

k∑
j=K+1

γjk|Mjdj | ≤ 1
2ε

k∑
j=K+1

γjk ≤ 1
2ε. (4.81)

Combining (4.79)–(4.81), we obtain the following result: given any ε > 0, we can find K
such that

‖λk − λ∗‖ ≤ ε for k ≥ 2K + 1,

which implies that
lim

k→∞
‖λk − λ∗‖ = 0.

5. Use within a Superlinearly Convergent Algorithm

As mentioned in Section 2.1, a point of interest is whether superlinear convergence may be
impeded by the requirement of a sufficient decrease in the merit function at every iteration.
In this section we show that a unit step (α = 1) will satisfy conditions (3.1) when the iterates
are sufficiently close to the solution and x and λ are converging superlinearly at the same
rate. For further discussion of superlinear convergence, see Dennis and Moré [8] and Boggs,
Tolle and Wang [6].

In addition to the conditions assumed in the previous section, we assume that for all
sufficiently large k:

xk + pk − x∗ = o(‖xk − x∗‖), (5.1a)
λk + ξk − λ∗ = o(‖λk − λ∗‖), (5.1b)

‖pk‖
‖ξk‖

> M > 0, (5.1c)

where M is independent of k. Note that (5.1a) implies

‖pk‖ ∼ ‖xk − x∗‖ and ‖ξk‖ ∼ ‖λk − λ∗‖, (5.2)

where “∼” means that the two quantities are of similar order. (See also Dennis and Moré [8].)
First we show that these assumptions imply that the penalty parameter ρ in the merit

function (2.7) must remain bounded for all k.

Lemma 5.1. Under assumptions (i)–(v) of Section 3, and conditions (5.1a), there exists a
finite ρ̄ such that for all k,

ρ ≤ ρ̄. (5.3)

Proof. The proof is by contradiction. Assume that (5.3) does not hold, in which case
the discussion following Lemma 4.3 shows that (4.13) must hold at an infinite subsequence
of iterations. Condition (4.13) states that at any iteration in this subsequence, we have
−2(c− s)T ξ ≥ 1

2p
THp. Using assumption (iii) and norm inequalities, (4.13) thus implies

‖c− s‖ ≥
1
4γ‖p‖

2

‖ξ‖
.

Using (5.1c), we obtain
‖c− s‖
‖ξ‖

≥
1
4γ‖p‖

2

‖ξ‖2
= M̄ > 0.
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Consequently, from Lemma 4.4,

ρ̂ <
2
M̄

and must remain bounded over the infinite subsequence of iterations. This contradicts the
unboundedness of the penalty parameter, and thereby proves the lemma.

The next two lemmas show that conditions (3.1) are eventually satisfied for all k suffi-
ciently large.

Lemma 5.2. Under assumptions (i)–(v) of Section 3 and conditions (5.1a), the sufficient-
decrease condition (3.1a) holds for sufficiently large k, i.e.,

φ(1)− φ(0) ≤ σφ′(0),

where 0 < σ < 1
2 .

Proof. As in Powell and Yuan [29], observe that the continuity of second derivatives gives
the following relationships:

f(x+ p) = f(x) + 1
2

(
g(x) + g(x+ p)

)T
p+ o(‖p‖2),

c(x+ p) = c(x) + 1
2

(
A(x) +A(x+ p)

)
p+ o(‖p‖2).

Conditions (5.1a) and (5.2) then imply:

f(x+ p) = f(x) + 1
2

(
g(x) + g(x∗)

)T
p+ o(‖p‖2), (5.4a)

c(x+ p) = c(x) + 1
2

(
A(x) +A(x∗)

)
p+ o(‖p‖2). (5.4b)

We shall henceforth use g to denote g(x) and g∗ to denote g(x∗), and similarly for f , c and
A.

By definition,

φ(0) = f − λT (c− s) + 1
2ρ(c− s)T (c− s), (5.5a)

φ(1) = f(x+ p)− µT (c(x+ p)− c−Ap)

+ 1
2ρ
(
c(x+ p)− c−Ap

)T (
c(x+ p)− c−Ap

)
. (5.5b)

Using Taylor series, we have

c(x+ p) = c+Ap+O(‖p‖2). (5.6)

Substituting (5.4) and (5.6) into (5.5b), we obtain

φ(1) = f + 1
2 (g + g∗)T p+ 1

2µ
T (A−A∗)p+ o(‖p‖2). (5.7)

Combining (5.5a) and (5.7) gives

φ(1)− φ(0) = 1
2p

T g + 1
2p

T g∗ + 1
2µ

TAp− 1
2µ

TA∗p+ λT (c− s)

− 1
2ρ(c− s)T (c− s) + o(‖p‖2). (5.8)

Using (2.6), (2.9) and (4.9), we obtain the following expression:

φ′(0) = pT g + 2λT (c− s)− ρ(c− s)T (c− s) + µTAp− µT q. (5.9)
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Substituting (5.9) into (5.8), we have

φ(1)− φ(0) = 1
2φ

′(0) + 1
2µ

T q + 1
2p

T (g∗ −A∗T
µ) + o(‖p‖2). (5.10)

It follows from (5.1b)–(5.1c) that the expression g∗ −A∗T
µ is o(‖p‖), which gives

φ(1)− φ(0) = 1
2φ

′(0) + 1
2µ

T q + o(‖p‖2)
≤ 1

2φ
′(0) + o(‖p‖2),

and hence
φ(1)− φ(0)− σφ′(0) ≤ ( 1

2 − σ)φ′(0) + o(‖p‖2). (5.11)

Since σ < 1
2 and φ′(0) satisfies (4.7), (5.11) implies that (3.1a) holds for sufficiently large k.

Lemma 5.3. Under assumptions (i)–(v) and conditions (5.1a), the second line search con-
dition (3.1b) holds for sufficiently large k, i.e.,

φ′(1) ≤ ηφ′(0) or |φ′(1)| ≤ η|φ′(0)|,

where η < 1
2 .

Proof. In this proof, we use the notation g(1) to denote g(x + p), and similarly for c and
A. Using (4.10), φ′(1) is given by

φ′(1) = pT g(1)− pTA(1)µ+ ρpT
(
c(1)− c−Ap

)
−(µ− λ)T

(
c(1)− c−Ap

)
+ qTµ− ρqT

(
c(1)− c−Ap

)
. (5.12)

From conditions (5.2)–(5.3), we have

g(1) = g∗ + o(‖p‖2), A(1) = A∗ + o(‖p‖2) and µ = λ∗ + o(‖p‖). (5.13)

Substituting from (5.6) and (5.13) into (5.12) then gives

φ′(1) = pT g∗ − pTA∗µ+ qTµ− ρ(c− s)T
(
c(1)− c−Ap

)
+ o(‖p‖2). (5.14)

Consider now the vectors (c−s), q and µ. From (2.8) and (5.2), ‖c−s‖ = O(‖p‖). From
Lemma 4.1, we know that the QP subproblem (1.3) will eventually predict the correct active
set, and hence that µi = 0 if ci(x∗) > 0. For an active constraint ci, it follows from (2.8)
that si will eventually be set to zero at the beginning of every iteration if ρ > 0, and hence
qi must also be zero. If ρ = 0 and ci is an active constraint, then |qi| = o(‖p‖2). Therefore,
in either case we have that

|qTµ| = o(‖p‖2) and |ρ(c− s)T
(
c(1)− c−Ap

)
| = o(‖p‖2). (5.15)

Recalling that ‖g∗ −A∗T
µ‖ = o(‖p‖) and using (5.15) in (5.14), we obtain

φ′(1) = o(‖p‖2). (5.16)

Since |φ′(0)| ≥ 1
2γ‖p‖

2, (5.16) implies that (3.1b) will eventually be satisfied at every itera-
tion.
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6. Numerical Results

In order to indicate the reliability and efficiency of a practical SQP algorithm based on the
merit function (2.7), we present a selection of numerical results obtained from the Fortran
code NPSOL (Gill et al. [15]). Table 1 contains the results of solving a subset of problems 70–
119 from Hock and Schittkowski [20]. (We have omitted problems that are non-differentiable
or that contain only linear constraints. Since NPSOL treats linear constraints separately,
they do not affect the merit function.)

The problems were run on an IBM 3081K in double precision (i.e., machine precision εM

is approximately 2.22 × 10−16). The default parameters for NPSOL were used in all cases
(for details, see Gill et al. [15]). In particular, the default value for ftol, the final accuracy
requested in f , is 5.4×10−12, and ctol, the feasibility tolerance, is

√
εM . Analytic gradients

were provided for all functions, and a gradient linesearch was used.
For successful termination of NPSOL, the iterative sequence of x-values must have con-

verged and the final point must satisfy the first-order Kuhn-Tucker conditions (cf. (1.1)).
The sequence of iterates is considered to have converged at x if

α‖p‖ ≤
√
ftol (1 + ‖x‖), (6.1)

where p is the search direction and α the step length in (1.2). The iterate x is considered to
satisfy the first-order conditions for a minimum if the following conditions hold: the inactive
constraints are satisfied to within ctol, the magnitude of each active constraint residual is
less than ctol, and

‖Z(x)T g(x)‖ ≤
√
ftol

(
1 + max(1 + |f(x)|, ‖g(x)‖)

)
, (6.2)

where Z(x) is an orthogonal basis for the null space of the gradients of the active constraints.
(Thus, Z(x)T g(x) is the usual reduced gradient.)

Table 1 gives the following information: the problem number in Hock and Schittkowski;
the number of variables (n); the number of simple bounds (mB); the number of general linear
constraints (mL); the number of nonlinear constraints (mN); the number of iterations; and
the number of function evaluations. (Each constraint is assumed to include a lower and an
upper bound.)

NPSOL terminated successfully on all the problems except the badly scaled problem 85,
for which (6.1) could not be satisfied. However, the optimality conditions were satisfied at
the final iterate, which gave an improved objective value compared to that in Hock and
Schittkowski [20].
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Table 1: Results on the Hock and Schittkowski problems.

Prob n mB mL mN Itns Evals

70 4 4 0 1 35 38

71 4 4 0 2 5 6

72 4 4 0 2 6 7

73 4 4 2 1 3 4

74 4 4 2 3 9 12

75 4 4 2 3 6 7

77 5 0 0 2 14 20

78 5 0 0 3 10 15

79 5 0 0 3 9 12

80 5 5 0 3 8 10

81 5 5 0 3 14 20

83 5 5 0 3 4 6

84 5 5 0 3 2 3

85 5 5 0 38 17 18

93 6 6 0 2 11 14

95 6 6 0 4 1 2

96 6 6 0 4 1 2

97 6 6 0 4 3 6

98 6 6 0 4 3 6

99 7 7 0 2 18 32

100 7 0 0 4 15 34

101 7 7 0 5 17 19

102 7 7 0 5 29 69

103 7 7 0 5 25 60

104 8 8 0 5 17 19

106 8 8 3 3 17 21

107 9 7 0 6 11 18

108 9 1 0 13 24 45

109 9 9 1 8 10 11

111 10 10 0 3 48 64

113 10 0 3 5 14 19

114 10 10 5 6 18 19

116 13 13 5 10 31 64

117 15 15 0 5 17 21
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