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Abstract. We propose a sequential quadratic programming (SQP) method for the optimal
control of large-scale dynamical systems. The method uses modified multiple shooting to discretize
the dynamical constraints. When these systems have relatively few parameters, the computational
complexity of the modified method is much less than that of standard multiple shooting. Moreover,
the proposed method is demonstrably more robust than single shooting. In the context of the SQP
method, the use of modified multiple shooting involves a transformation of the constraint Jacobian.
The affected rows are those associated with the continuity constraints and any path constraints
applied within the shooting intervals. Path constraints enforced at the shooting points (and other
constraints involving only discretized states) are not transformed. The transformation is cast almost
entirely at the user level and requires minimal changes to the optimization software. We show that
the modified quadratic subproblem yields a descent direction for the ℓ1 penalty function. Numerical
experiments verify the efficiency of the modified method.
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1. Introduction. We consider the ordinary differential equation (ODE) system

y′ = F (t, y, p, u(t)), y(t0) = y0,

where the control parameters p and the vector-valued control function u(t) must be
determined such that the objective function

∫ tmax

t0

Ψ(t, y(t), p, u(t)) dt is minimized

and some additional inequality constraints

G(t, y(t), p, u(t)) ≥ 0

are satisfied. The optimal control function u∗(t) is assumed to be continuous. In
many applications the ODE system is large-scale. Thus, the dimension ny of y is
large. Often, for example, the ODE system arises from the spatial discretization of a
time-dependent partial differential equation (PDE) system. In many such problems,
the dimensions of the control parameters and of the representation of the control
function u(t) are much smaller. To represent u(t) in a low-dimensional vector space,
we use piecewise polynomials on [t0, tmax], their coefficients being determined by the
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optimization. For ease of presentation we can therefore assume that the vector p
contains both the parameters and these coefficients (we let np denote the combined
number of these values) and discard the control function u(t) in the remainder of the
paper. Hence we consider

y′ = F (t, y, p), y(t0) = y0,(1.1a)
∫ tmax

t0

ψ(t, y(t), p) dt is minimized,(1.1b)

g(t, y(t), p) ≥ 0.(1.1c)

There are a number of well-known methods for direct discretization of this opti-
mal control problem (1.1). The single shooting method solves the ODEs (1.1a) over
the interval [t0, tmax], with the set of controls generated at each iteration by the op-
timization algorithm. However, it is well-known that single shooting can suffer from
a lack of stability and robustness [1]. Moreover, for this method it is more difficult
to maintain additional constraints and to ensure that the iterates are physical or
computable. The finite-difference method or collocation method discretizes the ODEs
over the interval [t0, tmax] with the ODE solutions at each discrete time and the set
of controls generated at each iteration by the optimization algorithm. Although this
method is more robust and stable than the single shooting method, it requires the
solution of an optimization problem which for a large-scale ODE system is enormous,
and it does not allow for the use of adaptive ODE or (in the case that the ODE system
is the result of semi-discretization of PDEs) PDE software.

We thus consider the multiple-shooting method for the discretization of (1.1). In
this method, the time interval [t0, tmax] is divided into subintervals [ti, ti+1] (i =
0, . . . , N − 1), and the differential equations (1.1a) are solved over each subinterval,
where additional intermediate variables yi are introduced. On each subinterval we
denote the solution at time t of (1.1a) with initial value yi at ti by y(t, ti, yi, p).
Continuity between subintervals is achieved via the continuity constraints

Ci+1
1 (yi, yi+1, p) := yi+1 − y(ti+1, ti, yi, p) = 0.

The additional constraints (1.1c) are required to be satisfied at the boundaries of the
shooting intervals

Ci
3(yi, p) := g(ti, yi, p) ≥ 0, CN

3 (yN , p) := g(tN , yN , p) ≥ 0,

and also at a finite number of intermediate times tik within each subinterval [ti, ti+1]

Cik
2 (yi, p) := g(tik, y(tik, ti, yi, p), p) ≥ 0.

Following common practice, we write

Φ(t) =

∫ t

t0

ψ(τ, y(τ), p) dτ,

which satisfies Φ′(t) = ψ(t, y(t), p), Φ(t0) = 0. This introduces another equation and
variable into the differential system (1.1a). The discretized optimal control problem
becomes

minimize
y1,...,yN ,p

Φ(tmax)(1.2)
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subject to the constraints

Ci+1
1 (yi, yi+1, p) = 0,(1.3a)

Cik
2 (yi, p) ≥ 0,(1.3b)

Ci
3(yi, p) ≥ 0 and CN

3 (yN , p) ≥ 0.(1.3c)

This problem can be solved by an optimization code. We use the solver SNOPT

[5], which incorporates a sequential quadratic programming (SQP) method. The
SQP methods require a gradient and Jacobian matrix that are the derivatives of
the objective function and constraints with respect to the optimization variables.
We compute these derivatives via differential-algebraic equation (DAE) sensitivity
software DASPKSO [9]. Our basic algorithm and software for the optimal control of
dynamical systems are described in detail in [10].

This basic multiple-shooting type of strategy can work very well for small-to-
moderate size ODE systems, and has an additional advantage that it is inherently
parallel. However, for large-scale ODE systems there is a problem because the com-
putational complexity grows rapidly with the dimension of the ODE system. The
difficulty lies in the computation of the derivatives of the continuity constraints with
respect to the variables yi. The solution of O(ny) sensitivity systems is required
to form the derivative matrix ∂y(t)/∂yi for the multiple-shooting method. For the
problems under consideration ny can be very large (for example, for an ODE system
obtained from the semi-discretization of a PDE system, ny is the dimension of the
semi-discretized PDE system). In contrast, the single shooting method requires the
solution of O(np) sensitivity systems, although the method is not as stable, robust or
parallelizable.

The basic idea for reducing the computational complexity of the multiple shooting
method for this type of problem is to make use of the structure of the continuity
constraints to reduce the number of sensitivity solutions which are needed to compute
the derivatives. To do this, we recast the continuity constraints in a form where
only the matrix-vector products (∂y(t)/∂yi)wj are needed, rather than the entire
matrix ∂y(t)/∂yi. The matrix-vector products are directional derivatives; each can
be computed via a single sensitivity analysis. The number of vectors wj such that the
directional sensitivities are needed is small, of order O(np). Thus the computational
work of the modified multiple shooting computation is reduced to O(np) sensitivity
solves, roughly the same as that of single shooting. Unfortunately, the reduction in
computational complexity comes at a price: the stability of the modified multiple
shooting algorithm suffers from the same limitations as single shooting. However, for
many dissipative PDE systems this is not an issue, and the modified method is more
robust for nonlinear problems.

There are other considerations in addition to complexity. There may be many
inequality constraints in this type of optimal control problem. Any scheme for re-
ducing the complexity of the derivative calculations for the continuity constraints
should not cause additional complexity in forming or computing the derivatives of
the inequality constraints. Whatever changes are made to the optimization problem
or the optimization method must result in an algorithm where the merit function is
decreasing. Finally, an optimization code such as SNOPT is highly complex. There
is a strong motivation to be able to adapt such an optimization code to our optimal
control algorithm with a minimum of changes to the optimizer. Our aim is not only to
reduce the difficulties associated with writing and maintaining separate optimization
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software for the dynamical systems problems, but also to make it easier to adapt new
optimization software and algorithms for these problems.

Although a number of papers have discussed algorithms related to the one pro-
posed here, to our knowledge, none has all of the desirable properties mentioned
above. The stabilized march method [1] for 2-point boundary value problems is closely
related. The stabilized march method makes use of the structure of the continuity
constraints by solving them for the internal variables (at the multiple shooting points)
in terms of the unknown boundary conditions. This can be done efficiently through
the use of directional derivatives. Schlöder [13] generalizes this method to multipoint
boundary value problems from optimal control and parameter estimation. However,
the method is not easily extended to general inequality constraints, mainly because
it is a problem to write these inequality constraints in terms of the parameters in the
optimization. Biegler et al. [2] present a reduced SQP method used with collocation,
which reduces the size of the optimization problem by solving the constraints from
the discretized ODE for the discretized state variables in terms of the optimization
parameters. Schultz [14] introduces partially reduced SQP methods used with colloca-
tion and multiple shooting to overcome this limitation with respect to the inequality
constraints. In the partially reduced SQP methods, the inequality constraints are
reduced on the kernel of the continuity constraints. The method appears to require
substantial modification to existing optimization solvers. Steinbach et al. [15] make
use of the partially reduced SQP methods for mathematical optimization in robotics;
the inequality constraints are treated via slack variables.

The remainder of the paper is organized as follows. In §2 we present an SQP
formulation of the discretized optimal control problem (1.2)–(1.3). This leads to a
discussion in §3 of the SQP Jacobian and our proposed modification of its structure.
In §4, we discuss the resulting modified QP subproblem as well our choice of merit
function for use with the altered QP. In §5 we conclude with numerical results that
demonstrate the effectiveness of the proposed method.

2. Optimization Problem for Dynamical Systems. The optimization prob-
lem (1.2)–(1.3) for dynamical systems can be rewritten in a more compact form. The
variable Ny is used to denote the number of discretized states (Ny = (N+1)(ny +1)).
We let x = (y, p)T denote the optimization vector in terms of the Ny discretized states
and the parameters (including discretized controls). We let c1(x) ∈ IRNy denote the
vector of continuity constraints, i.e.,

c1(x) = (C1
1 (y0, y1, p), C

2
1 (y1, y2, p), . . . , C

N
1 (yN−1, yN , p) )T

(here and throughout the paper we use the simpler notation (a, b)T to denote the
column vector (aT bT )T ). The vectors of inequality constraints c2 and c3 are defined
in a similar manner in terms of their capitalized counterparts (c3 can include any
constraints that involve only discretized states). The objective function Φ(tmax) is
denoted simply by f(x). The problem now takes the form

minimize
x

f(x), c1(x) = 0, c2(x) ≥ 0, c3(x) ≥ 0.(2.1)

We use a sequential quadratic programming (SQP) method to solve this opti-
mization problem. In SQP, a sequence of iterates (xk, πk) is generated converging to
a point (x∗, π∗) satisfying the first-order Karush-Kuhn-Tucker (KKT) conditions of
optimality. Each iterate is the result of a “major” iteration that involves computing
the solution (x̂k, π̂k) of a QP subproblem, performing a line search (discussed in §4.2)
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and updating the QP Hessian Hk. The QP is derived from problem (2.1) and is
written

minimize
x

f(xk) + ∇f(xk)T (x− xk) + 1
2 (x− xk)THk(x− xk),(2.2a)

c1(xk) + J1(xk)(x− xk) = 0,(2.2b)

ci(xk) + Ji(xk)(x− xk) ≥ 0, i = 2, 3.(2.2c)

The gradient ∇f(x) is a unit vector in our formulation because the objective function
is the value of a state at tmax (see (1.2) and the preceding discussion). The matrices
Ji(x), i = 1, 2, 3, each form a block of the Jacobian matrix J(x) defined by J(x) =
∂c(x)/∂x, where c(x) := (c1(x), c2(x), c3(x))

T . (For example, J1(x) = ∂c1(x)/∂x.)
The matrix Hk is a positive-definite approximation to ∇2Lk(xk, πk), where Lk(x, πk)
is the modified Lagrangian function

Lk(x, πk) := f(x) − πT
k

(
c(x) − ck(x)

)
,

and ck(x) is the vector of linearized constraints ck(x) := c(xk) + J(xk)(x− xk).

The optimality conditions for a solution x̂ of the QP subproblem imply the exis-
tence of vectors ŝ := (ŝ1, ŝ2, ŝ3)

T and π̂ := (π̂1, π̂2, π̂3)
T such that

∇f(xk) +Hk(x̂− xk) = J(xk)T π̂, π̂i ≥ 0, i = 2, 3,

c(xk) + J(xk)(x̂− xk) = ŝ, ŝ1 = 0,

π̂T ŝ = 0, ŝi ≥ 0, i = 2, 3.

(2.3)

The components of π̂ are the Lagrange multipliers of the subproblem, and are referred
to as the QP multipliers. Each component of ŝ can be regarded as a slack variable for
the associated constraint in c. In an active-set QP method, values (x̂, π̂, ŝ ) satisfying
(2.3) are determined using a sequence of “minor” iterations, each one of which solves
an equality-constrained QP where certain of the linearized constraints are treated as
“active” (equal to 0).

3. Structure and Modification of the Linearized Constraints. Since the
complexity problem for the basic multiple shooting method results mainly from com-
putation of the derivative matrix J1 of the continuity constraints, we first examine
the structure of this matrix.

Linearizing the continuity constraints

Ci+1
1 (yi +∆yi, yi+1 +∆yi+1, p+∆p) = 0

at (y0, y1, . . . yN , p) (with ∆y0 = 0) we obtain

∆yi+1 −
∂y(ti+1)

∂p
∆p−

∂y(ti+1)

∂yi
∆yi + Ci+1

1 (yi, yi+1, p) = 0,

where to simplify the notation y(ti+1) stands for y(ti+1, ti, yi, p). In matrix notation
we have

( J1y J1p )

(
∆y

∆p

)
+ c1 = 0,(3.1)
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where ∆y = (∆y1,∆y2, . . . ,∆yN )T . The matrices J1y and J1p are ∂c1(x)/∂y and
∂c1(x)/∂p (so J1 = ( J1y J1p )) and satisfy explicitly

J1y =





I O O . . . O

−∂y(t2)
∂y1

I O . . . O

O −∂y(t3)
∂y2

I . . . O
...

...
...

. . .
...

O O . . . −∂y(tN )
∂yN−1

I




, J1p =





−∂y(t1)
∂p

−∂y(t2)
∂p

...

−∂y(tN )
∂p





(we have temporarily dropped explicit reference to xk).
The sensitivity matrices ∂y(t)/∂yi are very costly to compute since the dimension

of y is large. The jth column of this matrix is given by the solutions on the interval
[ti, ti+1] of the equations

s′ij =
∂F

∂y
(t, y, p)sij , sij(ti) = ej ,(3.2)

where ej is the jth column of the identity. As an aside, we note that these equations
can be evaluating using automatic differentiation tools (see [3]), and solved via ODE
or DAE sensitivity analysis software (see [9]). They can also be evaluated using finite
differences

s′ij =
1

δij
(F (t, y + δijsij , p) − F (t, y, p)) ,

where δij is a small scalar. In the numerical example that we will consider, the matrix
∂F (t, y, p)/∂y is sparse and the products (∂F (t, y, p)/∂y)sij can be computed directly.
In any case, each sensitivity matrix requires ny “sensitivities”, which implies that J1y

takes (N − 1)ny sensitivities. Each column of ∂y(t)/∂p is defined similarly to the
sensitivity (3.2) (see Maly and Petzold [9]) and takes approximately the same amount
of work. It follows that J1 requires approximately N(ny + np) sensitivities.

The matrix J−1
1y can be used to transform equation (3.1) so that the number of

sensitivities is reduced. Multiplying equation (3.1) by J−1
1y gives the equivalent system

( I J−1
1y J1p )

(
∆y

∆p

)
+ J−1

1y c1 = 0,(3.3)

which involves the “modified” Jacobian ( I J−1
1y J1p ). The important feature of

this matrix is that the sensitivities associated with the identity block are available
free of charge. The second block is the solution of the matrix system J1yX = J1p.
A short inductive argument proves that the computation of X requires np(2N − 1)
sensitivities. To make this argument, we partition X vertically into N blocks each
denoted by Xi. Clearly, X1 = −∂y(t1)/∂p, which requires np sensitivities. Assume
now that Xi has been computed. We find that

Xi+1 =
∂y(ti+1)

∂yi
Xi −

∂y(ti+1)

∂p
,

which requires for 1 ≤ i ≤ N − 1 a total of 2np(N − 1) sensitivities (noting that

the matrix-matrix product ∂y(ti+1)
∂yi

Xi can be computed directly via np sensitivities).
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Adding np to this gives the desired result, which completes the argument. The modi-
fied system (3.3) also requires N − 1 sensitivities for J−1

1y c1. Hence, the total number
needed is approximately N(2np +1), which can be substantially less than N(ny +np)
when np ≪ ny. (We should note that the actual numbers of sensitivities for both
systems (3.1) and (3.3) is less than we have written here because the controls have
been included in p.)

Next we examine the structure of the path constraints Cik
2 (1 ≤ k ≤ Ki) because

these too can lead to a large number of sensitivity calculations. Linearizing these
constraints leads to a matrix system

( J2y J2p )

(
∆y

∆p

)
+ c2 ≥ 0,(3.4)

where J2y and J2p have the forms

J2y =





O O O . . . O
B1y O O . . . O
O B2y O . . . O
...

...
...

. . .
...

O O . . . B(N−1)y O




and J2p =





B0p

B1p

...
B(N−1)p




.(3.5)

The matrices Biy and Bip satisfy

Biy =





∂g(ti1)
∂y(ti1)

∂y(ti1)
∂yi

∂g(ti2)
∂y(ti2)

∂y(ti2)
∂yi

...

∂g(tiKi
)

∂y(tiKi
)

∂y(tiKi
)

∂yi





and Bip =





∂g(ti1)
∂y(ti1)

∂y(ti1)
∂p + ∂g(ti1)

∂p

∂g(ti2)
∂y(ti2)

∂y(ti2)
∂p + ∂g(ti2)

∂p

...

∂g(tiKi
)

∂y(tiKi
)

∂y(tiKi
)

∂p +
∂g(tiKi

)

∂p





,

and require at most ny and np sensitivities respectively (a whole sensitivity is associ-
ated with integration across the entire interval [ti, ti+1]). It follows that J2 requires
about N(ny + np) sensitivities, the same number needed for J1.

The structure of J2 can also be modified so that the number of sensitivities is
reduced. However, we cannot use the same technique we used to modify J1. Instead,
we solve the continuity equations (3.1) for ∆y and substitute the result into the path
constraint system (3.4). This gives the matrix system

( O J2p − J2yJ
−1
1y J1p )

(
∆y

∆p

)
− J2yJ

−1
1y c1 + c2 ≥ 0.(3.6)

Since J−1
1y J1p and J−1

1y c1 are already computed, this system requires approximately
N(2np + 1) sensitivities (the same number as the modified continuity constraint sys-
tem). Hence, we again obtain a savings when np ≪ ny.

Two comments are in order before we conclude this section. First, the substitution
of ∆y in terms of ∆p in the path constraint equations (3.4) does not eliminate y as
an optimization variable, since it still appears in the modified continuity constraints.
Second, the linearized constraints

c3(xk) + J3(xk)(x− xk) ≥ 0,(3.7)

involving only discretized states, are left unmodified since J3 involves no sensitivities.
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4. Modified QP subproblem. In §4.1 we will reformulate the QP subproblem
in terms of the modified constraints (3.3) and (3.6). This leads to a complication in
the line search, which we discuss in §4.2.

4.1. Reformulation of QP Subproblem. The objective function for the mod-
ified QP is the same as before (see equation (2.2a)). In terms of a transformation
matrix

M(x) :=





J−1
1y O O

−J2yJ
−1
1y I O

O O I



(4.1)

and transformed quantities c̄(x) = M(x)c(x) and J̄(x) = M(x)J(x), the constraints
(3.3), (3.6) and (3.7) can be written more simply as

c̄1(xk) + J̄1(xk)(x− xk) = 0,

c̄i(xk) + J̄ i(xk)(x− xk) ≥ 0, i = 2, 3.

The optimality conditions for the modified QP subproblem are

∇f(xk) +Hk(x̄− xk) = J̄(xk)T π̄, π̄i ≥ 0, i = 2, 3

c̄(xk) + J̄(xk)(x̄− xk) = s̄, s̄1 = 0,

π̄T s̄ = 0, s̄i ≥ 0, i = 2, 3.

(4.2)

The next lemma shows that transformation by M does not fundamentally alter
the solution of a given subproblem.

Lemma 4.1. Consider a solution (x̄, s̄, π̄) of the modified QP (4.2). Define vectors
ŝ and π̂ such that π̂ = M(xk)T π̄ and ŝ = M(xk)−1s̄, with M(xk) the transformation
matrix (4.1). Then (x̄, ŝ, π̂) satisfies the conditions (2.3) and is therefore a solution
of the unmodified QP (2.2).

Proof. From the definition (4.1) of M we have

M(xk)−1 =





J1y O O

J2y I O

O O I



 .(4.3)

Forming the products ŝ = M(xk)−1s̄ and π̂ = M(xk)T π̄, gives ŝ = s̄ and π̂i = π̄i for
i = 2, 3.

It remains to show that x̄ is feasible for (2.2). Multiplying the constraint equations
in (4.2) by M(xk)−1 gives

c(xk) + J(xk)(x̄− xk) = M(xk)−1s̄ = ŝ = s̄,(4.4)

and the result follows from the optimality of s̄ in (4.2).
An SQP code capable of solving the problem (2.1) is necessarily complex. How-

ever, altering the code to solve the modified QP instead of the original QP is a simple
matter of providing c̄ and J̄ in place of c and J . The only complication is that J̄ is
not the Jacobian of c̄. In fact, the Jacobian of c̄ is

M(x)J(x) +
∂M(x)

∂x
c(x) = J̄(x) +

∂M(x)

∂x
c(x),

which means we are omitting the term (∂M(x)/∂x)c(x). This omission has an effect
on the choice of merit function, as we discuss in the next section.
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4.2. The merit function. An important feature of SQP methods is that a
merit function is used to force convergence from an arbitrary starting point. The
properties of a merit function may be discussed with respect to a generic function
M defined in terms of variables y. In general, y may include any of the variables
appearing in the QP subproblem, including the slacks and dual variables. If ŷk is
an estimate of y∗ computed from the QP subproblem, a line search is used to find a
scalar αk (0 < αk ≤ 1) that gives a sufficient decrease in M, i.e.,

M(yk + αk∆yk) <M(yk) − αkr(yk),(4.5)

where ∆yk = ŷk−yk and r(y) is a positive function such that r(y) → 0 only if y → y∗.
If the line search is to be successful, ∆yk must be a direction of decrease for M(y),
i.e., there must exist a σ (0 < σ ≤ 1) such that the sufficient decrease criterion (4.5)
is satisfied for all α ∈ (0, σ).

In the method of SNOPT, yk consists of the QP variables (xk, sk, πk) and the
merit function is the augmented Lagrangian function

M(x, π, s, ρ) = f(x) − πT(c(x) − s) + 1
2ρ‖c(x) − s‖2

2,(4.6)

where ρ is a nonnegative scalar penalty parameter. In this case, ρ is chosen at the
start of the line search to ensure that (∆xk,∆πk,∆sk) is a direction of decrease for
M. (For more information see, e.g., Schittkowski [12], and Gill, Murray, Saunders and
Wright [8].) The augmented Lagrangian is continuously differentiable, which allows
α to be found using safeguarded polynomial interpolation. These methods use M to
define a smooth function that has a minimizer satisfying (4.5). Safeguarded quadratic
or cubic interpolation may then be used to generate a sequence (starting with α = 1)
that converges to this minimizer. The minimizing sequence is terminated at the first
value α that satisfies the sufficient decrease criterion (4.5). This procedure is very
efficient, with only one or two function evaluations being required to improve the
merit function, even when far from the solution.

However, the multiplier vector π is not computed when solving the modified QP,
and it follows that the augmented Lagrangian merit function (4.6) cannot be used in
this situation. As an alternative, we use a merit function based on the “exact” or
ℓ1 penalty function (see, e.g., Fletcher [4]). Let v(x) denote the vector of constraint
violations at any point x; i.e., vi(x) = max[0,−ci(x)] for an inequality constraint
ci(x) ≥ 0, and vi(x) = |ci(x)| for an equality constraint ci(x) = 0. The ℓ1 penalty
function is given by

M(x) = f(x) + ρ‖v(x)‖1,

where ρ is a nonnegative penalty parameter. (For simplicity, our notation for M
suppresses the dependence on ρ.) The main property of the ℓ1 penalty function is
that there exists a nonnegative ρ∗ such that, for all ρ > ρ∗, a solution of the original
problem (2.1) is also a local minimizer of M(x).

The function M(x) is not differentiable and therefore cannot be minimized ef-
ficiently using smooth polynomial interpolation. We use the popular alternative of
a backtracking line search (see, e.g., Gill et al. [7, pp. 100–102]). This line search
determines a step αk for which the reduction in the merit function that is no worse
than a factor µ (0 < µ < 1

2 ) of the reduction predicted by a model function based on
a linear approximation of f and c. The particular line-search model used is

Mk(x) = f(xk) + ∇f(xk)T (x− xk) + ρ‖vk(x)‖1,(4.7)
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where vk(x) denotes the violations of the linearized constraints ck(x) := c(xk) +
J(xk)(x− xk).

Let ω be any constant in the range 0 < ω < 1 (often, ω = 1
2 ). The new SQP

iterate is defined as xk+1 = xk +αk∆xk, where αk is the first member of the sequence
α0 = 1, αj = ωαj−1 such that

M(xk + αk∆xk) ≤ M(xk) − µ(Mk(xk) −Mk(xk + αk∆xk))(4.8)

(cf. (4.5)). A standard result states that an interval of acceptable step lengths exists
provided ρ ≥ ‖π̂‖∞, where π̂ are the QP multipliers of (2.3) (see, e.g., Powell [11]).
It remains to show that an appropriate bound on ρ can be calculated from quantities
defined by the modified QP subproblem.

Theorem 4.2. Let ∆xk be a nonzero search direction such that ∆xk = x̄ − xk,
where x̄ satisfies the conditions (4.2). Let ρ̂ denote the penalty value

ρ̂ = max[0,−c̄(xk)T π̄/‖v(xk)‖1].

Then for all ρ ≥ ρ̂, there exists a positive σ such that the line search condition (4.8)
is satisfied for all α ∈ (0, σ).

Proof. First, we show that for ρ sufficiently large and all 0 < α ≤ 1, the predicted
reduction in M is positive, i.e., Mk(xk)−Mk(xk +α∆xk) > 0. Substituting directly
from the definition (4.7) of the model function yields

Mk(xk)−Mk(xk + α∆xk) = −α∇f(xk)T∆xk + ρ
(
‖vk(xk)‖1 − ‖vk(xk + α∆xk)‖1

)
.

We derive a lower bound on ‖vk(xk)‖1−‖vk(xk +α∆xk)‖1 using the properties of the
slack variables. For any nonnegative slack vector s we have ‖v(xk)‖1 ≤ ‖c(xk) − s‖1,
with equality for the vector s0 with components (s0)i = max[0, ci(xk)] for a constraint
ci(x) ≥ 0, and (s0)i = 0 for a constraint ci(x) = 0. Consider the vector ∆sk := s̄−s0,
where s̄ is the slack vector (4.2) computed by the QP. The optimality conditions
(4.2) for the modified QP imply that s̄ is nonnegative, which allows us to assert that
s0 + α∆sk ≥ 0 for all 0 ≤ α ≤ 1. It follows that

‖vk(xk + α∆xk)‖1 ≤ ‖ck(xk + α∆xk) − (s0 + α∆sk)‖1

= ‖ck(xk) + αJ(xk)∆xk − (s0 + α∆sk)‖1.

Using the identity (4.4) and the fact that ck(xk) = c(xk), we have

‖vk(xk + α∆xk)‖1 ≤ (1 − α)‖c(xk) − s0‖1

for all α such that 0 < α ≤ 1. This inequality leads directly to the bound

‖vk(xk)‖1 − ‖vk(xk + α∆xk)‖1 ≥ ‖c(xk) − s0‖1 − (1 − α)‖c(xk) − s0‖1

= α‖c(xk) − s0‖1 = α‖v(xk)‖1.(4.9)

Finally, from (4.2), we have

−∇f(xk)T∆xk = ∆xT
kHk∆xk −∆xT

k J̄(xk)T π̄ = ∆xT
kHk∆xk + (c̄(xk) − s̄)T π̄,

which may be simplified to become

−∇f(xk)T∆xk = ∆xT
kHk∆xk + c̄(xk)T π̄(4.10)
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using the optimality condition s̄T π̄ = 0. Equations (4.9) and (4.10) allow us to write
the reduction in Mk as

Mk(xk) −Mk(xk + α∆xk) ≥ α(∆xT
kHk∆xk + c̄(xk)T π̄ + ρ‖v(xk)‖1).(4.11)

As Hk is positive definite by assumption, we need only consider the term c̄(xk)T π̄ +
ρ‖v(xk)‖1. If c̄(xk)T π̄ ≥ 0, we may choose ρ̂ = 0. Otherwise, if v(xk) 6= 0, it is
sufficient to choose ρ̂ = |c̄(xk)T π̄|/‖v(xk)‖1. If v(xk) = 0, it follows that c1(xk) = 0,
c2(xk) ≥ 0 and c3(xk) ≥ 0. These combined with the definition of c̄(xk) and the
nonnegativity of π̄2 and π̄3 imply that c̄(xk)T π̄ ≥ 0, so we again can choose ρ̂ = 0.

Next we show that

lim
α→0+

M(xk) −M(xk + α∆xk)

Mk(xk) −Mk(xk + α∆xk)
= 1.(4.12)

Since µ < 1, this implies that there must exist a positive σ such that (4.8) is satisfied
for all α ∈ (0, σ).

The expression

1

α
(M(xk) −M(xk + α∆xk))(4.13)

can be written as

1

α
(f(xk) − f(xk + α∆xk)) + ρ

1

α
(‖v(xk)‖1 − ‖v(xk + α∆xk)‖1) .

If we assume the existence of second derivatives for f , standard arguments give

lim
α→0+

1

α
(f(xk) − f(xk + α∆xk)) = −∇f(xk)T∆xk.

Making the same assumption for c and using the relation v(xk) = vk(xk) + o(α) with
(4.9) gives

lim
α→0+

1

α
(‖v(xk)‖1 − ‖v(xk + α∆xk)‖1) = ‖v(xk)‖1.

These limits combined with (4.11) and (4.13) imply the desired result (4.12), which
completes the proof.

Backtracking generally requires more evaluations of f and c than polynomial
interpolation. However, this disadvantage can be offset by the savings gained by the
use of the modified QP, as we will see in §5.

At each iteration, a penalty parameter ρk is used to estimate the quantity ρ∗

that ensures that x∗ a local minimizer of M. The value of ρk is determined by
retaining a “current” value, which is increased if necessary to satisfy the lower bound
of Theorem 4.2. For example, at iteration k, the penalty parameter ρk can be defined
by ρk = max{ρ̂k, 2ρk−1}, where ρ0 = 0 and ρ̂k is defined by Theorem 4.2.

5. Numerical Results. This section presents numerical solutions to an optimal
control test problem using the proposed algorithm. The results are compared with
those obtained using the standard single shooting and multiple shooting technique on
the Cray C90 supercomputer.
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5.1. Optimal Control Problem Formulation. Consider the following op-
timal control problem of following a specified temperature trajectory over a given
two-dimensional domain.

A rectangular domain in space is heated by controlling the temperature on its
boundaries. It is desired that the transient temperature in a specified interior sub-
domain follow a prescribed temperature-time trajectory as closely as possible. The
domain Ω is given by

Ω = {(x, y) | 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax},

and the control boundaries are given by

∂Ω1 = {(x, y) | y = 0}, and ∂Ω2 = {(x, y) | x = 0}.

The temperature distribution in Ω, as a function of time, is controlled by the heat
sources across the boundaries, represented by control functions u1(x, t) on ∂Ω1, and
u2(y, t) on ∂Ω2. The other two boundaries (x = xmax and y = ymax) are assumed
to be insulated, so that no energy flows into or out of Ω along the normals to these
boundaries. The objective is to control the temperature in the sub-domain

Ωc = {(x, y) | xc ≤ x ≤ xmax, yc ≤ y ≤ ymax}

so as to follow a specified trajectory τ(t), t ∈ [0, tmax].
We measure the difference between T (x, y, t) and τ(t) on Ωc by the function

φ(u) =

∫ tmax

0

∫ ymax

yc

∫ xmax

xc

w(x, y, t)[T (x, y, t) − τ(t)]2 dx dy dt,

where w(x, y, t) ≥ 0 is a specified weighting function. The control functions u1 and
u2 are determined so as to

minimize
u

φ(u),

subject to T (x, y, t) satisfying the following PDE, boundary conditions, and bounds

Tt = α(T )[Txx + Tyy] + S(T ), (x, y, t) ∈ Ω × [0, tmax]

T (x, 0, t) − λTy = u1(x, t), x ∈ ∂Ω1

T (0, y, t) − λTx = u2(y, t), y ∈ ∂Ω2

Tx(xmax, y, t) = 0,

Ty(x, ymax, t) = 0,

0 ≤ T (x, y, t) ≤ Tmax.

The controls u1 and u2 are also required to satisfy the bounds

0 ≤ u1, u2 ≤ umax.

The initial temperature distribution T (x, y, 0) is a specified function. The coefficient
α(T ) = λ/c(T ), where λ is the heat conduction coefficient and c(T ) is the heat
capacity. The source term S(T ) represents internal heat generation, and is given by

S(T ) = Smaxe
−β1/(β2+T )
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where Smax, β1, β2 ≥ 0 are specified nonnegative constants.

The PDE is semi-discretized in space via finite differences. A uniform rectangular
grid is constructed on the domain Ω

xi = i∆x, i = 0, 1, . . . ,m, ∆x = xmax/m

yj = j∆y, j = 0, 1, . . . , n, ∆y = ymax/n.

Then let

Tij(t) = T (xi, yj , t), u1i(t) = u1(xi, t), αij(t) = α(Tij(t)),

Sij(t) = S(Tij(t)), u2j(t) = u2(yj , t).

The PDE is then approximated in the interior of Ω by the following system of
(m− 1)(n− 1) ODEs

dTij

dt
=

αij

∆x2
[Ti−1,j − 2Tij + Ti+1,j ]

+
αij

∆y2
[Ti,j−1 − 2Tij + Ti,j+1] + Sij ,

(5.1)

for i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , n− 1. Each of the 2(m+ n) boundary points also
satisfies a differential equation similar to (5.1). These will include values outside Ω,
which are eliminated by using the boundary conditions. Specifically, we use

Ti,n+1 = Ti,n−1, i = 0, 1, . . . ,m

Tm+1,j = Tm−1,j j = 0, 1, . . . , n,

to approximate the conditions Ty = 0 and Tx = 0.

The finite-difference approximations to the boundary conditions on ∂Ω1 and ∂Ω2

are given by

Ti0 −
λ

2∆y
(Ti1 − Ti,−1) = u1i, i = 0, 1, . . . ,m(5.2a)

T0j −
λ

2∆x
(T1j − T−1,j) = u2j , j = 0, 1, . . . , n(5.2b)

These relations are used to eliminate the values Ti,−1 and T−1,j from the differential
equations (as in (5.1)), for the functions Tij on ∂Ω1 and ∂Ω2. As a result, the control
functions u1i and u2j are explicitly included in these differential equations, giving
2(m + n) additional differential equations. Together with the (m − 1)(n − 1) ODEs
given by (5.1), this gives a total of (m + 1)(n + 1) ODEs for the same number of
unknown functions Tij(t).

5.2. Solution. A numerical solution of the heat problem was calculated by
solving the semi-discretized PDE in time via DASPKSO (using RTOL = 10−6 and
ATOL = 10−6) using (1) single shooting, (2) multiple shooting, and (3) modified mul-
tiple shooting. For all cases, the PDE parameters were assumed to be constant, with
the values α = 1.0, β1 = 0.2, β2 = 0.05, λ = c = 0.5, Smax = 0.5, Tmax = 0.7. The
solutions correspond to tmax = 2.0, xmax = 0.8, ymax = 1.6, umax = 1.0, xc = 0.6, and
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yc = 0.6. Controls on the boundaries are given by

u1(x, t) =






u(t) 0 ≤ x ≤ 0.2;
(

1 −
x− 0.2

1.2

)
u(t) 0.2 ≤ x ≤ 0.8.

u2(x, t) =






u(t) 0 ≤ y ≤ 0.4;
(

1 −
y − 0.4

2.4

)
u(t) 0.4 ≤ y ≤ 1.6.

The initial conditions for states and controls are T (0) = 0, u(0) = 0.
The optimizers were started with initial guess for states and controls as constant

over the entire time interval, equal to their values at t = 0. The feasibility and
optimality tolerance for convergence were taken as 10−3 and 10−4 respectively.

For the control parameterization, the time integration interval was divided into
20 equally spaced subintervals where the control function u(t) is represented by a
quadratic polynomial

uj(t) = ūj0 + ūj1(t− tj) + ūj2(t− tj)
2.(5.3)

Continuity in time was enforced at the extremities of each control subinterval among
all uj(t) and their derivative u′j(t).

The target trajectory τ(t) was given by

τ(t) =






1.25(t− 0.2) if 0.2 < t ≤ 0.6;
0.5 if 0.6 < t ≤ 1.0;
0.5 − 0.75(t− 1.0) if 1.0 < t ≤ 1.4;
0.2 if 1.4 < t ≤ 2.0;
0 otherwise.

The weight function w(x, y, t) was taken to be 1 in the interior of Ωc, 0.5 in the
interior of the boundary lines of Ωc, 0.25 on the corners of the boundary of Ωc, and
0 elsewhere.

Performance results for the three methods on the test problem are given in Ta-
ble 5.2. This test problem has the property that the size of the optimization problem
can be increased by simply using a finer spatial grid. This readily permits the de-
pendence of solution time on problem size to be observed. Figure 5.2 shows optimal
solutions computed using single shooting for increasing mesh size. The other methods
yielded virtually indistinguishable results for this problem.

In general, the single shooting technique requires more iterations as compared
to the other techniques. During the process of obtaining optimal trajectories, we
confirmed the lack of robustness of single shooting with respect to the initial guess
and bounds on optimizing variables. For instance, the method failed to converge
unless the control was constrained to be non-negative.

For multiple shooting, the total time interval was divided into 10 equal shooting
intervals. The computation times were significant and increased rapidly as the mesh
became finer.

The modified multiple shooting has two important advantages over the other two
techniques. (1) It is more robust than single shooting with respect to initial guess,
and (2) the increase in computation time for finer mesh size (np ≪ ny) is less than
that in the case of multiple shooting.
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Problem Size Major Itns Computation Time

Mesh ny SS MS MMS SS MS MMS

4 × 4 25 12 8 12 214 141 188
4 × 8 45 14 12 13 446 577 376
8 × 8 81 7 6 15 566 1264 970
4 × 16 85 14 6 15 1132 1382 1023
8 × 16 153 15 7 20 2818 5306 3072

16 × 16 289 20 6 11 13551 24789 6283

Table 5.1

Number of iterations and CPU time (in seconds), with np = 60, for single shooting (SS),
multiple shooting (MS), and modified multiple shooting (MMS)
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Fig. 5.1. Optimal solutions for increasing mesh size. Solid line: τ(t). Dashed line: u(t).
Dash-dot lines: Tij(t) in Ωc.


