USER’S GUIDE FOR NPSOL 5.0:
A FORTRAN PACKAGE FOR
NONLINEAR PROGRAMMING

Philip E. GILL
Department of Mathematics
University of California, San Diego
La Jolla, California 92093-0112

Walter MURRAY and Michael A. SAUNDERS
Systems Optimization Laboratory
Department of EESOR
Stanford University
Stanford, California 94305-4023

Margaret H. Wright
Bell Laboratories
Lucent Technologies
Murray Hill
New Jersey 07974-0636

Technical Report SOL 86-6° Revised June 4, 2001

Abstract

NPSOL is a set of Fortran subroutines for minimizing a smooth function subject to
constraints, which may include simple bounds on the variables, linear constraints and
smooth nonlinear constraints. (NPSOL may also be used for unconstrained, bound-
constrained and linearly constrained optimization.) The user provides subroutines
to define the objective and constraint functions and (optionally) their first derivatives.
NPSOL is not intended for large sparse problems, but there is no fixed limit on problem
size.

NPSOL uses a sequential quadratic programming (SQP) algorithm, in which each
search direction is the solution of a QP subproblem. Bounds, linear constraints and
nonlinear constraints are treated separately. NPSOL requires relatively few evaluations
of the problem functions. Hence it is especially effective if the objective or constraint
functions are expensive to evaluate.

The source code for NPSOL is suitable for all scientific machines with a Fortran 77
compiler. This includes mainframes, workstations and PCs, preferably with 1MB or
more of main storage. The source code, test problems and utilities are distributed on
diskettes.

Keywords: Nonlinear programming, constrained optimization, nonlinear constraints,
SQP methods, quasi-Newton updates, Fortran software.

pgill@ucsd.edu walter@sol-walter.stanford.edu mike@sol-michael.stanford.edu
http://sdna3.ucsd.edu/~peg http://www.stanford.edu/~walter/ http://www.stanford.edu/~saunders/

*The material contained in this report is based upon research partially supported by the National Sci-
ence Foundation Grants DDM-9204208 and DDM-9204547; US Department of Energy Contract DE-FGO03-
92ER25117; and the Office of Naval Research Grant N00014-90-J-1242.

Contents

1.

10.

Purpose
Brief Description of the Algorithm
Subroutine npsol

User-Supplied Subroutines
4.1 Subroutine funobj 0L
4.2 Subroutine funcon

Printing the brief log

Advanced Features: Further Details of the SQP
6.1 Solving the QP subproblem
6.2 The merit function
6.3 The quasi-Newton update
6.4 The transformed Hessian
6.5 Treatment of simple upper and lower bounds . .

Advanced Features: User-Supplied Subroutines
7.1 Subroutine funobj
7.2 Subroutine funcon
7.3 Constant Jacobian elements

Advanced Features: Optional Input Parameters
8.1 Description of the optional parameters
8.2 Optional parameter checklist and default values

Advanced Features: Printing Details of a Run

9.1 The full log of the major iterations
9.2 Printing the solution of NP
9.3 Printing details of the minor iterations.
9.4 Interpretation of the output

Advanced Features: A Sample Problem
10.1 The brief log from the sample problem

Method

11

13
13
14
14
15
15

17
17
18
19

20
22
29

31
31
32
34
36

40

1. Purpose 1

1. Purpose

NPSOL is a collection of Fortran 77 subroutines for solving the nonlinear programming
problem: minimize an objective function subject to a set of constraints. The problem is
assumed to be stated in the form

NP minimize f(x)
x
subject to ¢ <r(z) < u, r(z)=| Az |,

c(x)

where z is a set of variables, f(x) is a nonlinear function, A is an m; x n matrix, and c(z)
is an my-vector of nonlinear functions. (The matrix A and the vector ¢(z) may be empty.)
The functions f(x) and c(x) are assumed to be smooth, i.e., at least twice-continuously
differentiable. (NPSOL will usually succeed if there are only isolated discontinuities away
from the solution.)

Note that upper and lower bounds must be specified for all variables and constraints.
This form allows full generality in specifying various types of constraint. In particular, the
jth constraint may be defined as an equality by setting ¢; = u;. If certain bounds are not
present, the associated elements of £ or u may be set to special values that are treated as
—00 Or +00.

Figure 1 illustrates the feasible region for the jth pair of constraints ¢; < r;(z) < u;.
The quantity § is the feasibility tolerance, which can be set by the user (see §8.1). The
constraints ¢; < r; < u; are considered “satisfied” if r; lies in Regions 2, 3 or 4, and
“inactive” if r; lies in Region 3. The constraint r; > ¢; is considered “active” in Region 2,
and “violated” in Region 1. Similarly, 7; < u; is active in Region 4, and violated in Region 5.
For equality constraints (¢; = u;), Regions 2 and 4 are the same and Region 3 is empty.

o '® 3 HONENG)
s a5/ i

Ej Uj ’l“j(SL‘)

Figure 1: Illustration of the constraints ¢; < rj(x) < uj. The bounds ¢; and u; are
considered “satisfied” if r;(x) lies in Regions 2, 3 or 4, where ¢ is the feasibility tolerance.
The constraints r;(z) > ¢; and r;(z) < u; are both considered “inactive” if r;(x) lies in
Region 3.

The data A, ¢, u, and an initial value of x are supplied as parameters to NPSOL. The
functions f(x), ¢(x) are defined by subroutines, which should also define as many first partial
derivatives as possible. Unspecified derivatives are approximated by finite differences.

NPSOL provides certain advanced features for the sophisticated user.

e Certain optional parameters can be set by the user (see §8.1). For example, the user
can alter the convergence tolerances or control the amount of printed output. The
default values of these parameters need not be set by the user.

e Not all derivatives need to be supplied. NPSOL will use finite-difference estimates
of any derivatives that are not supplied by the user; see the optional parameter
“Derivative level” in §8.1.

2 User’s Guide for NPSOL

e Constant derivatives can be specified once and for all at the start of the minimization.

e Facilities are provided to check whether the user-provided gradients appear to be
correct (see the optional parameter “Verify” in §8.1). In general, the check is provided
at the first point that is feasible with respect to the linear constraints and bounds.
However, the user may request that the check be performed at the initial point.

If there are no nonlinear constraints in NP and f is linear or quadratic, the LSSOL
package (Gill et al. , [GHM'86]) will generally be more efficient than NPSOL. If the problem
is large and sparse, other packages such as MINOS (Murtagh and Saunders, [MS93]) may be
more efficient, since NPSOL treats all matrices as dense. However, NPSOL requires relatively
few evaluations of the problem functions. Hence it is especially effective if f and ¢ (or their
gradients) are expensive to evaluate.

NPSOL makes use of LSSOL, which may be called directly. The source code for NPSOL
(including LSSOL) is approximately 23,000 lines of ANSI (1977) Standard Fortran, of which
about 50% are comments. If there are n variables and m general constraints (linear or
nonlinear), the total storage required is approximately 24n(n + m) Kbytes.

2. Brief Description of the Algorithm 3

2. Brief Description of the Algorithm

Here we briefly summarize the main features of the method of NPSOL. Where possible,
explicit reference is made to the names of variables that are parameters of subroutine NPSOL
or appear in the printed output. For more details, the interested reader is refered to §6. For
an overview of SQP methods, see, for example, Fletcher [Fle81], Gill, Murray and Wright
[GMW381] and Powell [Pow83].

Let g(x) denote the gradient vector of first derivatives of the objective function: g,(x) =
Of(x)/0z;. Similarly, let J(z) denote the Jacobian matrix of first derivatives of r(z), i.e.,
Jij(z) = Ori(x)/0x;. A feasible point x satisfies the first-order conditions for optimality for
NP if the following conditions hold:

1. there exists a vector of Lagrange multipliers A such that the gradient of the Lagrangian
f(x) — M'r(x) is zero, i.e.,
g(x) = J(x)T A (2.1)

2. The Lagrange multiplier A\; associated with the jth constraint satisfies A\; = 0 if
i <ri(z) <uj; Aj >0if l; =rj(x); Aj <0if rj(x) = u;; and A; can have any value
if gj = Uj.

The method of NPSOL is a sequential quadratic programming (SQP) method. The basic
structure of an SQP method involves major and minor iterations. The major iterations
generate a sequence of iterates that is intended to converge to a point satisfying the first-
order conditions for optimality. (For simplicity, we shall always consider a typical iteration
and avoid reference to the index of the iteration.) Each new iterate Z is defined by

T =2x+ap, (2.2)

where the step length « is a non-negative scalar, and p is called the search direction. The
search direction is the solution of the quadratic program

minimize f(x) + g(x)Tp + %PTHP
pER™

subject to £ < r(x)+ J(x)p < u,

where H a positive-definite quasi-Newton approximation to the Hessian of the Lagrangian.
In NPSOL, the QP subproblem is solved using subroutines from the LSSOL package (Gill
et al. [GHM™86]). Since solving a quadratic program is itself an iterative procedure, the
minor iterations of NPSOL are the iterations of LSSOL.

Once p has been computed, the major iteration proceeds by determining a step length
a that produces a “sufficient decrease” in an augmented Lagrangian merit function that
measures the quality of each iterate. Finally, the approximate Hessian H is updated to
incorporate new curvature information obtained in the move from z to z.

On entry to NPSOL, an iterative procedure from the LSSOL package is executed, start-
ing with the user-provided initial point, to find a point that is feasible with respect to the
bounds and linear constraints. If no feasible point exists for the bound and linear con-
straints, NP has no solution and NPSOL terminates. Otherwise, the problem functions will
thereafter be evaluated only at points that are feasible with respect to the bounds and lin-
ear constraints. The only exception involves variables whose bounds differ by an amount
comparable to the finite-difference interval (see the discussion of the optional parameter
“Difference Interval” in §8.1). In contrast to the bounds and linear constraints, it must
be emphasized that the nonlinear constraints will not generally be satisfied until an optimal
point is reached.

4 User’s Guide for NPSOL

The working set

The working set is an important quantity for both the major and the minor iterations. The
working set comprises a set of m,, constraints whose gradients are used to define the current
search direction and Lagrange multipliers. As a solution is approached, the constraints in
the working set become satisfied with equality. A working-set constraint can correspond to
a simple-bound constraint, a linear constraint, or a linearized nonlinear constraint.

An important feature of constraints in the working set is that their gradients are linearly
independent. The gradients form the rows of the working-set matriz W, an m,, x n full-
rank submatrix of the Jacobian. Let the columns of the n x (n — n,,) matrix Z define a
basis for the null space of W, so that WZ = 0. For any function with gradient g and
Hessian H, the quantities Z7g and ZTHZ are known as the reduced gradient and reduced
Hessian respectively. Under a suitable constraint regularity assumptions that usually hold
in practice, the reduced gradient of the Lagrangian must be zero at a point satisfying the
first-order optimality conditions. The values Nz and Norm Gz printed by NPSOL give n,
(nz =n — m,) and the norm of Z7g.

During minor iterations, the working set is updated iteratively and is used to define a
descent direction for the QP objective function. The final working set for the QP subproblem
suggests a working set for the next constraint linearization. It may need to be altered to
ensure an appropriate full rank W. The resulting independent working set is then used
to start the next subproblem. In practice, this usually allows the subproblems to become
optimal in only one iteration as a solution is approached. The numbers of bounds, general
linear and nonlinear constraints in the final QP working set are the quantities Bnd, Lin and
Nln in the printed output of NPSOL.)

8. Subroutine npsol 5

3. Subroutine npsol

Problem NP is solved by a call to subroutine npsol, whose parameters are defined here.
Several optional parameters in NPSOL define choices in the problem specification or the
form of the algorithm. In order to reduce the number of formal parameters of NPSOL, these
optional parameters have associated default values that are appropriate for most problems.
The user may assign a value to an optional parameter by using a statement of the form
“parameter = value”, which can appear either in a user-supplied file of options, or as the
argument of the subroutine npoptn supplied with NPSOL. For example, the tolerance § that
determines whether or not a constraint is feasible can be altered using a statement of the
form feasibility tolerance = 1.0e-5. The user needs to specify only those optional
parameters whose values are to be different from their default values. §8.1, which concerns
the assignment of the default parameters, can be skipped by users who wish to use the
default values for all optional parameters.

In the following specifications, we define nctotl = n + nclin + ncnln. Note that most
machines use double precision declarations as shown, but some machines use real. The
same applies to the user routines funcon and funobj.

subroutine npsol (n, nclin, ncnln, 1dA, 1dJ, 1dR,

$ A, bl, bu,

$ funcon, funobj,

$ inform, iter, istate,

$ c, cJac, clamda, f, g, R, x,

$ iw, leniw, w, lenw)
external funcon, funobj
integer n, nclin, ncnln, 1dA, 1d4J, 1dR
integer inform, iter, leniw, lenw
integer istate(n+nclin+ncnln)
integer iw(leniw)

double precision f

double precision A(1dA,*), bl(n+nclin+ncnln), bu(n+nclin+ncnln)
double precision c(*x), cJac(1ldJ,*), clamda(n+nclin+ncnln)
double precision g(n), R(1dR,*), x(n)

double precision w(lenw)

On entry:
n (> 0) is n, the number of variables in the problem.
nclin (> 0) is my, the number of general linear constraints.

ncnln (> 0) is my, the number of nonlinear constraints.

14J

(=
(=
1dA (> 1 and > nclin) is the row dimension of the array A.
(> 1 and > ncnln) is the row dimension of the array cJac.
(=

1dR n) is the row dimension of the array R.

A is an array of dimension (1dA,k) for some k > n. It contains the matrix A for the
linear constraints. If nclin is zero, A is not referenced. (In that case, A may be
dimensioned (1dA,1) with 1dA = 1, or it could be any convenient array.)

bl is an array of dimension at least nctotl that contains ¢, the lower bounds for r(x)
in problem NP. To specify a non-existent lower bound ({; = —o0), set bl(j) <

User’s Guide for NPSOL

bu

funcon

funobj

istate

cJac

clamda

—bigbnd, where bigbnd is the Infinite Bound, whose default value is 10?°. To
specify an equality constraint (say r;j(x) =), set bl(j) = bu(j) = 5, where
|8] < bigbnd.

is an array of dimension at least nctotl that contains u, the upper bounds for r(z) in
problem NP. To specify a non-existent upper bound (u; = 00), set bu(j) > bigbnd.
For the data to be meaningful, it is required that b1(j) < bu(j) for all j.

is the name of a subroutine that calculates the vector ¢(z) of nonlinear constraint
functions and (optionally) its Jacobian for a specified n-vector z. funcon must be
declared as external in the routine that calls NPSOL. For a detailed description of
funcon, see §7.2.

is the name of a subroutine that calculates the objective function f(z) and (option-
ally) its gradient for a specified n-vector x. funobj must be declared as external
in the routine that calls NPSOL. For a detailed description of funobj, see §7.1.

is an integer array of dimension at least nctotl. It need not be initialized if NPSOL
is called with a Cold Start (the default option).

For a Warm start, istate must be set. If NPSOL has just been called on a prob-
lem with the same dimensions, istate already contains valid values. Otherwise,
istate(y) should indicate whether either of the constraints r;(z) > ¢; or r;(x) < u;
is expected to be active at a solution of NP.

The ordering of istate is the same as for b1, bu and r(z), i.e., the first n components
of istate refer to the upper and lower bounds on the variables, the next nclin
refer to the bounds on Az, and the last ncnln refer to the bounds on ¢(z). Possible
values for istate(j) follow.

0 Neither 7;(x) > ¢; nor r;(z) < u; is expected to be active.

1 rj(x) > £; is expected to be active.

2 rj(z) < wu; is expected to be active.

3 This may be used if £; = u;. Normally an equality constraint r;(z) = ¢; = u;
is active at a solution.

The values 1, 2 or 3 all have the same effect when bl(j) = bu(j). If necessary,
NPSOL will override the user’s specification of istate, so that a poor choice will
not cause the algorithm to fail.

is an array of dimension (1dJ,k) for some £ > n. If ncnln = 0, cJac is not
referenced. (In that case, cJac may be dimensioned (1dJ,1) with 1dJ = 1.)

In general, cJac need not be initialized before the call to NPSOL. However, if
Derivative level is 3, any constant elements of cJac may be initialized. Such
elements need not be reassigned on subsequent calls to funcon (see §7.3).

is an array of dimension at least nctotl. It need not be initialized if NPSOL is
called with a Cold start (the default).

The ordering of clamda is the same as for bl, bu and istate. For a Warm start,
the components of clamda corresponding to nonlinear constraints must contain a
multiplier estimate. The sign of each multiplier should match istate as follows. If
the ith nonlinear constraint is defined as “inactive” via the initial value istate(j) =
0, j = n+nclin + 4, then clamda(j) should be zero. If the constraint r;(z) > ¢;
is active (istate(j) = 1), clamda(j) should be non-negative, and if r;(z) < u, is
active (istate(j) = 2), clamda(j) should be non-positive.

If necessary, NPSOL will change clamda to match these rules.

8. Subroutine npsol 7

iw

leniw

lenw

is an array of dimension (1dR,k) for some £ > n. R need not be initialized if
NPSOL is called with a Cold Start (the default), and will be taken as the identity.
For a Warm Start, R provides the upper-triangular Cholesky factor of the initial
approximation of the Hessian of the Lagrangian. The subdiagonal elements of R
need not be assigned.

is an array of dimension at least n. It contains an initial estimate of the solution.
is an integer array of dimension leniw that provides integer workspace for NPSOL.
is the dimension of iw. It must be at least 3n + nclin + 2ncnln.

is an array of dimension lenw that provides real workspace for NPSOL.

is the dimension of w. If there are no general linear constraints and no nonlinear
constraints (nclin = 0 and ncnln = 0), lenw must be at least 20n. If there are
no nonlinear constraints (ncnln = 0), lenw must be at least 2n? +20n + 11nclin.
Otherwise, lenw must be at least 2n% + n*nclin + 2n*ncnln + 20n + 11nclin +
21ncnln.

If Major print level is positive, the required amounts of workspace are printed.
Thus, appropriate values may be obtained from a preliminary run with Major print
level > 0 and leniw = lenw = 1. (The values will be printed before NPSOL
terminates with inform = 9.)

On exit:

inform reports the result of the call to NPSOL. (If Major print level > 0, a short de-

iter

scription of inform is printed.) The possible values of inform follow.

< 0 Either funcon or funobj has set mode to this negative value (see §4).

0 The iterates have converged to a point x that satisfies the optimality con-
ditions to the accuracy requested by the Linear feasibility tolerance,
the Nonlinear feasibility tolerance, and the Optimality tolerance.
That is, the active constraint residuals and the reduced gradient are negligible
at x.

1 The final iterate x satisfies the optimality conditions to the accuracy re-
quested, but the sequence of iterates has not yet converged. NPSOL was
terminated because no further improvement could be made in the merit func-
tion.

2 The linear constraints and bounds could not be satisfied. The problem has
no feasible solution. See §9.4 for further comments.

3 The nonlinear constraints could not be satisfied. The problem may have no
feasible solution. See §9.4 for further comments.

The Major iteration limit was reached.

x does not satisfy the first-order optimality conditions to the required accu-
racy, and no improved point for the merit function could be found during the
final linesearch.

7 The function derivatives returned by funcon or funobj appear to be incor-
rect.
9 An input parameter was invalid.

is the number of major iterations performed.

8 User’s Guide for NPSOL

istate describes the status of the constraints ¢ < r(z) < u in problem NP. For the jth
lower or upper bound, j = 1 to nctotl, the possible values of istate(j) are as
follows (see Figure 1). ¢ is the appropriate feasibility tolerance.

—2 (Region 1) The lower bound is violated by more than 0.
—1 (Region 5) The upper bound is violated by more than J.
0 (Region 3) Both bounds are satisfied by more than 0.
1 (Region 2) The lower bound is active (to within ¢).
2 (Region 4) The upper bound is active (to within 4).
3 (Region 2 = Region 4) The bounds are equal and the equality constraint is
satisfied (to within 0).
These values of istate are labeled in the printed solution according to the table in
Figure 2.
| Region | 1 2 3 4 5 2=4 |
istate(j) -2 1 0 2 -1 3
Printed solution | -=-= LL FR UL ++ EQ
Figure 2: Labels used in the printed solution for the regions of Figure 1.

c is an array of dimension at least ncnln. If ncnln = 0, ¢ is not accessed, and
may then be declared to be of dimension (1), or the actual parameter may be
any convenient array. If ncnln is nonzero, ¢ contains the values of the nonlinear
constraint functions ¢;, ¢+ = 1 to ncnln, at the final iterate.

cJac contains the Jacobian matrix of the nonlinear constraints at the final iterate, i.e.,
cJac(i, j) contains the partial derivative of the ith constraint function with respect
to the jth variable, i = 1 to ncnln, j = 1 to n. (See the discussion of cJac under
funcon in §7.2.)

clamda contains the QP multipliers from the last QP subproblem. clamda(j) should be
non-negative if istate(j) = 1 and non-positive if istate(j) = 2.

f is the value of the objective f(x) at the final iterate.

g is an array of dimension at least n that contains the objective gradient (or its
finite-difference approximation) at the final iterate.

R contains information about H, the Hessian of the Lagrangian. If Hessian = Yes, R
is the upper-triangular Cholesky factor of an approximation to H, with the variables
in natural order. If Hessian = No (the default), R contains the upper-triangular
factor of QTHQ), an estimate of the transformed Hessian of the Lagrangian at x (see
(6.10) in §6).

X contains the final estimate of the solution.

4. User-Supplied Subroutines 9

4. User-Supplied Subroutines

The user must provide subroutines that define the objective function and nonlinear con-
straints. The objective function is defined by subroutine funobj, and the nonlinear con-
straints are defined by subroutine funcon. On every call, these subroutines must return
appropriate values of the objective and nonlinear constraints in £ and c.

For maximum reliability, it is preferable for the user to provide all partial derivatives.
If it is not possible to provide all gradients, see §7.

While developing the subroutines funobj and funcon, the Verify parameter (see §8.1)
should be used to check the calculation of any known gradients.

4.1. Subroutine funobj

This subroutine must calculate the objective function f(x) and (optionally) the gradient
g(x). The specification of funobj is

subroutine funobj(mode, n, x, f, g, nstate)
integer mode, n, nstate

double precision f

double precision x(n), g(n)

On entry:
mode can be ignored if the default derivative level is being used.

n (> 0) is the number of variables, i.e., the dimension of x. The actual parameter n
will always be the same Fortran variable as that input to NPSOL, and must not be
altered by funobj.

X is an array of dimension at least n containing the values of the variables x for which
f must be evaluated. The array x must not be altered by funobj.

nstate can be ignored by the unsophisticated user.

On exit:

mode can be used to end the solution of the current problem. If mode is set to a negative
value, npsol will be terminated.

f must contain the computed value of f(z).

g must contain the components of the gradient vector g(z), i.e., g(j) contains the
partial derivative 9f/0z;.

4.2. Subroutine funcon

This subroutine must compute the nonlinear constraint functions ¢(z) and (optionally) their
gradients. (A dummy subroutine funcon must be provided if all constraints are linear.) The
ith row of the Jacobian matrix cJac is the vector Ve; = (0c¢;/0x1,0¢; /02, ..., Oc;/0x,)T.
The specification of funcon is

subroutine funcon(mode, ncnln, n, 1d4J,

$ needc, x, c, cJac, nstate)
integer mode, ncnln, n, 1dJ, nstate
integer needc (*)

double precision x(n), c(*), cJac(ldJ,*)

10 User’s Guide for NPSOL

On entry:

mode can be ignored if the default derivative level is being used.

ncnln is the number of nonlinear constraints, i.e., the dimension of c¢. The actual param-
eter ncnln is the same Fortran variable as that input to NPSOL, and must not be
altered by funcon.

n (> 0) is the number of variables, i.e., the dimension of x. The actual parameter n
is the same Fortran variable as that input to NPSOL, and must not be altered by
funcon.

14J (> 1 and > ncnln) is the leading dimension of the array cJac.

needc can be ignored by the unsophisticated user.

X is an array of dimension at least n containing the values of the variables x for which

the constraints must be evaluated. x must not be altered by funcon.

nstate has the same meaning as for funobj.

On exit:

mode

cJac

can be used to end the solution of the current problem. If mode is set to a negative
value, npsol will be terminated.

is an array of dimension at least ncnln that contains the appropriate values of the
nonlinear constraints. The value of the ith constraint at x must be stored in ¢(4).

is an array of declared dimension (1dJ,k), where k£ > n. It contains the elements
of the Jacobian evaluated at x.

5. Printing the brief log 11

5. Printing the brief log

The default is for a line of information to be sent to the summary file at the end of each
major iteration. (The amount of printed output from NPSOL can be controlled by the user.
See the descriptions of Major print level and Minor print level in §8.1).

Majr

Minr

Step

Fun

Merit

Norm gZ

Violtn

nZ

Penalty

Conv

is the major iteration count.

is the number of iterations required by both the feasibility and optimality phases
of the QP subproblem. Generally, Minr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see §2).

Note that Minr may be greater than the Minor iteration limit if some itera-
tions are required for the feasibility phase.

is the step taken along the search direction. On reasonably well-behaved problems,
the unit step will be taken as the solution is approached.

is the cumulative number of evaluations of the objective function needed for the line
search. Evaluations needed for the estimation of the gradients by finite differences
are not included. Fun is printed as a guide to the amount of work required for the
line search.

is the value of the augmented Lagrangian merit function (6.5). This function
will decrease at each iteration unless it was necessary to increase the penalty
parameters (see §6.2). As the solution is approached, Merit will converge to the
value of the objective at the solution.

If the QP subproblem does not have a feasible point (signified by “i” at the end
of the current output line), the merit function is a large multiple of the constraint
violations, weighted by the penalty parameters. During a sequence of major it-
erations with infeasible subproblems, the sequence of Merit values will decrease
monotonically until either a feasible subproblem is obtained or NPSOL terminates
with inform = 3 (no feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., ncnln = 0), this entry contains
Objective, the value of the objective f(x). In this case, the objective will de-
crease monotonically to its optimal value.

is || Z%g||, the Euclidean norm of the reduced gradient (see §6.1). Norm gZ will be
approximately zero in the neighborhood of a solution.

is the Euclidean (i.e., two-) norm of the residuals of constraints that are either
violated or are in the working set. (This entry is not printed if ncnln is zero).
Violtn will be approximately zero in the neighborhood of a solution.

is the number of columns of Z (see §6.1). The value of nZ is the number of variables
less the number of constraints in the working set.

is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if ncnln is zero).

is a three-letter indication of the status of the three convergence tests (8.1) and

8.2a-b) defined in the description of the optional parameter Optimality Tolerance
in §8.1. Each letter is “T” if the test is satisfied, and “F” otherwise. The three

tests indicate whether: (a) the sequence of iterates has converged; (b) the re-

duced gradient (Norm gZ) is sufficiently small; and (c) the norm of the residuals

of constraints in the working set is small enough.

12

User’s Guide for NPSOL

If any of these indicators is “F” when NPSOL terminates with inform = 0, the
user should check the solution carefully.

is printed if central differences have been used to compute the unspecified objec-
tive and constraint gradients. If the value of Step is zero, the switch to central
differences was made because no lower point could be found in the line search. (In
this case, the QP subproblem is re-solved with the central-difference gradient and
Jacobian.) If the value of Step is non-zero, central differences were computed be-
cause Norm gZ and Violtn imply that x is close to a point satisfying the first-order
optimality conditions.

is printed if the line search has produced a relative change in x greater than
the value defined by the optional parameter Step limit. If this output occurs
frequently during later iterations of the run, Step limit should be set to a larger
value.

is printed if the QP subproblem has no feasible point.
is printed if the quasi-Newton update has been modified to ensure that the Hessian
approximation is positive-definite (see §6.3).

is printed if the approximate Hessian has been refactorized. If the diagonal condi-
tion estimator of R indicates that the approximate Hessian is badly conditioned,
the approximate Hessian is refactorized using column interchanges. If necessary,
R is modified so that its diagonal condition estimator is bounded.

6. Advanced Features: Further Details of the SQP Method 13

6. Advanced Features: Further Details of the SQP Method

The brief description of §2 can be summarized as follows. NPSOL first determines a point
that satisfies the bound and linear constraints. Thereafter, each iteration includes: (a)
the solution of a quadratic programming subproblem; (b) a line search with an augmented
Lagrangian merit function; and (c¢) a quasi-Newton update of the approximate Hessian of
the Lagrangian function. These three procedures are described in more detail in the next
three subsections.

6.1. Solving the QP subproblem
Let zg denote the iterate at the start of a typical major iteration. The search direction p is
the vector Z — x, where Z is the solution of the quadratic program

miréiﬂrgze f(@o) + g(zo) (x — xo) + 3(x — x0)"H(x — x0)

6.1
subject to < r(xg) + J(xo)(z — xp) < u, (6-1)

with H a positive-definite quasi-Newton approximation to the Hessian of the Lagrangian.
This QP is solved using subroutines from the LSSOL package (Gill et al. [GHM™86]), which
was specifically designed to be used within an SQP algorithm for nonlinear programming.
The method of LSSOL is a two-phase (primal) quadratic programming method. In phase 1
(the feasibility phase), a feasible point for the constraints is found by minimizing the sum
of infeasibilities. In phase 2 (the optimality phase), the quadratic objective function is min-
imized within the feasible region. It is convenient, both conceptually and computationally,
to regard the phase 1 and phase 2 iterates as part of a single sequence in which the objective
function can change from the sum of infeasibilities to the quadratic objective. If x is any
member of this sequence, the next iterate is

T=x+od, (6.2)

where o is a non-negative step length and d is a search direction. At each x, the constraints
in the working set are satisfied exactly and the direction d is constructed so that the values
of constraints in the working set remain unaltered for any move along d. This implies that

Wd =0, or, equivalently, d= Zd, for some d, (6.3)

where W is the working-set matrix and Z is the matrix associated with the T'Q factorization
(6.8) of W.

The definition of d, in (6.3) depends on whether the current x is feasible for the QP
constraints. If not, d, is the negative reduced gradient —Z7g, where g is the gradient of the
sum of the infeasibilities at x. If = is feasible, d, satisfies the equations

z'Hzd, = -7"g, (6.4)

where ZTHZ and Z7g are the reduced Hessian and reduced gradient of the quadratic (6.1).
With (6.4), z + d is the minimizer of the quadratic objective subject to treating the con-
straints in the working set as equalities.

Whatever the definition of g, if Z7g is zero, the current point is a constrained stationary
point in the subspace defined by the working set. In phase 1, the reduced gradient will
usually be zero only at a vertex (although it may vanish at non-vertices in the presence
of constraint dependencies). In phase 2, a zero reduced gradient implies that = minimizes
the quadratic objective function when the constraints in the working set are treated as
equalities. In either case, Lagrange multipliers are computed and the Lagrange multiplier

14 User’s Guide for NPSOL

m; is said to be optimal if m; > 0. If any multiplier is non-optimal, the current objective
function (either the true objective or the sum of infeasibilities) can be reduced by deleting
the corresponding constraint from the working set.

The choice of step length o (6.2) is based on remaining feasible with respect to the
satisfied constraints. In phase 2, if « + d is feasible, o is taken as one. (In this case, the
reduced gradient at x+d is zero.) Otherwise, o is set to the step to the “nearest” constraint,
which is added to the working set.

6.2. The merit function

After computing the search direction as described in §6.1, each major iteration proceeds by
determining a step length « in (2.2) that produces a “sufficient decrease” in the augmented
Lagrangian merit function

2

Lz, A 8) = f(z) - Z Ai (Cz‘(ﬂﬁ) - 51’) =+ % sz‘ (Ci(z) - Sz)) (6.5)

where z, A and s vary during the line search. The summation terms in (6.5) involve only
the nonlinear constraints. The vector A is an estimate of the Lagrange multipliers for the
nonlinear constraints of NP. The non-negative slack variables {s;} allow nonlinear inequal-
ity constraints to be treated without introducing discontinuities. The solution of the QP
subproblem (6.1) provides a vector triple that serves as a direction of search for the three
sets of variables. The non-negative vector p of penalty parameters is initialized to zero at
the beginning of the first major iteration. Thereafter, selected components are increased
whenever necessary to ensure descent for the merit function. Thus, the sequence of norms
of p (the printed quantity “Penalty”; see §5) is generally non-decreasing, although each p;
may be reduced a limited number of times.

The merit function (6.5) and its global convergence properties are described in Gill et
al. [GMSW92]).

6.3. The quasi-Newton update

The matrix H in (6.1) is a positive-definite quasi-Newton approximation to the Hessian of
the Lagrangian function. (For a review of quasi-Newton methods, see Dennis and Schnabel
[DS83].) At the end of each major iteration, a new Hessian approximation H is defined as
a rank-two modification of H. In NPSOL, the BFGS quasi-Newton update is used:

H=H-

1 1
TH: HssTH + %ny, (6.6)
where s = £ — x (the change in).

In NPSOL, H is required to be positive definite. If H is positive definite, H as defined
by (6.6) will be positive definite if and only if y”s is positive (see, e.g., Dennis and Moré
[DM77]). Ideally, y in (6.6) would be taken as y,, the change in gradient of the Lagrangian
function

yo = g(7) — J(@) T — g(2) + J (&), (6.7)

where 7y denotes the QP multipliers associated with the nonlinear constraints of the original
problem. If y7s is not sufficiently positive, an attempt is made to perform the update with
a vector y of the form

y =y + J(@)" 2e(z) = J(2)" 2e(x),

where {2 is a diagonal matrix with nonnegative entries. If no such vector can be found, the
update is performed with a scaled g ; in this case, “m” is printed to indicate that the update
was modified.

6. Advanced Features: Further Details of the SQP Method 15

6.4. The transformed Hessian

NPSOL is sometimes known as a transformed Hessian method because a certain transformed
Hessian is stored and updated instead of the Hessian itself. Given any working-set matrix
W, the transformation for the Hessian is based on the T'Q factorization

wQ=(0 T), (6.8)

where T is a nonsingular m,, X m,, reverse-triangular matrix (i.e., t;; = 0 if ¢ > j), and the
non-singular 7 X n matrix @ is the product of orthogonal transformations (see Gill et al.
[GMSW84]). If the columns of @ are partitioned to match the zero and nonzero blocks of
W@, then

Q-(z v). (6.9)

and the ny (ny =n — my,) columns of Z form the requisite basis for the null space of W.

The nonsingular matrix) defines a transformation of variables z = Qz,. For any
function with gradient g and Hessian H, the gradient and Hessian with respect to the
transformed variables are given by

gQ:QTga and HQ:QTHQ7

which are known as the transformed gradient and transformed Hessian respectively. From
(6.9), these derivatives may be partitioned as

AL and H ZTHZ ZTHY
= 11 = .
Jo =\ y1y, *“\ vtuz vroy
It follows that the reduced gradient and reduced Hessian are obtained as part of the trans-
formed gradient and transformed Hessian. The upper-triangular Cholesky factor of H,
satisfies
RTR =QTHQ. (6.10)

The form of @ (6.9) implies that the Cholesky factor of the reduced Hessian Z7H Z is simply
the upper left corner of R.

During minor iterations, the matrices T',) and R are updated to reflect changes in W.
(In phase 2, the vector Qg is also updated.) Since @ and R are known for each working
set, the Hessian need not be stored explicitly.

Given any nonsingular matrix @, the BFGS update to H implies the following update

to QTHQ: .

sLHgs,
where H, = QTHQ, H, = QTHQ, y, = QTy and s, = Q~'s. This update may be
expressed as a rank-one update to the Cholesky factor R of QT HQ (see Goldfarb [Gol76],
Dennis and Schnabel [DS81]).

- 1
H,=H, — HososhHg + yT—syng, (6.11)

Q°Q

6.5. Treatment of simple upper and lower bounds

NPSOL deals specially with bound constraints £ < x < u. The presence of a bound constraint
in the working set has the effect of fixing the corresponding component of the search direction
to zero. Thus, the associated variable is fized, and specification of the working set induces a
partition of x into fized and free variables. For some permutation P, the working-set matrix

satisfies
F N
Wp:<)
Iy

16 User’s Guide for NPSOL

where (F N) is part of the matrix A, and I, corresponds to some of the bounds. The
matrices F' and N contain the free and fixed columns of the general constraints in the
working set. A T'Q factorization FQr = (0 T,) of the smaller matrix F' provides the
required 7" and @ as follows:

_ Qr [T+ N
o) ()

The matrix @ is implemented as a dense orthogonal matrix. Each change in the working
set leads to a simple change to F': if the status of a general constraint changes, a row of F
is altered; if a bound constraint enters or leaves the working set, a column of F' changes.
The matrices Ty, @, and R are held explicitly; together with the vectors Q7g, and Q7c.
Products of plane rotations are used to update QJ» and T as the working set changes.
The triangular factor R associated with the reduced Hessian is only updated during the
optimality phase.

7. Advanced Features: User-Supplied Subroutines 17

7. Advanced Features: User-Supplied Subroutines

The user must provide subroutines that define the objective function and nonlinear con-
straints. The objective function is defined by subroutine funobj, and the nonlinear con-
straints are defined by subroutine funcon. On every call, these subroutines must return
appropriate values of the objective and nonlinear constraints in f and c. The user should
also provide the available partial derivatives. Any unspecified derivatives are approximated
by finite differences; see §8.1 for a discussion of the optional parameter Derivative level.
Just before either funobj or funcon is called, each element of the current gradient array g
or cJac is initialized to a special value. On exit, any element that retains the given value is
estimated by finite differences.

For maximum reliability, it is preferable for the user to provide all partial derivatives
(see Chapter 8 of Gill, Murray and Wright [GMWS81], for a detailed discussion). If all
gradients cannot be provided, it is similarly advisable to provide as many as possible. While
developing the subroutines funobj and funcon, the Verify parameter (see §8.1) should be
used to check the calculation of any known gradients.

7.1. Subroutine funobj

This subroutine must calculate the objective function f(z) and (optionally) the gradient
g(z). The specification of funobj is

subroutine funobj(mode, n, x, f, g, nstate)
integer mode, n, nstate

double precision f

double precision x(n), g(n)

On entry:

mode (> 0and < 2)is set by NPSOL to indicate which values are to be assigned during the
call of funobj. mode will always have the value 2 if all components of the objective
gradient are specified by the user, i.e., if Derivative level is either 1 or 3. If some
gradient elements are unspecified, NPSOL will call funobj with mode = 0, 1 or 2.

e If mode = 2, assign f and the known components of g.
e If mode = 1, assign all available components of g; £ is not required.
e If mode = 0, only £ needs to be assigned; g is ignored.
n (> 0) is the number of variables, i.e., the dimension of x. The actual parameter n

will always be the same Fortran variable as that input to NPSOL, and must not be
altered by funobj.

X is an array of dimension at least n containing the values of the variables x for which
f must be evaluated. The array x must not be altered by funobj.

nstate allows the user to save computation time if certain data must be read or calculated
only once. If nstate = 1, NPSOL is calling funobj for the first time. If there
are nonlinear constraints, the first call to funcon will occur before the first call to
funobj.

On exit:

mode can be used to end the solution of the current problem. If mode is set to a negative
value, NPSOL will be terminated.

18 User’s Guide for NPSOL
f must contain the computed value of f(z).
g must contain the assigned components of the gradient vector g(z), i.e., g(j) contains

the partial derivative 0f/0z;.

7.2. Subroutine funcon

This subroutine must compute the nonlinear constraint functions ¢(x) and (optionally) their
gradients. (A dummy subroutine funcon must be provided if all constraints are linear.) The
ith row of the Jacobian matrix cJac is the vector Ve; = (0c¢;/0x1,0¢; /0, ..., Oc;/0x,)T.
The specification of funcon is

$

subroutine funcon(mode, ncnln, n, 14J,

needc, x, ¢, cJac, nstate)
integer mode, ncnln, n, 1dJ, nstate
integer needc ()

double precision x(n), c(*), cJac(ldJ,*)

On entry:

mode

ncnln

1dJ

needc

nstate

is set by NPSOL to indicate the values that must be assigned during each call
of funcon. mode will always have the value 2 if all elements of the Jacobian are
available, i.e., if Derivative level is either 2 or 3 (see §8.1). If some elements of
cJac are unspecified, NPSOL will call funcon with mode =0, 1, or 2:

e If mode = 2, only the elements of ¢ corresponding to positive values of needc
need to be set (and similarly for the available components of the rows of cJac).

e If mode = 1, the available components of the rows of cJac corresponding to
positive values in needc must be set. Other rows of cJac and the array ¢ will
be ignored.

e If mode = 0, the components of ¢ corresponding to positive values in needc
must be set. Other components and the array cJac are ignored.

is the number of nonlinear constraints, i.e., the dimension of c. The actual param-
eter ncnln is the same Fortran variable as that input to NPSOL, and must not be
altered by funcon.

(> 0) is the number of variables, i.e., the dimension of x. The actual parameter n
is the same Fortran variable as that input to NPSOL, and must not be altered by
funcon.

(> 1 and > ncnln) is the leading dimension of the array cJac.

is an array of dimension at least ncnln containing the indices of the elements of ¢ or
cJac that must be evaluated by funcon. needc can be ignored if every constraint
is provided.

is an array of dimension at least n containing the values of the variables x for which
the constraints must be evaluated. x must not be altered by funcon.

has the same meaning as for funobj.

7. Advanced Features: User-Supplied Subroutines 19

On exit:

mode can be used to end the solution of the current problem. If mode is set to a negative
value, NPSOL will be terminated.

c is an array of dimension at least ncnln that contains the appropriate values of the
nonlinear constraints. If needc(7) is nonzero and mode = 0 or 2, the value of the ith
constraint at x must be stored in c(). (The other components of c are ignored.)

cJac is an array of declared dimension (1dJ,k), where k > n. It contains the appropriate
elements of the Jacobian evaluated at x. (See the discussion of mode and cJac
above.)

7.3. Constant Jacobian elements

If all constraint gradients (Jacobian elements) are known (i.e., Derivative Level = 2or 3,
any constant elements may be assigned to cJac one time only at the start of the optimization.
An element of cJac that is not subsequently assigned in funcon will retain its initial value
throughout. Constant elements may be loaded into cJac either before the call to NPSOL
or during the the first call to funcon (signalled by the value nstate = 1). The ability to
preload constants is useful when many Jacobian elements are identically zero, in which case
cJac may be initialized to zero and nonzero elements may be reset by funcon.

Note that constant nonzero elements do affect the values of the constraints. Thus, if
cJac(i,7) is set to a constant value, it need not be reset in subsequent calls to funcon, but
the value cJac(4, j)*2(j) must nonetheless be added to c(i).

It must be emphasized that, if Derivative level < 2, unassigned elements of cJac are
not treated as constant; they are estimated by finite differences, at non-trivial expense. If
the user does not supply a value for Difference interval, an interval for each component
of x is computed automatically at the start of the optimization. The automatic procedure
can usually identify constant elements of cJac, which are then computed once only by finite
differences.

20 User’s Guide for NPSOL

8. Advanced Features: Optional Input Parameters

This section can be skipped by users who wish to use the default values for all optional
parameters.

Each optional parameter is defined by a single character string of up to 72 characters,
including one or more items. The items associated with a given option must be separated
by spaces or equal signs (=). Alphabetic characters may be upper or lower case. The string

Print level = 5

is an example of an optional parameter.
For each option, the string contains the following items.

1. The keyword (required for all options).
2. A phrase (one or two words) that qualifies the keyword (only for some options).

3. A number that specifies either an integer or a real value (only for some options).
Such numbers may be up to 16 contiguous characters in Fortran 77’s E, F, E or D
formats, terminated by a space.

Blank strings and comments are ignored and may be used to improve readability. A comment
begins with an asterisk (*) and all subsequent characters are ignored. If the string is not a
comment and is not recognized, a warning message is printed on the specified output device.
Synonyms are recognized for some of the keywords, and abbreviations may be used.

The following are examples of valid option strings for NPSOL:

NOLIST

warm start

COLD START

Verify Constraint gradients

Start OBJECTIVE check at variable 9

Stop constraint check at variable = 20 * The ‘=’ is optional
Feasibility tolerance 1.0E-8 * for IEEE double precision
CRASH TOLERANCE = .002

* This string will be completely ignored.

Hessian Yes

Iteration limit 100

Specification of the optional parameters

Optional parameters may be specified in two ways, as follows.

Using subroutine npfile and an external file

The subroutine npfile provided with the NPSOL package will read options from an external
options file, and should be called before a call to NPSOL. Each line of the options file defines
a single optional parameter. The file must begin with Begin and end with End. (An options
file consisting only of these two lines corresponds to supplying no options.)

The specification of npfile is

subroutine npfile(ioptns, inform)
integer ioptns, inform

8. Advanced Features: Optional Input Parameters 21

The parameter ioptns must be the unit number of the options file, in the range [0, 99], and
is unchanged on exit from npfile. inform need not be set on entry. On return, inform
will be 0 if the file is a valid options file and ioptns is in the correct range. inform will be
set to 1 if ioptns is out of range, and will be set to 2 if the file does not begin with Begin
or end with End.

An example of a valid options file is

Begin

Print level =5

Verify Objective Gradients
End

The call
call npfile(5, inform)

will read an options file on logical unit 5.

Using subroutine npoptn

The second method of setting the optional parameters is through a series of calls to the
subroutine npoptn provided with the NPSOL package. The specification of npoptn is

subroutine npoptn(string)
character* (%) string

string must be a single valid option string (see above), and will be unchanged on exit.
npoptn must be called once for every optional parameter to be set. An example of a call to
npoptn is

call npoptn(’Print level = 5’)

Use of the Nolist and Defaults option

In general, each user-specified optional parameter is printed as it is read or defined. By
using the special parameter Nolist, the user may suppress this printing for a given call of
NPSOL. To take effect, Nolist must be the first parameter specified in the options file; for
example

Begin

Nolist

Verify objective gradients
End

Alternatively, the first call to npoptn, before or after a call to NPSOL, must be
call npoptn(’Nolist’).

All parameters not specified by the user are automatically set to their default values.
Any optional parameters that are set by the user are not altered by NPSOL, and hence
changes to the options are cumulative. For example, calling npoptn(’Print level = 5’
) sets the print level to 5 for all subsequent calls to NPSOL until it is reset by the user.
The only exception to this rule is permitted by the special optional parameter Defaults,
whose effect is to reset all optional parameters to their default values. For example, in the
following situation

22 User’s Guide for NPSOL

call npsol (...)
c
call npoptn(’Print level 5’)
call npoptn(’Iteration limit = 100’)
call npsol (...)
c

call npoptn(’Defaults’)
call npsol (...)

the first and last runs of NPSOL will occur with the default parameter settings. However,
in the second run, the print level and iteration limit are altered.

8.1. Description of the optional parameters

The following list (in alphabetical order) gives the valid options. For each option, we
give the keyword, any essential optional qualifiers, the default value, and the definition.
The minimum valid abbreviation of each keyword is underlined. If no characters of an
optional qualifier are underlined, the qualifier may be omitted. The letter a denotes a
phrase (character string) that qualifies an option. The letters ¢ and r denote integer
and real values required with certain options. The number € is a generic notation for
the machine precision, and € denotes the relative precision of the objective function (the
optional parameter Function Precision; see below).

Central Difference Interval r Default = computed

If the algorithm switches to central differences because the forward-difference approxima-
tion is not sufficiently accurate, the value of r is used as the difference interval for every
component of z. The use of finite-differences is discussed further below under the optional
parameter Difference Interval.

Cold Start Default = Cold Start
Warm Start

This option controls the specification of the initial working set in both the procedure for
finding a feasible point for the linear constraints and bounds, and in the first QP subproblem
thereafter. With a Cold Start, the first working set is chosen by NPSOL based on the values
of the variables and constraints at the initial point. Broadly speaking, the initial working
set will include equality constraints and bounds or inequality constraints that violate or
“nearly” satisfy their bounds (within Crash Tolerance; see below). With a Warm Start,
the user must set the istate array and define clamda and R as discussed in §3. istate
values associated with bounds and linear constraints determine the initial working set of the
procedure to find a feasible point with respect to the bounds and linear constraints. istate
values associated with nonlinear constraints determine the initial working set of the first QP
subproblem after such a feasible point has been found. The user’s specification of istate
will be overridden if necessary, so that a poor choice of the working set will not cause a
fatal error. A warm start will be advantageous if a good estimate of the initial working set
is available—for example, when NPSOL is called repeatedly to solve related problems.

Crash Tolerance T Default = .01

This value is used in conjunction with the optional parameter Cold start (the default
value). When making a cold start, the QP algorithm in NPSOL must select an initial

8. Advanced Features: Optional Input Parameters 23

working set. When r > 0, the initial working set will include (if possible) bounds or general
inequality constraints that lie within r of their bounds. In particular, a constraint of the
form ajT:E > [will be included in the initial working set if |ajT:E -l <r(14|]). Ifr<0or
r > 1, the default value is used.

Derivative level) Default = 3

This parameter indicates which derivatives are provided by the user in subroutines funobj
and funcon. The possible choices for i are the following.

3 All objective and constraint gradients are provided by the user.

2 All of the Jacobian is provided, but some components of the objective gradient are
not specified by the user.

1 All elements of the objective gradient are known, but some elements of the Jacobian
matrix are not specified by the user.

0 Some elements of both the objective gradient and the Jacobian matrix are not specified
by the user.

The value ¢ = 3 should be used whenever possible, since NPSOL is more reliable and will
usually be more efficient when all derivatives are exact.

If i = 0 or 2, NPSOL will estimate the unspecified components of the objective gradi-
ent, using finite differences. The computation of finite-difference approximations usually
increases the total run-time, since a call to funobj is required for each unspecified element.
Furthermore, less accuracy can be attained in the solution (see Chapter 8 of Gill, Murray
and Wright [GMW81], for a discussion of limiting accuracy).

If i = 0 or 1, NPSOL will approximate unspecified elements of the Jacobian. One call
to funcon is needed for each wvariable for which partial derivatives are not available. For
example, if the Jacobian has the form

* ok ok %
x 77 %
* % 7 %

* ok ok X

Wy ”

where “x” indicates an element provided by the user and “?” indicates an unspecified
element, NPSOL will call funcon twice: once to estimate the missing element in column 2,
and again to estimate the two missing elements in column 3. (Since columns 1 and 4 are
known, they require no calls to funcon.)

At times, central differences are used rather than forward differences, in which case twice
as many calls to funobj and funcon are needed. (The switch to central differences is not
under the user’s control.)

Difference interval r Default = intervals are computed

This option defines an interval used to estimate gradients by finite differences in the following
circumstances:

1. For verifying the objective and/or constraint gradients (see the description of Verify,
below).

2. For estimating unspecified elements of the objective gradient or the Jacobian matrix.

24 User’s Guide for NPSOL

In general, a derivative with respect to the j-th variable is approximated using the interval
0, where 0; = r(1 + |Z;|), with Z the first point feasible with respect to the bounds and
linear constraints. If the functions are well scaled, the resulting derivative approximation
should be accurate to O(r). See Gill, Murray and Wright [GMW81] for a discussion of the
accuracy in finite-difference approximations.

If a difference interval is not specified by the user, a finite-difference interval will be
computed automatically for each variable by a procedure that requires up to six calls of
funcon and funobj for each component. This option is recommended if the function is
badly scaled or the user wishes to have NPSOL determine constant elements in the objective
and constraint gradients (see the descriptions of funcon and funobj in §4).

Feasibility tolerance r Default = /e

The scalar r defines the maximum acceptable absolute violations in linear and nonlinear
constraints at a “feasible” point; i.e., a constraint is considered satisfied if its violation does
not exceed r. If r < 0, the default value is used. Using this keyword sets both optional
parameters Linear Feasibility Tolerance and Nonlinear Feasibility Tolerance to
r. (Additional details are given below under the descriptions of these parameters.)

Function precision r Default = %

This parameter defines €, which is intended to be a measure of the accuracy with which
the problem functions f and ¢ can be computed. The value of €, should reflect the relative
precision of 1 + |f(x)|; i.e., €r acts as a relative precision when |f| is large, and as an
absolute precision when |f| is small. For example, if f(z) is typically of order 1000 and
the first six significant digits are known to be correct, an appropriate value for €, would be
1.0E-6. In contrast, if f(x) is typically of order 10~* and the first six significant digits are
known to be correct, an appropriate value for e would be 1.0e-10. The choice of €5 can
be quite complicated for badly scaled problems; see Chapter 8 of Gill, Murray and Wright
[GMWS81] for a discussion of scaling techniques. The default value is appropriate for most
simple functions that are computed with full accuracy. However, when the accuracy of the
computed function values is known to be significantly worse than full precision, the value of
€r should be large enough so that NPSOL will not attempt to distinguish between function
values that differ by less than the error inherent in the calculation.

Hessian No Default
Hessian Yes

This option controls the contents of the upper-triangular matrix R (see §3). NPSOL works
exclusively with the factor of the transformed Hessian H, (6.10), and hence extra computa-
tion is required to form the Hessian itself. If Hessian = No, R contains the Cholesky factor
of the transformed and re-ordered Hessian. If Hessian = Yes, the Cholesky factor of the
approximate Hessian itself is formed and stored in R. The user should select Hessian = Yes
if a warm start will be used for the next call to NPSOL.

Infinite bound size r Default = 1020

If » > 0, r defines the “infinite” bound bigbnd in the definition of the problem constraints.
Any upper bound greater than or equal to bigbnd will be regarded as plus infinity (and
similarly for a lower bound less than or equal to —bigbnd). If r < 0, the default value is
used.

8. Advanced Features: Optional Input Parameters 25

Infinite step size T Default = max(bigbnd, 102°)

If r > 0, r specifies the magnitude of the change in variables that is treated as a step to
an unbounded solution. If the change in z during an iteration would exceed the value of
Infinite Step, the objective function is considered to be unbounded below in the feasible
region. If r < 0, the default value is used.

Iteration limit i Default = max(50,3(n +m,) + 10my)
Iters
Itns

See Major iteration limit below.

Linear feasibility tolerance 17 Default = /€
Nonlinear feasibility tolerance 73 Default = /e

The scalars r; and ro define the maximum acceptable absolute violations in linear and
nonlinear constraints at a “feasible” point; i.e., a linear constraint is considered satisfied if
its violation does not exceed 71, and similarly for a nonlinear constraint and 5. The default
values are used if 1 or r9 is non-positive.

On entry to NPSOL, an iterative procedure is executed in order to find a point that
satisfies the linear constraint and bounds on the variables to within the tolerance r;. All
subsequent iterates will satisfy the linear constraints to within the same tolerance (unless
r1 is comparable to the finite-difference interval).

For nonlinear constraints, the feasibility tolerance ro defines the largest constraint vi-
olation that is acceptable at an optimal point. Since nonlinear constraints are generally
not satisfied until the final iterate, the value of Nonlinear feasibility tolerance acts
as a partial termination criterion for the iterative sequence generated by NPSOL (see the
discussion of Optimality tolerance).

These tolerances should reflect the precision of the corresponding constraints. For exam-
ple, if the variables and the coefficients in the linear constraints are of order unity, and the
latter are correct to about 6 decimal digits, it would be appropriate to specify r; as 1076.

Line search tolerance r Default = 0.9

The value 7 (0 < r < 1) controls the accuracy with which the step « taken during each
iteration approximates a minimum of the merit function along the search direction (the
smaller the value of r, the more accurate the line search). The default value r = 0.9
requests an inaccurate search, and is appropriate for most problems, particularly those with
any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it
is desirable to reduce the number of major iterations—for example, if the objective function
is cheap to evaluate, or if a substantial number of gradients are unspecified.

Major iteration limit i Default = max(50,3(n +m,) + 10my)
Iteration limit

Iters

26 User’s Guide for NPSOL

Itns

The value of i specifies the maximum number of major iterations allowed before termination.
Setting ¢ = 0 and Major print level > 0 means that the workspace needed will be
computed and printed, but no iterations will be performed.

Major print level i Default = 10
Print level

The value of ¢ controls the amount of printout produced by the major iterations of NPSOL.
(See also Minor print level, below). The levels of printing available are indicated below.

0 No output except error messages.

1 The final solution.

5 One line of output for each iteration (no printout of the final solution).
10 The final solution and one line of output for each iteration.

> 20 At each major iteration, the objective function, the Euclidean norm of the nonlinear
constraint violations, the values of the nonlinear constraints (the array c), the values
of the linear constraints (the array A,z), and the current values of the variables (the
array).

> 30 At each major iteration, the diagonal elements of the matrix T associated with the
TQ factorization (6.8) of the QP working set, and the diagonal elements of R, the
triangular factor of the transformed Hessian (6.10).

Minor iteration limit i Default = max(50,3(n + m, + my))

The value of i specifies the maximum number of iterations for the optimality phase of each
QP subproblem.

Minor print level 1 Default = 0

The value of ¢ controls the amount of printout produced by the minor iterations of NPSOL,
i.e., the iterations of the quadratic programming algorithm. (See also Major print level,
above.) The following levels of printing are available.

0 No output except error messages.
1 The final QP solution.
5 One line of output for each minor iteration (no printout of the final QP solution).

> 10 The final QP solution and one brief line of output for each minor iteration (print file
only).

> 20 At each minor iteration, the current estimates of the QP multipliers, the current
estimate of the QP search direction, the QP constraint values, and the status of each
QP constraint (print file only).

> 30 At each minor iteration, the diagonal elements of the matrix 7" associated with the T'Q
factorization (6.8) of the QP working set, and the diagonal elements of the Cholesky
factor R of the transformed Hessian (6.10) (print file only).

8. Advanced Features: Optional Input Parameters 27

Nonlinear feasibility tolerance r Default = /€

See Linear feasibility tolerance, above.

Optimality tolerance r Default = €98

The parameter r (e, < r < 1) specifies the accuracy to which the user wishes the final
iterate to approximate a solution of the problem. Broadly speaking, r indicates the number
of correct figures desired in the objective function at the solution. For example, if r is
107 and NPSOL terminates successfully, the final value of f should have approximately six
correct figures.

Successful termination will occur if the iterative sequence of z-values is judged to have
converged and the final point satisfies the first-order optimality conditions (see §2). The
sequence of iterates is considered to have converged at x if

allpll < Vr(L+ =], (8.1)

where p is the search direction and « the step length from §2. An iterate is considered to
satisfy the first-order conditions for a minimum if

1Z%gll < v/r (1 + max(1 + |f(2)], [gex) (8.2a)
lvj| < ftol for all j, (8.2b)

where Z7g is the reduced gradient (see §2), gy is the gradient of f(x) with respect to the
free variables, v; is the violation of the jth nonlinear constraint in the working set, and ftol
is the value of the optional parameter Nonlinear feasibility tolerance.

Print File) Default = nout

If i > 0 and Print Level > 0, a full log in 132-column format is sent to the file with logical
unit number 7. This option does not affect the printing of the optional parameters, which is
done on the default printer nout. The option listing can be suppressed by including Nolist
as the first option.

The option Print file = O suppresses any printing not associated with the optional
parameters, irrespective of the value of Print level.

Specifying both Nolist and Print file = O suppresses all printing, including error
messages.

IfPrint file and Summary file have the same unit number, the summary output takes
precedence, i.e., only the summary output will appear will appear on unit ¢. For example,
on UNIX systems with the default printer nout defined as the standard output, the default
values of Print file and Summary file will result in the summary output appearing at
the terminal. No other print files will be used.

Start objective check at variable k Default =1
Start constraint check at variable k Default =1
Stop objective check at variable l Default = n
Stop constraint check at variable l Default = n

These keywords take effect only if Verify level > 0 (see below). They may be used to
control the verification of gradient elements computed by subroutines funobj and funcon.
For example, if the first 30 components of the objective gradient appeared to be correct in
an earlier run, so that only component 31 remains questionable, it is reasonable to specify

28 User’s Guide for NPSOL

Start objective check at column 31. If the first 30 variables appear linearly in the
objective, so that the corresponding gradient elements are constant, the above choice would
also be appropriate.

Step limit r Default = 2.0

If r > 0, r specifies the maximum change in variables at the first step of the line search.

In some cases, such as f(z) = ae®® or f(x) = ax®, even a moderate change in the
components of x can lead to floating-point overflow. The parameter r is therefore used
to encourage evaluation of the problem functions at meaningful points. Given any major
iterate x, the first point & at which f and c are evaluated during the line search is restricted
so that

17—zl <71+ [z]2).

The line search may go on and evaluate f and c¢ at points further from x if this will result
in a lower value of the merit function. In this case, the character “1” is printed at the end
of the optional line of printed output. If “1” is printed for most of the iterations, r should
be set to a larger value.

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of
nonlinear functions at wild values. The default value Step limit = 2.0 should not affect
progress on well-behaved functions, but values 0.1 or 0.01 may be helpful when rapidly
varying functions are present. If a small value of Step limit is selected, a good starting
point may be required. An important application is to the class of nonlinear least-squares
problems. If » < 0, the default value is used.

Summary file i Default = 6

If ¢ > 0, a brief log will be output to file . In an interactive environment, it is useful to direct
this output to the terminal, to allow a run to be monitored on-line. If Major print level >
0 a line of information is printed every major iteration. If Minor print level > 0 a line
of information is printed every minor iteration.

If Print file and Summary file have the same unit number, the summary output
takes precedence, i.e., only the summary output will appear will appear on unit .

Verify level 7 Default = 0
Verify No
Verify level -1
Verify level 0

Verify objective gradients
Verify level 1
Verify constraint gradients
Verify level 2

Verify

8. Advanced Features: Optional Input Parameters 29

Verify yes
Verify gradients

Verify level 3

These keywords refer to finite-difference checks on the gradient elements computed by the
user-provided subroutines funobj and funcon. (Unspecified gradient components are not
checked.) Tt is possible to specify Verify levels (-3 in several ways, as indicated above. For
example, the nonlinear objective gradient (if any) will be verified if either Verify objective
or Verify level 1 is specified. Similarly, the objective and the constraint gradients will
be verified if Verify Yes or Verify level 3 or Verify is specified.

If 0 < ¢ < 3, gradients will be verified at the first point that satisfies the linear constraints
and bounds. If i = 0, only a “cheap” test will be performed, requiring one call to funobj
and one call to funcon. If 1 < i < 3, a more reliable (but more expensive) check will be
made on individual gradient components, within the ranges specified by the Start and Stop
keywords described above. A result of the form “0K” or “BAD?” is printed by NPSOL to
indicate whether or not each component appears to be correct.

If 10 < ¢ < 13, the action is the same as for ¢ — 10, except that it will take place at the
user-specified initial value of x.

We suggest that Verify level 3 be specified whenever a new function routine is being
developed.

8.2. Optional parameter checklist and default values

For easy reference, the following sample npoptn list shows all valid keywords and their de-
fault values. The default options Function precision, Linear feasibility tolerance,
Nonlinear feasibility tolerance and Optimality tolerance depend upon ¢, the rela-
tive precision of the machine being used. The values given here correspond to IEEE standard
floating-point arithmetic in double precision (e ~ 1.1 x 10~!¢). Similar values would apply
to any machine having about 16 decimal digits of precision.

BEGIN checklist of SPECS file parameters and their default values
* Printing

Major print level 10 * 1-line major iteration log

Minor print level 0 * no minor iteration log

Print file nout * set in subroutine mchpar

Summary file 6 * typically the screen

Print frequency 1 * minor iterations log on PRINT file
Summary frequency 1 * minor iterations log on SUMMARY file

* Convergence Tolerances

Feasibility tolerance 1.0e-8 * target nonlinear constraint violation
Linear feasibility tolerance 1.0e-8 * linear constraint violation
Nonlinear feasibility tolerance 1.0e-8 *

Optimality tolerance 1.0e-12 =*

* Derivative checking
Verify level
Start objective check at col
Stop objective check at col
Start constraint check at col
Stop constraint check at col

* cheap check on gradients

S »3 =, O

30

User’s Guide for NPSOL

* Other Tolerances
Crash tolerance
Line search tolerance

* SQP method
Cold start

Major iterations limit
Minor iterations limit

Step limit
Superbasics limit
Derivative level
Derivative linesearch
Function precision
Difference interval

Central difference interval

Infinite step size
Infinite bound

* Hessian approximation
Hessian}

End of SPECS file checklist

50
50
2.0
500

1.0e-15

1.0e+20
1.0e+20

No

* smaller for more accurate search

LR I I R B R R N

or 3(n+myg) 4 10my if that is more
or 3(n+ mr + my) if that is more

or ny + 1 if that is less

assumes all gradients are known
€% (almost full accuracy)
Computed automatically
Computed automatically

Lagrangian Hessian not saved

9. Advanced Features: Printing Details of a Run 31

9. Advanced Features: Printing Details of a Run

9.1. The full log of the major iterations

When Major print level > 5, the following line of output is sent to the print file. In
all cases, the values of the quantities printed are those in effect on completion of the given
iteration.

Majr is the major iteration count.

Minr is the number of iterations required by both the feasibility and optimality phases
of the QP subproblem. Generally, Minr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see §6).

Note that Minr may be greater than the Minor iteration limit if some itera-
tions are required for the feasibility phase.

Step is the step taken along the search direction. On reasonably well-behaved problems,
the unit step will be taken as the solution is approached.

Fun is the cumulative number of evaluations of the objective function needed for the line
search. Evaluations needed for the estimation of the gradients by finite differences
are not included. Fun is printed as a guide to the amount of work required for the
line search.

Merit is the value of the augmented Lagrangian merit function (6.5). This function
will decrease at each iteration unless it was necessary to increase the penalty
parameters (see §6.2). As the solution is approached, Merit will converge to the
value of the objective at the solution.

If the QP subproblem does not have a feasible point (signified by “i” at the end
of the current output line), the merit function is a large multiple of the constraint
violations, weighted by the penalty parameters. During a sequence of major it-
erations with infeasible subproblems, the sequence of Merit values will decrease
monotonically until either a feasible subproblem is obtained or NPSOL terminates
with inform = 3 (no feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., ncnln = 0), this entry contains
Objective, the value of the objective f(x). In this case, the objective will de-
crease monotonically to its optimal value.

Norm gZ is || Z7g||, the Euclidean norm of the reduced gradient (see §6.1). Norm gZ will be
approximately zero in the neighborhood of a solution.

Violtn is the Euclidean (i.e., two-) norm of the residuals of constraints that are either
violated or are in the working set. (This entry is not printed if ncnln is zero).
Violtn will be approximately zero in the neighborhood of a solution.

nZ is the number of columns of Z (see §6.1). The value of nZ is the number of variables
less the number of constraints in the working set; i.e., nZ = n — (Bnd 4+ Lin + N1n).

Bnd is the number of simple bound constraints in the working set.

Lin is the number of general linear constraints in the working set.

Nln is the number of nonlinear constraints in the working set (not printed if ncnln is
zero).

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if ncnln is zero).

32

User’s Guide for NPSOL

Cond Hz

Cond T

Conv

is a lower bound on the condition number of the reduced Hessian approximation
ZTHZ: see §2. The larger this number, the more difficult the problem.

is a lower bound on the condition number of the working set matrix.

is a three-letter indication of the status of the three convergence tests (8.1) and

8.2a-b) defined in the description of the optional parameter Optimality Tolerance
in §8.1. Each letter is “T” if the test is satisfied, and “F” otherwise. The three

tests indicate whether: (a) the sequence of iterates has converged; (b) the re-

duced gradient (Norm gZ) is sufficiently small; and (c) the norm of the residuals

of constraints in the working set is small enough.

If any of these indicators is “F” when NPSOL terminates with inform = 0, the
user should check the solution carefully.

is printed if central differences have been used to compute the unspecified objec-
tive and constraint gradients. If the value of Step is zero, the switch to central
differences was made because no lower point could be found in the line search. (In
this case, the QP subproblem is re-solved with the central-difference gradient and
Jacobian.) If the value of Step is non-zero, central differences were computed be-
cause Norm gZ and Violtn imply that x is close to a point satisfying the first-order
optimality conditions.

is printed if the line search has produced a relative change in x greater than
the value defined by the optional parameter Step limit. If this output occurs
frequently during later iterations of the run, Step limit should be set to a larger
value.

is printed if the QP subproblem has no feasible point.
is printed if the quasi-Newton update has been modified to ensure that the Hessian
approximation is positive-definite (see §6.3).

is printed if the approximate Hessian has been refactorized. If the diagonal condi-
tion estimator of R indicates that the approximate Hessian is badly conditioned,
the approximate Hessian is refactorized using column interchanges. If necessary,
R is modified so that its diagonal condition estimator is bounded.

9.2. Printing the solution of NP

When Major print level = 1 or Major print level > 10, the printout at the end of

execution

of NPSOL includes a listing of the status of every variable and constraint. Note

that default names are assigned to all variables and constraints.

To aid interpretation of the printed results, we repeat the convention for numbering the
constraints: indices 1 through n refer to the bounds on the variables, and indices n + 1
through n + nclin refer to the general constraints.

The following describes the printout for each variable.

Variable

State

gives the state of the jth variable z;. The various possible states are as
follows (see Fig. 1). ¢ is the appropriate feasibility tolerance.

gives the state of the jth variable ;. The various possible states are as
follows (see Fig. 1). ¢ is the appropriate feasibility tolerance.

FR The variable lies between its upper and lower bound.

EQ The variable is a fixed variable, with z; equal to its upper and
lower bound.

9. Advanced Features: Printing Details of a Run 33

Value

Lower bound

Upper bound

Lagr multiplier

Slack

LL The variable is active at its lower bound (to within §).
UL The variable is active at its upper bound (to within J).
TF The variable is temporarily fixed at its current value.
-— The lower bound is violated by more than §.

++ The upper bound is violated by more than §.

A key is sometimes printed before the State to give some additional
information about the state of a variable.

A Alternative optimum possible. The variable is active at one of
its bounds, but its Lagrange multiplier is essentially zero. This
means that if the variable were allowed to start moving away from
its bound, there would be no change to the objective function. The
values of the other free variables might change, giving a genuine
alternative solution. However, if there are any degenerate variables
(labelled D), the actual change might prove to be zero, since one
of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close
to) one of its bounds.

I Infeasible. The variable is currently violating one of its bounds by
more than 4.

is the final value of the variable ;.

is the lower bound specified for z;. “None” indicates that bl(j) <
—bigbnd. A “” is printed for any bound that is zero.

is the upper bound specified for z;. “None” indicates that bu(j) >
bigbnd. A “” is printed for any bound that is zero.

is the Lagrange multiplier for the associated bound. This will be zero
if State is FR. If x is optimal, the multiplier should be non-negative if
State is LL, and non-positive if State is UL. A “” is printed for any
multiplier that is zero.

is the difference between the variable “Value” and the nearer of its (fi-
nite) bounds b1(j) and bu(j). A blank entry indicates that the associated
variable is not bounded (i.e., b1(j) < —bigbnd and bu(j) > bigbnd).

The printout for general constraints is the same as for variables, except for the following:

Linear constrnt

Nonlin constrnt

is the name (1ncon) and index ¢ (¢ = 1 to nclin) of a linear constraint.

is the name (nlcon) and index ¢ (¢ = 1 to ncnln) of a nonlinear con-
straint.

As in the variables section, a key is occasionally printed before the State to give some
additional information about the state of the general constraints. The possible values are
A, D, and I. They have the same meaning as described above (for the variables), except
that the word “variable” must be replaced by “constraint”. In this context, “movement
off a constraint” can be interpreted as allowing the entry in the slack column to become

positive.

34 User’s Guide for NPSOL

9.3. Printing details of the minor iterations

If Minor print level > 0, output is obtained from the subroutines that solve the QP
subproblem.

To aid interpretation of the printed results, we repeat the convention for numbering the
constraints: indices 1 through n refer to the bounds on the variables, and indices n + 1
through n+nclin refer to the general constraints. When the status of a constraint changes,
the index of the constraint is printed, along with the designation “L” (lower bound), “U”
(upper bound), “E” (equality), “F” (temporarily fixed variable) or “A” (artificial constraint).
For a more detailed description of this information the reader should refer to the user’s guide
for LSSOL (Gill et al. . [GHMT86]).

When Printl level > 5, the following line of output is produced at every iteration. In
all cases, the values of the quantities printed are those in effect on completion of the given
iteration.

Itn is the minor iteration count.

Jdel is the index of the constraint deleted from the working set. If Jdel is zero,
no constraint was deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero,
no constraint was added.

Step is the step taken along the computed QP search direction. If a constraint
is added during the current minor iteration (i.e., Jadd is positive), Step
will be the step to the nearest constraint.

Ninf is the number of violated constraints (infeasibilities) in the QP subprob-
lem. This number will be zero during the optimality phase.

Sinf/0Objective is the current value of the objective. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the QP objective. The output line for the final
iteration of the feasibility phase (i.e., the first iteration for which Ninf
is zero) will give the value of the true QP objective at the first feasible
point.

During the optimality phase, the value of the objective will be non-
increasing. During the feasibility phase, the number of constraint in-
feasibilities will not increase until either a feasible point is found, or the
sign of the multipliers implies that no feasible point exists. Once optimal
multipliers are obtained, the number of infeasibilities can increase, but
the sum of infeasibilities will either remain constant or be reduced until
the minimum sum of infeasibilities is found.

Norm gZ is | ZL ||, the Euclidean norm of the reduced gradient with respect to Z.
During the optimality phase, this norm will be approximately zero after
a unit step.

Zr is the number of columns of Z, (see §6). Zr is the dimension of the

subspace in which the objective is currently being minimized. The value
of Zr is the number of variables less the number of constraints in the
working set; i.e., Zr = n — (Bnd + Lin + Art).

The value of Nz, the number of columns of Z (see §6) can be calculated
as Nz =n — (Bnd + Lin). A zero value of Nz implies that the current QP
iterate lies at a vertex of the feasible region.

9. Advanced Features: Printing Details of a Run 35

Art

Bnd

Lin

Cond T
Cond Rz

is the number of artificial constraints in the working set, i.e., the number
of columns of Z, (see §6).

is the number of simple bound constraints in the working set.

is the number of linear constraints and linearized constraints in the current
QP working set.

is an estimate of the condition number of the QP working set.

is a lower bound on the condition number of the triangular factor R, (the
Cholesky factor of the current reduced Hessian).

When Print level = 1 or Print level > 10, the summary printout at the end of
execution of 1lssol includes a listing of the status of every variable and constraint. Note
that default names are assigned to all variables and constraints.

The following describes the printout for each variable. An entry

won

indicates that

the quantity to be printed is zero (zeros are suppressed in order to minimize clutter in the

output).
Variable

State

Value

Lower bound

gives the name (varbl) and index j (j = 1 to n) of the variable.

gives the state of the jth variable z;. The various possible states are as
follows (see Figure 1). ¢ is the appropriate feasibility tolerance.

FR The variable lies between its upper and lower bound.

EQ The variable is a fixed variable x; = a = f3.

LL The variable is active at its lower bound (to within §).

UL The variable is active at its upper bound (to within §).

TF The variable is temporarily fixed at its current value.

-- The lower bound is violated by more than 0.

++ The upper bound is violated by more than §.

A key is sometimes printed before the State to give some additional
information about the state of a variable.

A Alternative optimum possible. The variable is active at one of
its bounds, but its Lagrange multiplier is essentially zero. This
means that if the variable were allowed to start moving away from
its bound, there would be no change to the objective function. The
values of the other free variables might change, giving a genuine
alternative solution. However, if there are any degenerate variables
(labelled D), the actual change might prove to be zero, since one
of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close
to) one of its bounds.

I Infeasible. The variable is currently violating one of its bounds by
more than §.

is the value of the variable at the final iteration.

is the lower bound specified for the variable. (“None” indicates that
bl(j) < —bigbnd.)

36 User’s Guide for NPSOL

Upper bound is the upper bound specified for the variable. (“None” indicates that
bu(j) > bigbnd.)

Lagr multiplier is the value of the Lagrange multiplier for the associated bound con-
straint. This will be zero if State is FR. If x is optimal, the multiplier
should be non-negative if State is LL, and non-positive if State is UL.

Slack is the difference between the variable “Value” and the nearer of its
bounds bl(j) and bu(j).

The meaning of the printout for general constraints is the same as that given above
for variables, with “variable” replaced by “constraint”, with the following change in the
heading;:

Linear constr is the name (1ncon) and index i (i = 1 to nclin) of the constraint.

As in the variables section, a key is occasionally printed before the State to give some
additional information about the state of the general constraints. The possible values are
A, D, and I. They have the same meaning as described above (for the variables), except
that the word “variable” must be replaced by “constraint”. In this context, movement off a
constraint can be interpreted as allowing the entry in the slack column to become positive.

9.4. Interpretation of the output

The input data for NPSOL should always be checked (even if NPSOL terminates with the
value inform = 0!). Two common sources of error are uninitialized variables and incorrect
gradients, which may cause underflow or overflow on some machines. The user should check
that all components of A, b1, bu and x are defined on entry to NPSOL, and that funobj and
funcon compute all relevant components of g, ¢ and cJac.

In the following, we list the different ways in which NPSOL is terminated and discuss
what further action may be necessary.

Underflow A single underflow will always occur if machine constants are computed auto-
matically (as in the distributed version of NPSOL). Other floating-point under-
flows may occur occasionally, but can usually be ignored.

Overflow If the printed output before the overflow error contains a warning about serious
ill-conditioning in the working set when adding the jth constraint, it may be
possible to avoid the difficulty by increasing the magnitude of the optional pa-
rameter Linear feasibility tolerance or Nonlinear feasibility tolerance,
and rerunning the program. If the message recurs even after this change, the
offending linearly dependent constraint (with index “;5”) must be removed from
the problem. If overflow occurs in one of the user-supplied routines (e.g., if the
nonlinear functions involve exponentials or singularities), it may help to reduce
the value of the optional parameter Step limit or specify tighter bounds for
some of the variables (i.e., reduce the gap between appropriate ¢; and u;). If
overflow continues to occur for no apparent reason, contact the authors.

inform = 0 The iterates have converged to a point x that satisfies the first-order optimality
conditions to the Optimality tolerance, i.e., the reduced gradient and active
constraint residuals are negligible at x.

The user should check whether the following four conditions are satisfied:

(i) the final value of Norm gZ is significantly less than that at the starting
point;

9. Advanced Features: Printing Details of a Run 37

inform =1

inform = 2

inform =3

inform =4

(ii) during the final major iterations, the values of Step and Minr are both

one;

(iii) the last few values of both Norm gZ and Violtn become small at a fast
linear rate;

(iv) and Cond Hz is small.

If all these conditions hold, x is almost certainly a local minimizer of NP. (See
8§10 for a specific example.)

The point x satisfies the first-order optimality conditions to the accuracy re-
quested, but the sequence of iterates has not yet converged. NPSOL was termi-
nated because no further improvement could be made in the merit function.

This value of inform may occur in several circumstances. The most common
situation is that the user asks for a solution with accuracy that is not attainable
with the given precision of the problem (as specified by Function precision).
This condition will also occur if, by chance, an iterate is an “exact” first-oder
optimal point, but the change in the variables was significant at the previous
iteration. (This situation often happens when minimizing very simple functions,
such as quadratics.)

If the four conditions listed above for inform = 0 are satisfied, x is likely to be
a solution of NP regardless of the value of inform.

The linear constraints and bounds have not been satisfied. This means that
either no feasible point exists for the given value of Linear feasibility
tolerance, or no feasible point could be found in the number of iterations
specified by Minor iteration limit. The user should check that there are no
constraint redundancies. If the data for the constraints are accurate only to
an absolute precision o, the user should ensure that the value of the optional
parameter Linear feasibility tolerance is greater than o. For example,
if all elements of A are of order unity and are accurate to only three decimal
places, Linear feasibility tolerance should be at least 1073.

There has been a sequence of QP subproblems for which no feasible point
could be found (indicated by “i” at the end of each terse line of output). This
behavior will occur if there is no feasible point for the nonlinear constraints.
(However, there is no general test that can determine whether a feasible point
exists for a set of nonlinear constraints.) If the infeasible subproblems occur
from the very first major iteration, it is highly likely that no feasible point
exists. If infeasibilities occur when earlier subproblems have been feasible, small
constraint inconsistencies may be present. The user should check the validity
of constraints with negative values of istate. If the user is convinced that
a feasible point does exist, NPSOL should be restarted at a different starting
point.

If the algorithm appears to be making progress, Major iteration limit may
be too small. If so, increase its value and rerun NPSOL (possibly using a Warm
start). If the algorithm seems to be “bogged down”, the user should check for
incorrect gradients or ill-conditioning as described below under inform = 6.

Note that ill-conditioning in the working set is sometimes resolved automatically
by the algorithm, in which case performing additional iterations may be helpful.
However, ill-conditioning in the Hessian approximation tends to persist once it
has begun, so that allowing additional iterations without altering R is usually

38

User’s Guide for NPSOL

inform = 6

inform =7

inadvisable. If the quasi-Newton update of the Hessian approximation was reset
[3n)]

during the latter iterations (i.e., an “r” occurs at the end of each terse line), it
may be worthwhile to try a warm start at the final point as suggested above.

A sufficient decrease in the merit function could not be attained during the final
line search. This sometimes occurs because an overly stringent accuracy has
been requested, i.e., Optimality tolerance is too small. In this case the user
should apply the four tests described under inform = 0 above to determine
whether or not the final solution is acceptable (see Gill, Murray and Wright
[GMW31], for a discussion of the attainable accuracy).

If many iterations have occurred in which essentially no progress has been made,
or NPSOL has failed completely to move from the initial point, subroutines
funobj or funcon may be incorrect. The user should refer to the comments
below under inform = 7 and check the gradients using the Verify parame-
ter. Unfortunately, there may be small errors in the objective and constraint
gradients that cannot be detected by the verification process. Finite-difference
approximations to first derivatives are catastrophically affected by even small
inaccuracies. An indication of this situation is a dramatic alteration in the
iterates if the finite-difference interval is altered. One might also suspect this
type of error if a switch is made to central differences even when Norm gZ and
Violtn are large.

Another possibility is that the search direction has become inaccurate because
of ill-conditioning in the Hessian approximation or the matrix of constraints
in the working set; either form of ill-conditioning tends to be reflected in large
values of Minr (the number of iterations required to solve each QP subproblem).

If the condition estimate of the reduced Hessian (Cond Hz) is extremely large,
it may be worthwhile to rerun NPSOL from the final point with a Warm start.
In this situation, istate should be left unaltered and R should be reset to the
identity matrix.

If the matrix of constraints in the working set is ill-conditioned (i.e., Cond T
is extremely large), it may be helpful to run NPSOL with a relaxed value of
the Feasibility tolerance. (Constraint dependencies are often indicated by
wide variations in size in the diagonal elements of the matrix T, whose diagonals
will be printed for Major print level > 30.)

Large errors were found in the derivatives of the objective function and/or
nonlinear constraints. This value of inform will occur if the verification process
indicated that at least one gradient or Jacobian component had mo correct
figures. The user should refer to the printed output to determine which elements
are suspected to be in error.

As a first step, the user should check that the code for the objective and con-
straint values is correct—for example, by computing the function at a point
where the correct value is known. However, care should be taken that the cho-
sen point fully tests the evaluation of the function. It is remarkable how often
the values z = 0 or = 1 are used to test function evaluation procedures, and
how often the special properties of these numbers make the test meaningless.

Special care should be used in this test if computation of the objective function
involves subsidiary data communicated in common storage. Although the first
evaluation of the function may be correct, subsequent calculations may be in
error because some of the subsidiary data has accidentally been overwritten.

9. Advanced Features: Printing Details of a Run 39

inform =9

Gradient checking will be ineffective if the objective uses information computed
by the constraints. The constraints are not necessarily computed prior to each
function evaluation.

Errors in programming the function may be quite subtle in that the function
value is “almost” correct. For example, the function may not be accurate to
full precision because of the inaccurate calculation of a subsidiary quantity,
or the limited accuracy of data upon which the function depends. A common
error on machines where numerical calculations are usually performed in double
precision is to include even one single-precision constant in the calculation of
the function; since some compilers do not convert such constants to double
precision, half the correct figures may be lost by such a seemingly trivial error.

An input parameter is invalid. The user should refer to the printed output to
determine which parameter must be re-defined.

40 User’s Guide for NPSOL

10. Advanced Features: A Sample Problem

This section describes one version of the so-called “hexagon” problem (a different formulation
is given as Problem 108 in Hock and Schittkowski [HS81]). The problem is to determine the
hexagon of maximum area such that no two of its vertices are more than one unit apart (the
solution is not a regular hexagon). The corresponding sample main program and output
from NPSOL are given below.

All constraint types are included (bounds, linear, nonlinear), and the Hessian of the
Lagrangian function is not positive definite at the solution. The problem has nine variables,
non-infinite bounds on seven of the variables, four general linear constraints, and fourteen
nonlinear constraints.

The objective function is

f(@) = —xowg + 127 — 37 — THXS + T4T9 + T3Ts.
The bounds on the variables are
120, —-1<23<1, 2520, 26>0, 27>0, 25<0, and x99 <0.

Thus,

by = 0 and wuz =

—00

co8 888 ~828

—0o0
The general linear constraints are

ro—x1 >0, x3—29>0, x3—2x4>0, and z4— x5 >0.

Hence,
0 -1 10 0 00 O0O0TO 00
0 0 -1 1 0 0O0O0O0O0
l{, = , A= and u, = o0
0 0 01 -1 000 00 00
0 0 00 1 =10 0 00 00
The nonlinear constraints are all of the form ¢;(x) < 1, for ¢ = 1, ..., 14; hence, all

components of £y are —oo, and all components of u, are 1. The fourteen functions {¢;(z)}
are

ci(x) = xf + x§; ca(x) = (w2 — 1) + (27 — w6)?,
c3(z) = (x3 — 21)% + 22, ca(x) = (21 — 24)? + (6 — 28)2,
cs(x) = (21— @5)% + (26 — 29)?, co(x) = 23 + a3,
cr(z) = (w3 — 22)% 4 23, cs(z) = (x4 — x2)% + (28 — 27)?,
co(x) = (29 — 5)2 + (w7 — 29)?, c1o(z) = (x4 — x3)% + 22,

c11(z) = (x5 — x3)? + 22, cia(x) = 23 + 22,

cig(w) = (w4 = 25)° + (w9 —28)°, c1alw) = 2§ + 3

10. Advanced Features: A Sample Problem 41

An optimal solution (to five figures) is
2 = (.060947, 59765, 1.0, .59765, .060947, .34377, .5, —.5, —.34377)7,

and f(2*) = —1.34996. (The optimal objective function is unique, but is achieved for other
values of z.) Five nonlinear constraints and one simple bound are active at 2. The sample
solution output is given later in this section, following the sample main program and problem
definition.

Two calls are made to NPSOL in order to demonstrate some of its features. For the first
call, the starting point is:

zo = (.1, .125, .666666, .142857, .111111, .2, .25, —.2, —.25)7.

All objective and constraint derivatives are specified in the user-provided subroutines fnobj1
and fnconl, i.e., the default option Derivative level = 3 is used.

On completion of the first call to NPSOL, the optimal variables are perturbed to produce
the initial point for a second run in which the problem functions are defined by the subrou-
tines fnobj2 and fncon2. To illustrate one of the finite-difference options in NPSOL, these
routines are programmed so that the first six components of the objective gradient and the
constant elements of the Jacobian matrix are not specified; hence, the option Derivative
level = 0 is chosen. During computation of the finite-difference intervals, the constant
Jacobian elements are identified and set, and NPSOL automatically increases the derivative
level to 2.

The second call to NPSOL illustrates the use of the Warm start option to utilize the
final active set, nonlinear multipliers and approximate Hessian from the first run. Note
that Hessian = Yes was specified for the first run so that the array R would contain the
Cholesky factor of the approximate Hessian of the Lagrangian.

The two calls to NPSOL illustrate the alternative methods of assigning default parame-
ters. For the first run, the parameters are read from the options file npmain.opt supplied
on the distribution diskette. In the second run, the parameters are modified using calls to
subroutine npoptn. (There is no special significance in the order of these assignments; an
options file may just as easily be used to modify parameters set by npoptn.)

The results are typical of those obtained from NPSOL when solving well behaved nonlin-
ear problems. The approximate Hessian and working set remain relatively well-conditioned.
Similarly, the penalty parameters remain small and approximately constant. The numeri-
cal results illustrate much of the theoretically predicted behavior of a quasi-Newton SQP
method. As x approaches the solution, only one minor iteration is performed each major
iteration, and the “Norm gZ” and “Violtn” columns exhibit the fast linear convergence rate
mentioned in §5 and §9.4. Note that the constraint violations converge earlier than the
reduced gradient. The final values of the reduced gradient norm and constraint norm reflect
the limiting accuracy of the two quantities. It is possible to achieve almost full precision
in the constraint norm but only half precision in the reduced gradient norm. Note that
the final accuracy in the nonlinear constraints is considerably better than the feasibility
tolerance, because the constraint violations are being refined during the last few iterations
while the algorithm is working to reduce the reduced gradient norm. In this problem, the
constraint values and Lagrange multipliers at the solution are “well balanced”, i.e., all the
multipliers are approximately the same order of magnitude. This behavior is typical of a
well-scaled problem.

42 User’s Guide for NPSOL

10.1. The brief log from the sample problem

NPSOL --- Version 5.0-2 Sept 1995
Majr Minr Step Fun Merit function Norm gZ Violtn nZ Penalty Conv
0 5 0.0E+00 1 -3.13491750E-01 3.7E-01 8.8E-01 5 0.0E+00 F FF
1 13 1.0E+00 2 -1.16144101E+00 5.3E-01 1.3E+00 2 1.1E+00 F FF
2 9 1.0E+00 3 -1.29498415E+00 6.8E-01 6.1E-01 3 1.1E+00 F FF
3 2 1.0E+00 4 -1.34705400E+00 1.7E-01 7.2E-01 4 1.1E+00 F FF
4 4 3.7E-01 6 -1.35256032E+00 1.2E-01 5.1E-01 3 1.1E+00 F FF

Majr Minr Step Fun Merit function Norm gZ Violtn nZ Penalty Conv

5 5 1.7E-01 8 -1.34210598E+00 3.7E-02 4.2E-01 3 1.2E+00 F FF
6 1 1.0E+00 9 -1.34615635E+00 7.9E-02 2.8E-02 3 1.2E+00 F FF
7 1 3.9E-01 11 -1.34801093E+00 7.0E-02 2.3E-02 3 1.2E+00 F FF
8 1 1.0E+00 12 -1.34916383E+00 4.3E-02 7.8E-04 3 1.2E+00 F FF
9 1 1.0E+00 13 -1.34996216E+00 1.6E-03 1.7E-03 3 1.9E+00 F FF
Majr Minr Step Fun Merit function Norm gZ Violtn nZ Penalty Conv

10 1 1.0E+00 14 -1.34996288E+00 7.8E-05 1.7E-06 3 1.9E+00 F FF

11 1 1.0E+00 15 -1.34996289E+00 1.5E-06 7.6E-09 3 1.9E+00 F TT

12 1 1.0E+00 16 -1.34996289E+00 5.4E-08 4.0E-12 3 1.9E+00 T TT
Exit NPSOL - Optimal solution found.

Final nonlinear objective value = -1.349963

NPSOL --- Version 5.0-2 Sept 1995

Majr Minr Step Fun Merit function Norm gZ Violtn nZ Penalty Conv

0 3 0.0E+00 1 -1.32869556E+00 2.0E-01 5.0E-01 3 3.7E-01 F FF
1 1 1.0E+00 2 -1.34828028E+00 1.1E-01 9.3E-02 3 8.2E-01 F FF
2 1 1.0E+00 3 -1.34936555E+00 3.5E-02 3.8E-03 3 8.2E-01 F FF
3 1 1.0E+00 4 -1.34983423E+00 1.5E-02 3.4E-04 3 8.2E-01 F FF
4 1 1.0E+00 5 -1.34996288E+00 1.2E-04 3.1E-04 3 1.3E+00 F FF

Majr Minr Step Fun Merit function Norm gZ Violtn nZ Penalty Conv
5 1 1.0E+00 6 -1.34996289E+00 1.3E-05 1.2E-07 3 1.3E+00 F FT
6 1 1.0E+00 7 -1.34996289E+00 1.5E-06 2.5E-10 3 1.3E+00 F TT
7 1 1.0E+00 8 -1.34996289E+00 5.8E-08 1.9E-12 3 1.3E+00 T TT

Exit NPSOL - Optimal solution found.

Final nonlinear objective value = -1.349963

References 48

References

[DM77]

[DS81]

[DS83]
[Fle81]

[GHM™ 86

[GMSW84]

[GMSW92]

[GMWS1]
[Gol76]

[HS81]

[MS93]

[Pow83]

J. E. Dennis Jr. and J. J. Moré. Quasi-Newton methods, motivation and theory. SIAM Review,
19, 46-89, 1977.

J. E. Dennis, Jr. and R. B. Schnabel. A new derivation of symmetric positive definite secant up-
dates. In O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, editors, Nonlinear Programming
4, pages 167-199. Academic Press, London and New York, 1981.

J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1983.

R. Fletcher. Practical Methods of Optimization. Volume 2: Constrained Optimization. John
Wiley and Sons, Chichester and New York, 1981.

P. E. Gill, S. J. Hammarling, W. Murray, M. A. Saunders, and M. H. Wright. User’s guide
for LSSOL (Version 1.0): a Fortran package for constrained linear least-squares and convex
quadratic programming. Report SOL 86-1, Department of Operations Research, Stanford Uni-
versity, 1986.

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Procedures for optimization problems
with a mixture of bounds and general linear constraints. ACM Transactions on Mathematical
Software, 10, 282—298, 1984.

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Some theoretical properties of an
augmented Lagrangian merit function. In P. M. Pardalos, editor, Advances in Optimization
and Parallel Computing, pages 101-128. North Holland, North Holland, 1992.

P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London
and New York, 1981. ISBN 0-12-283952-8.

D. Goldfarb. Factorized variable metric methods for unconstrained optimization. Mathematics
of Computation, 30, 796-811, 1976.

W. Hock and K. Schittkowski. Test Exzamples for Nonlinear Programming Codes. Lecture
Notes in Economics and Mathematical Systems 187. Springer Verlag, Berlin, Heidelberg and
New York, 1981.

B. A. Murtagh and M. A. Saunders. MINOS 5.4 User’s Guide. Report SOL 83-20R,, Department
of Operations Research, Stanford University, 1993.

M. J. D. Powell. Variable metric methods for constrained optimization. In A. Bachem,
M. Grotschel, and B. Korte, editors, Mathematical Programming: The State of the Art, pages
288-311. Springer Verlag, London, Heidelberg, New York and Tokyo, 1983.

