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Abstract. The effectiveness of Newton’s method for finding an unconstrained minimizer of
a strictly convex twice continuously differentiable function has prompted the proposal of various
modified Newton methods for the nonconvex case.

Line search modified Newton methods utilize a linear combination of a descent direction and a
direction of negative curvature. If these directions are sufficient in a certain sense, and a suitable
linesearch is used, the resulting method will generate limit points that satisfy the second-order
necessary conditions for optimality.

We propose an efficient method for computing a descent direction and a direction of negative
curvature that is based on a partial Cholesky factorization of the Hessian. This factorization not
only gives theoretically satisfactory directions, but also requires only a partial pivoting strategy, i.e.,
the equivalent of only two rows of the Schur complement need be examined at each step.

Key words. Unconstrained minimization, modified Newton method, descent direction, negative
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1. Introduction. We consider the unconstrained minimization of a twice con-
tinuously differentiable function f : Rn → R. If f is strictly convex, the excellent
local convergence properties of Newton’s method make it one of the most effective
methods for minimization (see, e.g., Ortega and Rheinboldt [19]).

In the non-convex case, various modified Newton methods have been proposed
that ensure convergence from an arbitrary starting point. Here we focus on the
class of linesearch modified Newton methods (for a complete discussion of modified
Newton methods and their relative merits, see, e.g., Shultz et al. [21], Dennis and
Schnabel [4]). Linesearch modified Newton methods generate a sequence {xk}∞k=0 of
improving estimates of a local minimizer. At iteration k, a linesearch is performed
along a path formed from a linear combination of two directions sk and dk, where
either sk or dk can be zero. The directions sk and dk are chosen such that gT

ksk ≤ 0
and dT

kHkdk ≤ 0, where gk and Hk denote the gradient ∇f(x) and Hessian ∇2f(x)
evaluated at xk. (Implicitly, we also assume the condition gT

kdk ≤ 0, which can be
imposed with a trivial sign change of dk.) Each nonzero sk satisfies gT

ksk < 0 and is
known as a descent direction. Each nonzero dk satisfies dT

kHkdk < 0 and is known as
a direction of negative curvature. If dk is nonzero, Hk must have at least one negative
eigenvalue. (Henceforth we will sacrifice precision for the sake of brevity and refer
to the sequences {sk} and {dk} as sequences of “descent directions” and “directions
of negative curvature”.) Linesearch methods of this type have been proposed by Gill
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and Murray [10], Fletcher and Freeman [7], McCormick [16], Mukai and Polak [18],
Kaniel and Dax [14], and Goldfarb [11].

Moré and Sorensen [17] have shown that if: (i) a modified Newton method is
used in conjunction with a suitable linesearch; and (ii) the directions sk and dk are
sufficient in the sense that the sequences {sk} and {dk} are bounded and satisfy

gT
ksk → 0 =⇒ gk → 0 and sk → 0, (1.1a)

and

dT
kHkdk → 0 =⇒ min{λmin(Hk), 0} → 0 and dk → 0, (1.1b)

then every limit point of the resulting sequence {xk}∞k=0 will satisfy the second-order
necessary conditions for optimality.

It has been observed in practice that the number of iterates at which the Hes-
sian is positive definite is large compared to the total number of iterations. Since
linesearch methods revert to Newton’s method when the Hessian is sufficiently posi-
tive definite, it would seem sensible to use a modified Newton method based on the
most efficient method for solving a symmetric positive-definite system. This is the
motivation for the modified Cholesky factorization proposed by Gill and Murray [10].
However, it has been shown by Moré and Sorensen [17] that this factorization may
not give directions of negative curvature that are sufficient in the sense of (1.1b). This
paper is motivated by the need for an algorithm with the efficiency and simplicity of
the Cholesky factorization, but with the guarantee of convergence when used with a
suitable linesearch. It is shown in Section 3 that a partial Cholesky factorization can
give search directions that are sufficient in the sense of (1.1).

To simplify the notation, we will drop the subscript k when referring to the
quantities gk, Hk, sk and dk at a specific iteration. Unless otherwise stated, ‖ · ‖
refers to the vector two-norm or its induced matrix norm. The vector ej denotes the
jth unit vector whose dimension is determined by the context.

2. The partial Cholesky factorization. The partial Cholesky factorization
of H is a variant of the standard Cholesky factorization with diagonal pivoting. The
algorithm is stated in outer-product form, where the Schur complement associated
with the unfactorized part of H is updated explicitly at each step (see, e.g., Golub
and Van Loan [12, page 143] and Higham [13]).

At each step, the largest diagonal1 is selected as pivot and is used to eliminate
a row and column from the Schur complement. The algorithm continues until either
all the matrix has been factorized or the pivot is considered unacceptable. The final
factors are therefore uniquely determined by the rule used to accept the pivot (i.e., the
rule used to terminate the elimination). Termination is controlled by a preassigned
scalar parameter ν (0 < ν < 1). A pivot is acceptable if it is both positive and larger
in absolute value than ν times the off-diagonal of largest magnitude in the pivot
row and column. At each step, the determination of an acceptable pivot requires the
examination of the diagonals and a single row of the Schur complement. (For a similar
scheme in the context of quadratic programming, see Casas and Pola [3].)

It will be shown below that once a pivot is deemed unacceptable (and hence
the factorization is terminated), a suitable direction of negative curvature can be
determined from the elements of the remaining Schur complement.

1In the event of a tie, the largest diagonal with least index is selected.



COMPUTING MODIFIED NEWTON DIRECTIONS 141

Let P denote the permutation matrix representing the symmetric interchanges
performed during the factorization. If n1 denotes the number of steps needed before
termination, the factorization implicitly identifies a leading n1 × n1 positive-definite
submatrix of the permuted matrix PTHP . In terms of a partition H11, H12, H21 and
H22 of PTHP , we have(

H11 H12

H21 H22

)
=
(

L11

L21 I

)(
B1

B2

)(
LT

11 LT
21

I

)
, (2.1)

where L11 is unit lower triangular and B1 is a positive-definite diagonal matrix. The
submatrix H11 is positive definite, and H11 = L11B1L

T
11 is its usual Cholesky factor-

ization obtained using diagonal pivoting. The factorization may be written briefly as
H = LBLT , where L is a row-permuted lower-triangular matrix with

L = P

(
L11

L21 I

)
and B =

(
B1

B2

)
. (2.2)

We will use n2 to denote the size of H22, so that n1 + n2 = n. A “pseudo-matlab”
version of the partial Cholesky algorithm is given in Algorithm 2.1.

% PARTCHOL Partial Cholesky factorization routine for a real symmetric matrix H.

% [L,B,perm,n1] = partchol(H)

% forms a permutation perm, a unit lower-triangular matrix

% L(perm,:) and a block diagonal matrix B such that

% LBL′=H
% using the partial Cholesky factorization with diagonal pivoting.

% The size of the positive-definite principal submatrix obtained

% in the factorization is n1.
function [L,B,perm,n1] = partchol(H)

n = length(H);

perm = 1 : n;

B = H;

L = zeros(n);

ν ∈ (0, 1);

k = 1;

n1 = 0;

while k ≤ n
[µr,r] = max([zeros(1,k–1) diag(B(k : n,k : n))’]);

if k < n
µpr = max(abs(B(r,[1 : r–1 r+1 : n])));

else
µpr = 0;

end
if µr > 0 and µr ≥ ν × µpr

n1 = k;

perm([k r]) = perm([r k]);

B([k r],:) = B([r k],:);

B(:,[k r]) = B(:,[r k]);

L(perm(k : n),k) = B(k : n,k)/B(k,k);

if k < n
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B(k+1 : n,k+1 : n) = B(k+1 : n,k+1 : n)–L(perm(k+1 : n),k)×B(k,k+1 : n);

B(k+1 : n,k) = zeros(n–k,1);

B(k,k+1 : n) = zeros(1,n–k);

end

k = k+1;

else

L(perm(k : n),k : n) = eye(n–k+1);

k = n+1;

end

end

Algorithm 2.1. An algorithm for the partial Cholesky factorization

The curvature along any direction d computed from the partial Cholesky factor-
ization is related to the magnitude of the smallest eigenvalue of the Schur complement
B2. The following lemma relates the smallest eigenvalue of B2 to the smallest eigen-
value of H.

Lemma 2.1. Let H be a symmetric n × n matrix with at least one negative
eigenvalue. Let the partial Cholesky factorization of H be denoted by H = LBLT ,
where PTHP is partitioned as in (2.1). Then

λmin(B2) ≤ λmin(H) and B2 = Y THY,

where

Y = P

(
−L−T

11 LT
21

I

)
= P

(
−H−1

11 H12

I

)
. (2.3)

Proof. The inequality λmin(B2) ≤ λmin(H) can be established using the identity(
H11 H12

H21 H22

)
=
(

0
B2

)
+
(

L11

L21

)
B1

(
LT

11 LT
21

)
, (2.4)

which is a rearrangement of the factorization (2.1). The eigenvalues of H and PTHP
are identical. Moreover, the positive-definiteness of B1 implies that the second term
on the right-hand-side of (2.4) is positive semidefinite. Since the eigenvalues of PTHP
cannot increase on subtraction of a positive semidefinite matrix, it must follow that
min{0, λmin(B2)} ≤ λmin(H) (see e.g., Golub and Van Loan [12, page 411]). From
the assumption λmin(H) < 0, we conclude that λmin(B2) ≤ λmin(H), as required.

To show that the matrix Y (2.3) is well defined, it is sufficient to verify that
H−1

11 H12 = L−T
11 LT

21. This is an immediate consequence of multiplying the partitioned
right-hand-side matrix from (2.1) to obtain H11 = L11B1L

T
11 and H12 = L11B1L

T
21.

Finally, the identity Y THY = B2 may be verified by expressing L−1HL−T = B
in the partitioned form(

L−1
11

−L21L
−1
11 I

)(
H11 H12

H21 H22

)(
L−T

11 −L−T
11 LT

21

I

)
=
(

B1

B2

)
,

from which the result follows.
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Note that the matrix Y (2.3) consists of the last n2 columns of L−T. Our analysis
requires bounds on the norms of Y , L and L−1, which are provided by the following
lemma given by Higham [13].

Lemma 2.2. Let H be factorized using the partial Cholesky factorization described
in Algorithm 2.1. If PTHP is partitioned as in (2.1), then

(a) ‖L−T
11 LT

21‖ ≤
1
ν

√
(n− n1)(4n1 − 1)/3;

(b) ‖L−T
11 LT

21ei‖ ≤
1
ν

√
(4n1 − 1)/3, i = 1, 2, . . . , n2;

(c) ‖L‖ ≤ n/ν;
(d) ‖L−1‖ ≤ n2n1−1/ν.
Proof. Part (a) follows immediately from Lemma 9.4 of Higham [13] and the

fact that the elements of L21 are bounded in absolute value by 1/ν. Part (b) is
a consequence of part (a), since LT

21ei is an n2-vector whose elements are bounded
in absolute value by 1/ν. Part (c) follows from the fact that all elements of L are
bounded by 1/ν in absolute value. Similarly, part (d) is a consequence of the fact
that all elements of L−1 are bounded by 2n1−1/ν (see Higham [13] for details).

2.1. Computation of the descent direction. We now discuss the applica-
tion of the partial Cholesky factorization to the calculation of a descent direction
sk satisfying (1.1a). Let B̄ be any positive-definite modification of B, i.e., B̄ is a
positive-definite matrix with ‖B− B̄‖ “small” and B̄ = B when B is sufficiently posi-
tive definite. There are many choices for B̄—for example, consider the block-diagonal
matrix B̄ = diag(B1, I), where I is the identity matrix of order n2. With this defini-
tion, when n1 = n and H is sufficiently positive definite, B̄1 = B1 and s satisfies the
usual Newton equations Hs = −g.

Lemma 2.3. Let H be factorized using the partial Cholesky factorization described
in Algorithm 2.1 and assume that PTHP is partitioned as in (2.1). Let B̄ be a positive-
definite modification of B, and let s satisfy

LB̄LT s = −g. (2.5)

Then,

−gTs ≥ ν2

n2λmax(B̄)
‖g‖2 and ‖s‖ ≤ n24n1−1

ν2λmin(B̄)
‖g‖.

Proof. From the definition of s in (2.5) we have

s = −L−TB̄−1L−1g. (2.6)

Premultiplying (2.6) by gT gives

−gTs = gTL−TB̄−1L−1g ≥ 1
‖L‖2λmax(B̄)

gTg,

and the required lower bound on −gTs follows from part (c) of Lemma 2.2. To obtain
the bound on ‖s‖ we derive the inequality ‖s‖ ≤ λmax(B̄−1)‖L−1‖2‖g‖, by taking
norms of both sides of (2.6) and using norm inequalities. The required upper bound
follows from part (d) of Lemma 2.2.
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2.2. Computation of the direction of negative curvature. The formula for
d is derived from a method for computing directions of negative curvature in quadratic
programming (see Forsgren et al. [9]). The approach is based on the observation that,
in the positive-definite case, the Newton direction is a minimizer of a quadratic model
with gradient g and Hessian H. In particular, the Newton direction can be found by
a quadratic programming algorithm that minimizes the model function while succes-
sively releasing variables from temporarily fixed values. This analogy can be extended
to the indefinite case, where the variables corresponding to H22 are temporarily fixed
at their current values, and a direction of negative curvature is defined by releasing
either one or two of the fixed variables. This scheme corresponds to using a direction
of negative curvature that is a multiple of either yi or yi± yj , where yi and yj denote
columns i and j of the matrix Y (2.3). The following lemma shows how the indices i
and j are determined from the elements of B2 = Y THY .

Lemma 2.4. On termination of the partial Cholesky factorization with diagonal
pivoting, let PTHP be partitioned as in (2.1). If n1 = n, define d = 0. Otherwise, if
n1 < n, define d as follows. Given ρ = maxi>n1,j>n1 |bij | and any pair of indices q
(q > n1) and r (r > n1) such that |bqr| = ρ, let d be the solution of

LTd =
√

ρv, where v =


eq if q = r,

1√
2
(eq − sgn(bqr)er) otherwise.

Then, if λmin(H) ≥ 0, then d = 0. Otherwise, if λmin(H) < 0, then

− 1
n2

λmin(H) ≤ dTd ≤ − 1
1− ν

(
1 +

2(4n1 − 1)
3ν2

)2

λmin(H)

and

dTHd

dTd
≤ 3ν2(1− ν)

n2(3ν2 + 2(4n1 − 1))
λmin(H).

Proof. If n1 = n, then λmin(H) > 0, and the lemma holds from the definition
d = 0. For the remainder of the proof, assume that n1 < n.

First, it is necessary to show that γ ≤ νρ, where γ = max{{maxi>n1 bii}, 0}. If the
factorization terminates with γ = 0, the inequality γ ≤ νρ is trivially satisfied. If the
factorization terminates with γ > 0, there exists an index t (t > n1) such that btt = γ.
Since γ must be an unacceptable pivot, we can infer that γ < ν maxi 6=t,i>n1 |bit|.
Consequently, if n1 < n, it must hold that γ ≤ νρ.

Define d̃ = PTd. Let d̃1 and v1 denote the first n1 components of d̃ and v
respectively. Similarly, let d̃2 and v2 denote the last n2 components of d̃ and v. The
definitions of d̃ and v imply that ‖v1‖ = 0, ‖v2‖ = 1, and d̃2 =

√
ρv2. Therefore,

dTd = d̃Td̃ = d̃T
1d̃1 + d̃T

2d̃2 ≥ ρvT
2v2 = ρ. (2.7)

Similarly, the definition of d and (2.2) imply that

dTd ≤ (1 + ‖L−T
11 LT

21v2‖2)ρ ≤
(

1 +
2(4n1 − 1)

3ν2

)
ρ, (2.8)
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where the last inequality follows from Lemma 2.2. Combining (2.7) and (2.8) yields

ρ ≤ dTd ≤
(

1 +
2(4n1 − 1)

3ν2

)
ρ. (2.9)

Consider the case ρ = 0, which is equivalent to H being positive semidefinite and
singular with λmin(H) = 0. In this case, (2.9) implies d = 0, as required.

Now assume that ρ > 0. First, if q = r, then |bqq| = ρ. Since bqq ≤ γ ≤ νρ < ρ,
it must hold that bqq = −ρ, and from the definition of d we obtain the bound

dTHd = ρbqq = −ρ2 ≤ −(1− ν)ρ2. (2.10)

Alternatively, if q 6= r, then the definition of d yields

dTHd =
ρ

2
(bqq + brr − 2|bqr|) ≤ ρ(γ − ρ) ≤ −(1− ν)ρ2, (2.11)

where the inequalities follow from the conditions bqq ≤ γ, brr ≤ γ and ρ ≥ γ/ν.
Since the magnitude of every element in B2 is bounded by ρ, the Gershgorin circle

theorem and Lemma 2.1 imply

ρ ≥ − 1
n2

λmin(B2) ≥ − 1
n2

λmin(H). (2.12)

Combining (2.9), (2.10), (2.11) and (2.12) we obtain

dTHd

dTd
≤ − 3ν2(1− ν)

3ν2 + 2(4n1 − 1)
ρ ≤ 3ν2(1− ν)

n2(3ν2 + 2(4n1 − 1))
λmin(H), (2.13)

as required.
Since, by definition, λmin(H) ≤ dTHd/dTd, the left-most inequality of (2.13) gives

an upper bound on ρ, which in conjunction with (2.9) and (2.12) give the bounds on
dTd as

− 1
n2

λmin(H) ≤ dTd ≤ − 1
1− ν

(
1 +

2(4n1 − 1)
3ν2

)2

λmin(H).

This lemma gives a relation between the curvature along d and the smallest eigen-
value of H, which is the “best possible” curvature. The bound is exponential in n1,
but the computational experiments discussed below imply that the bound is unlikely
to be tight in practice. However, as in Higham [13], we observe that there do exist
matrices whose bound is “almost” tight. For given n (n ≥ 3) and θ, define L(θ) and
B(θ) as

L(θ) =



1
−c 1
...

...
. . .

−c −c · · · 1
−c −c · · · −c 1
−c −c · · · −c 0 1


, B(θ) =



1
s2

. . .

s2(n−3)

0 −1
−1 0


,
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where c = cos θ and s = sin θ. Define H(θ) = L(θ)B(θ)L(θ)T . If θ = 0, it is shown in
Lemma A.1 of Appendix A that λmin(H(0)) = − 1

2 (
√

n2 + 2n− 7− n + 1), where

−1 ≤ λmin(H(0)) ≤ −1 +
4

n + 1
.

If θ = 0, the partial Cholesky factorization with diagonal pivoting gives n1 = 1.
If d(θ) denotes the direction of negative curvature associated with H(θ), we obtain

d(0)TH(0)d(0)
d(0)Td(0)

= −1
3
, (2.14)

and d(0) is a satisfactory direction of negative curvature. However, if θ is nonzero, it
follows from the analysis of Higham [13] that the partial Cholesky factorization with
diagonal pivoting will define L(θ) and B(θ) as factors with n1 = n − 2 for all θ 6= 0.
Moreover,

lim
θ→0

d(θ)TH(θ)d(θ)
d(θ)Td(θ)

= − 3
1 + 2× 4n−2

,

and for θ near zero, the curvature along d(θ) is close to the worst possible value
predicted by Lemma 2.4 (see Higham [13] for the details). This “pathological” example
arises because the principal submatrix of order n− 2 of H(θ) is positive definite but
arbitrarily close to being singular so that ‖H−1

11 H12‖ (or equivalently ‖L−T
11 LT

21‖) is
very large. This is reflected in arbitrarily small pivot elements.

A numerical experiment was devised to investigate if the bound of Lemma 2.4
is likely to be sharp in practice. Using Matlab 4.1 [15] on a SUN SPARCstation,
the direction d of Lemma 2.4 was computed for a set of random 50 × 50 indefinite
symmetric matrices with specified spectra. Each matrix was of the form QΛQT , with
Q a random orthogonal matrix and Λ = diag(λ1, λ2, . . . , λn) a diagonal matrix with
t negative elements (1 ≤ t ≤ 20, see below). The matrix Q was obtained from the
QR-factorization of a 50×50 matrix whose elements were taken from an independent
normal distribution with zero mean and unit variance. The method for generating
the spectrum Λ was similar to that proposed by Higham [13]. The eigenvalues were
chosen to allow variation of the condition number, the magnitude of the most negative
eigenvalue and the number of negative eigenvalues. In this way, a wide variety of
matrices were included in the test set.

We used two distributions of the eigenvalues:

λi =

{
1 i = 1, . . . , n− t;

−α1/(n+1−i) i = n− t + 1, . . . , n,
(the α distribution),

and

λi =

{
βi−1 i = 1, . . . , n− t;

−βi−1 i = n− t + 1, . . . , n,
(the β distribution),

α (0 < α ≤ 1) and β (0 < β ≤ 1) being used to vary κ2(H) = |λ1/λn|. For a particular
value of ν, 100 different matrices were generated for each distribution by taking all
combinations of t = {1, 2, . . . , 20}, and κ2(H) = {1, 103, 106, 109, 1012}. These runs
were repeated for each of the ν-values {

√
ε, 0.05, 0.10, . . . , 0.95, 1 −

√
ε}, where ε
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denotes the machine precision (ε ≈ 2.2× 10−16). A new Q was generated for each H.
Figure 1 gives the outcome of the computational experiment for the two eigenvalue
distributions. The three lines depict the maximum, mean, and minimum values of the
ratio r of dTHd/dTd to λmin(H). Each “+” represents the value of r for a particular
value of the parameter ν.

α distribution β distribution

Fig. 1. Ratio r as a function of ν for the two distributions.

r

ν

r

ν

The bound on r given by Lemma 2.4 is approximately maximized for ν = 2/3.
If n = 50 and n1 = 49, the theoretical bound is approximately 7 × 10−31 for this
value of ν. This should be compared with the computed values of r, for which the
minimum value of r attained a maximum of 0.092 for ν = 0.8. Based on these results,
we would recommend a value of ν in the range (0.5, 0.9). In this interval, r never
fell below 0.05. Note that the larger the value of ν, the smaller the value of n1 and
consequently, the smaller the amount of computation.

3. Theoretical results. The partial Cholesky factorization can be used as the
basis for a descent method for minimizing a twice-continuously differentiable function
f : Rn → R. This method defines a sequence {xk}∞k=0 of improving estimates of a
local minimizer.

Let x0 be any starting point such that the level set {x | f(x) ≤ f(x0)} is compact.
Let {sk} and {dk} be bounded sequences such that each sk is a descent direction
that satisfies (1.1a) and each dk is a direction of negative curvature that satisfies
(1.1b). Moré and Sorensen [17] show that with an appropriate linesearch, certain
linear combinations of sk and dk define xk+1 so that every limit point of {xk}∞k=0

will satisfy the second-order necessary conditions for optimality—i.e., at every limit
point x̄, ∇f(x̄) is zero and ∇2f(x̄) is positive semidefinite. The main result of this
paper—that the search directions obtained using the partial Cholesky factorization are
sufficient in the sense of Moré and Sorensen [17]—is stated in the following theorem.

Theorem 3.1. Let {xk}∞k=0 be a sequence of iterates contained in a compact
region of Rn, and assume that f : Rn → R is a twice-continuously differentiable
function. For each k, define gk = ∇f(xk) and Hk = ∇2f(xk), and let Hk = LkBkLT

k

be the partial Cholesky factorization of Hk as described in Algorithm 2.1. Given
positive constants c1 and c2 (c1 < c2), let sk be defined from Lemma 2.3 with the
additional requirement that c1 ≤ λmin(B̄k) ≤ λmax(B̄k) ≤ c2. Finally, let dk be
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defined from Lemma 2.4. Then, {sk} and {dk} are bounded sequences such that

gT
ksk → 0 =⇒ gk → 0 and sk → 0

and
dT

kHkdk → 0 =⇒ min {λmin(Hk), 0} → 0 and dk → 0.

Proof. Since {xk} lies in a compact region, the smoothness of f implies that
{‖gk‖} and {‖Hk‖} are bounded.

With the existence of c1 and c2, and the boundedness of ‖gk‖, Lemma 2.3 implies
that {sk} is a bounded sequence, and gT

ksk → 0 implies gk → 0 and sk → 0, as
required.

Lemma 2.4 and the boundedness of ‖Hk‖ imply that {dk} is a bounded sequence,
and dT

kHkdk → 0 implies dk → 0 and min{λmin(Hk), 0} → 0, as required.
If ∇2f(xk) is sufficiently positive definite, all pivots will be acceptable and the

partial Cholesky factorization will terminate with n1 = n. This implies that if {xk}∞k=0

has a limit point x̄ at which ∇2f(x̄) is sufficiently positive definite, then the iterates
will be identical to those of Newton’s method for k sufficiently large.

4. Discussion. Given an indefinite matrix H, almost all factorizations2 of the
form H = LDLT can be the basis of a method for finding s and d. However, each
factorization must incorporate a pivoting strategy that ensures s and d satisfy (1.1).
When D is block diagonal and L is a row-permuted unit lower-triangle, the pivoting
rules of Bunch and Parlett [2], Fletcher [6], and Duff et al. [5], all provide suitable
directions. However, all of these methods incorporate a complete pivoting strategy
in the sense that it may be necessary to examine all rows of the Schur complement
at any step (see Forsgren [8]). By contrast, the partial Cholesky factorization needs
only a partial pivoting strategy, i.e., the equivalent of only two rows of the Schur
complement need be examined at each step.

So-called modified factorizations of the form LDLT = H + E may also be used
to define s and d (see, e.g., Gill and Murray [10]). As yet, none of these methods has
been shown to generate d satisfying (1.1b).

The partial Cholesky factorization may be implemented in other ways. For ex-
ample, the calculation of the matrix H11 can be made independent of the calculation
of the descent direction sk. Once a direction of negative curvature has been defined,
a descent direction can be calculated by forming a modified Cholesky factorization of
B2 (see, e.g., Gill and Murray [10], Schnabel and Eskow [20]).

The algorithm of Section 2.2 requires the examination of the diagonals and a sin-
gle row of the Schur complement at each step. Alternative strategies can be devised
in which the complete Schur complement is examined under certain exceptional cir-
cumstances. For example, if a pivot is small, the pivot acceptance criterion could be
strengthened so that a pivot is acceptable if, in addition to the requirements of Algo-
rithm 2.1, it is larger in absolute value than νbmax, where bmax is either the diagonal of
largest magnitude in the Schur complement or the element of largest magnitude in the
full Schur complement. Each of these modifications gives an algorithm with identical
theoretical properties, but a potentially smaller value of n1. However, this potential
improvement is at the expense of an increase in the number of comparisons during
the factorization. The pivot criterion that requires the examination of the full Schur

2One exception to this rule is Aasen’s method [1], for which no O(n3) method is known for
computing suitable s and d.
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complement would cope successfully with the “pathological” H(θ) of Section 2.2 since
the factorization would terminate after one step for θ sufficiently small.

5. Summary. We have shown how a partial Cholesky factorization can be used
to define search directions suitable for a linesearch-based modified Newton method.
The resulting directions are sufficient in the sense that it is possible to generate a
sequence {xk}∞k=0 with limit points having a zero gradient and a positive-semidefinite
Hessian.

To our knowledge, this is the first triangular factorization that not only gives
theoretically satisfactory directions, but also requires only a partial pivoting strategy,
i.e., the equivalent of only two rows of the Schur complement need be examined at
each step.
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Appendix A. Eigenvalues of H(0).
Lemma A.1. Let the n×n-matrices L(0) and B(0) be defined as in Section 2 for

θ = 0 and n ≥ 3. Define H(0) = L(0)B(0)L(0)T . Then λ = − 1
2 (
√

n2 + 2n− 7−n+1)
is the smallest eigenvalue of H(0), and −1 ≤ λ ≤ −1 + 4/(n + 1).

Proof. It is straightforward to verify that

H(0) =



1 −1 · · · −1 −1 −1
−1 1 · · · 1 1 1

...
...

. . .
...

...
...

−1 1 · · · 1 1 1
−1 1 · · · 1 1 0
−1 1 · · · 1 0 1


.

Since B(0) has one negative eigenvalue and L(0) is nonsingular, Sylvester’s law
of inertia implies that H(0) has one negative eigenvalue (see e.g., Golub and Van
Loan [12, page 416]). Consequently, since λ is negative for n ≥ 3, it is enough to show
that it is an eigenvalue.

Assume that v = (1 −1 −1 · · · −1 a a)T is an eigenvector of H(0) for some
scalar a. Then, if v is an eigenvector, there must exist a λ such that

n− 2− 2a = λ and − n + 2 + a = λa.

It is straightforward to show that for n ≥ 3, these equations have a solution given by

λ = −
√

n2 + 2n− 7− n + 1
2

and a =
√

n2 + 2n− 7 + n− 3
4

.

The upper and lower bounds on λ follow from the sequence of inequalities

n + 1 ≥
√

(n + 1)2 − 8 = (n + 1)

√
1− 8

(n + 1)2
≥ n + 1− 8

n + 1
.

(Note that the lower bound can also be obtained directly from Lemma 2.1.)
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