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Abstract

In [2], Gill and Zhang propose a primal-dual path-following method for general nonlinearly constrained optimization that
combines a shifted primal-dual path-following method with a projected-search method for bound-constrained optimization.
The method involves the computation of an approximate Newton direction for a primal-dual penalty-barrier function that
incorporates shifts on both the primal and dual variables. This note concerns the formulation of approximate Newton equations
for a nonlinear optimization problem in general form. These equations may be used in conjunction with a projected-search
method to force convergence from an arbitrary starting point. It is shown that under certain conditions, the approximate
Newton equations are equivalent to a regularized form of the conventional primal-dual path-following equations.
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1. Introduction

This note concerns that derivation of the primal-dual equations for a shifted primal-dual penalty-barrier merit method for
constrained optimization. These methods are intended for the minimization of a twice-continuously differentiable function subject
to both equality and inequality constraints that may include a set of twice-continuously differentiable constraint functions. A
description of the projected-search method for a problem with nonlinear inequality constraints is given by Gill and Zhang [2].
The equations are formulated for problems written in the general form:

clx) —s=0, Lys=hy, £°<Lys, Lys<u’,

NLP
Ar—b=0, Exz=by,, *<E,r, Eyz<u”, ( )

[ninimize f(z) subject to {
where A denotes a constant m, X n matrix, and b, hy, by, £°, u%, £* and u* are fixed vectors of dimension m,, my, ny, m,
my, n, and ny, respectively. Similarly, Ly, L, and L, denote fixed matrices of dimension my x m, m, x m and m, X m,
respectively, and Ey, F, and E, are fixed matrices of dimension ny X n, n, x n and n, X n, respectively. Throughout the
discussion, the functions ¢ : R™ — R™ and f : R" — R are assumed to be twice-continuously differentiable. The components of
s may be interpreted as slack variables associated with the nonlinear constraints.

The quantity Ey denotes an ny X n matrix formed from n, independent rows of I,,, the identity matrix of order n. This
implies that the equality constraints Eyx = by fix ny components of x at the corresponding values of by. Similarly, F, and E,
denote n, x n and n, x n matrices formed from subsets of rows of I,, such that ETE, =0, ETE, =0, i.e., a variable is either
fixed or free to move, possibly bounded by an upper or lower bound. Note that an z; may be an unrestricted variable in the
sense that it is neither fixed nor subject to an upper or lower bound, in which case ejT is not a row of Ey, F, or E,. Analogous
definitions hold for Ly, L, and L, as subsets of rows of I,,,. However, we impose the restriction that a given s; must be either
fixed or restricted by an upper or lower bound, i.e., there are no unrestricted slacks'. Let E. denote the matrix of rows of I,
that are not rows of Fy, and let L denote the matrix of rows of I,,, that are not rows of Ly. If nr =n—ny and mz = m —my,
then F and Ly are ny x n and my X m respectively. Note that n, +n, may be less than np, but m must equal m, +m,. The
matrices (E;f EE) and (L:f LE) are column permutations of I,, and I,,,. Moreover, there are n x n and m X m permutation

matrices P, and P, such that
P, = B d P,= Le
xr — Ex an s LX 9’

with E,EY =%, E,.EY = 1% and E,El =0,and L,L} =I5, L, LT =1I{ and L,LT = 0.

All general inequality constraints are imposed indirectly using a shifted primal-dual barrier function. The general equality
constraints ¢(x) —s = 0 and Ax = b are enforced using an primal-dual augmented Lagrangian algorithm, which implies that the
equalities are satisfied in the limit. The exception to this is when the constraints Exx = by, and Lys = hy are used to fix a
subset of the variables and slacks. These bounds are enforced at every iterate.

1This is not a significant restriction because a “free” slack is equivalent to a unrestricted nonlinear constraint, which may be discarded from the
problem. The shifted primal-dual penalty-barrier equations can be derived without this restriction, but the derivation is beyond the scope of this note.
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An equality constraint ¢;() = 0 may be handled by introducing the slack variable s; and writing the constraint as the
two constraints ¢;(z) — s; = 0 and s; = 0. In this case the ith coordinate vector e; can be included as a row of Ly. Linear
inequality constraints must be included as part of c. A linear equality constraint can be either included with the nonlinear
equality constraints or the matrix A. The constraints involving A may be used to temporarily fix a subset of the variables at
their bounds without altering the underlying structure of the approximate Newton equations. In this case, the associated rows
of A are rows of the identity matrix.

The optimality conditions for problem (NLP) are given in Section 2. The shifted path-following equations are formulated
in Section 3. The shifted primal-dual penalty-barrier function associated with problem is discussed in Section 4. This function
serves as a merit function for the projected-search method. The equations are formulated in Sections 5 and 6, and summarized
in Section 7. The analogous equations for the trust-region method are derived in Section 8 and summarized in Section 9.

Notation. Given vectors  and y, the vector consisting of « augmented by y is denoted by (z,y). The subscript i is appended
to vectors to denote the ith component of that vector, whereas the subscript k is appended to a vector to denote its value during
the kth iteration of an algorithm, e.g., xj represents the value for x during the kth iteration, whereas [z ]; denotes the ith
component of the vector . Given vectors a and b with the same dimension, the vector with ith component a;b; is denoted by
a - b. Similarly, min(a, b) is a vector with components min(a;, b;). The vector e denotes the column vector of ones, and I denotes
the identity matrix. The dimensions of e and I are defined by the context. The vector two-norm or its induced matrix norm are
denoted by || - ||. For brevity, in some equations the vector g(x) is used to denote Vf(x), the gradient of f(x). The matrix J(z)
denotes the m x n constraint Jacobian, which has ith row Ve;(z)T. Given a Lagrangian function L(z,y) = f(z) — c(x)Ty with y
a m-vector of dual variables, the Hessian of the Lagrangian with respect to z is denoted by H(z,y) = V2f(z) — Y7", v:V2¢;(z).
The equations utilize the Moore-Penrose pseudoinverse of a diagonal matrix. In particular, if D = diag(dy, da, ..., d,), then
the pseudoinverse DT is diagonal with DL =0 for d; =0 and D}i =1/d; for d; # 0.
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2. Optimality conditions
The first-order KKT conditions for problem (NLP) are

Vi(a*) - J(@*) Ty — AT — BT} — B2t 4+ B2 =0, 220, 520,
y* — Liwt — LYw + LTw; =0, wi >0, wy >0,
clx*) — s =0, Lys* —hy =0,
Ax* —b=0, E.x* — by =0, (2.1)
E.x*—0* >0, u* — E,x* >0,
L,s*—¢°>0, u® — Lys* >0,
2] < (BErz® —1%) =0, z5 - (u* — Eyx™) =0,
wi - (Lps* —£%) =0, wi - (u® — Lys*) =0,

where y*, w%, and 2§ are the multipliers for the equality constraints ¢(x) —s = 0, Lys* = hy and Eyz* = by, and 2}, 25, w]
and wj may be interpreted as the Lagrange multipliers for the inequality constraints E, o —¢* > 0, ¥ — E,x >0, L,s —£° > 0
and u® — L,s > 0, respectively. The components of v* are the multipliers for the linear equality constraints Az = b.

The discussion that follows makes extensive use of the auxiliary quantities
vy =FE,x 0", zo=u*—-FEyx, si=L;s—/¢° and sy=u’— Lys. (2.2)

In some cases x1, x2, s1 and s, are used to simplify the expressions appearing in certain equations, in others they are regarded
as independent variables associated with the problem

minimize f(z)
T,T1,T2,8,581,52
subject to clx) —s=0, Ar —b=0,
E,x—x =15, L,s— s =/%, x1 >0, s1 >0, (NP)
Eyx + 20 = u¥, Lys+ sy =u®, To > 0, s9 >0,
Evx — by =0, Lys—hy =0,

which is equivalent to problem (NLP). In this case, the dual variables z7, 23, wi, and w} associated with the optimality conditions
(2.1) are the Lagrange multipliers for the inequality constraints x1 > 0, x5 > 0, s1 > 0, and sy > 0, respectively.
In the derivations that follow, the vectors z and w are defined as

2=FEYz, +Ef2 —EYz, and w=LIw,+ L w, — LTw,. (2.3)
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3. The path-following equations

Penalty and barrier methods are closely related to path-following methods. These methods approximate a continuous path that
passes through a solution of (NLP). In the simplest case, the path is parameterized by a positive scalar parameter that may be
interpreted as a perturbation for the optimality conditions for the problem (NLP).

Let 27 and z5, w{ and wi denote nonnegative estimates of 2] and 23, wi and wj. Similarly, let v, " and s” denote

estimates of v*, z* and s*. Given

small positive scalars u”, p* and u?, consider the perturbed optimality conditions

Vf(z) = J(x)"y — ATw —EY2 —ET2 + El2, =0, z1 >0, z9 >0,
y—LTw, — LTw, + LTw, =0, wy >0, wy >0,
clx) —s=p"(y" —y), Eix—by =0, Lys—hyx=0,
Az — b= p*(v® —v),
ELI—E)iZO, uXV—EUsz, (3.1)
L,s—1°>0, u® — L,s >0,
2 - (B _EX) =p’ (21 —2) + p’(Era” — Eprx),
20 - (0" — By) = i (24 — 25) + p*(Buz — Bya®),
w, (L Ls—m W (105 — wy) + u(Ls® — Lys),
wy - (07 = Lys) = p"(wy —wy) + p”(Lys — Lys®).

Let vy denote the vector of variables v, = (z, s, y, v, wx, 2x, 21, 22, w1, wz). The primal-dual path-following equations are

given by F(vp) = 0, with

Vf(z) = J(x)'y — ATo — Elz, — Elz, + EY 2, Vi(z) — J(x)'y — ATv — 2
y— LTwy — LTw, + LTw, y—w
c(x) —s+pu"(y—y*) c(x) —s+pu"(y—y°)
Az — b+ p*(v — ") Az — b+ p*(v — ")
FEyx — by FEyx — by
F(UP) - Lys—hx - Lys— hy ’ (32)

2 (Bre — 0%) + pP(z — 27) + p*(E Lac— L) 2 - (Bre = 09) + p® (31_21)+N5(EL37_ L")
2y - (u* = Eyx) + p”(2p — 25) + p*(Eya® — Eyx) 2y - (u* = Eyx) + p” (2 — Zz) + pi(Eya® — Eyx)
wy - (Lys = £7) + p? (wy —wf) +p(Les — Lis®) wy - (Lps — ) + p(wy —wi) + p®(Les — Lys®)
wy - (u® = Lys) + p(wy — w3) + p*(Lys® — Lys) wy - (u® — Lys) + p” (wy — w%) + p(Lys® — LUS)

where the first n+m equations are

written in terms of z and w such that z = EY 2z, + EXYz, —El 2z, and w = LTw +LTw; — LT w,.
E E

(To simplify the notation, the dependence of F' on the parameters u*, pu”, u?, =2, s, y# v 2% 25 w¥ wd is omitted.) Any
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zero (x, 8, Y, v, Wy, Zx, 21, 22, W1, we) of F such that * < E,, Eyx < u*, £5 < L.s, L, < u®, z1 > 0, 20 > 0, w; > 0, and
we > 0 approximates a point satisfying the optimality conditions (2.1), with the approximation becoming increasingly accurate
as the terms 1°(y — y*), j'(v—v"), pu?(Eyo” — Byz), p* (Byw® — Byw), p*(Lys® — Lys), p? (Lus— L), w2y — ), 12 (25 — 26),
1P (wy; —w¥) and p®(wy —w5) approach zero. For any sequence of z, s#, 2%, 25, w¥, wh, v¥ and y” such that 2% — z*, s¥ — s*,
2y = 2, 25— 25, wi — wi, wh — wi, v® — v* and y” — y*, it must hold that solutions (z, s, y, v, 21, 22, w1, wa) of (3.1)
must satisfy z; - (x —€*) =0, zy - (u* —2) = 0, wy - (s —£°) = 0, and w, - (u® — s) — 0, This implies that any solution (z, s,
Y, U, Wy, Zx, 21, 22, W1, wz) of (3.1) will approximate a solution of (2.1) independently of the values of p”, p* and p” (i.e., it is
not necessary that pu” — 0, u* — 0 and p? — 0).

If vp = (z, s, ¥, v, Wy, 2x, 21, 22, W1, W2) is a given approximate zero of F(vy) such that ¥ — u? < E x, Eyr < u® + u?,
05— puP < Lps, Lys <u+p?, 21 >0, 20 > 0, w; > 0, and wy > 0, the Newton equations for the change in variables Av, = (Ax,
As, Ay, Av, Awy, Azy, Azy, Az, Awy, Awsy) are given by F'(vp)Ave = —F(vp), with

H(x,y) 0 -Jr -AT™ o -rY -EY ETf 0 0
0 0 L, 0 LY o 0 0 —LT LT
J —I, D, 0 0 0 0 0 0 0
A 0 0 D, 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0
jad — X 3.3
(ve) 0 Ly o 0o 0o 0o 0 0o 0 0] (33)
Z'E, 0 o 0 0 0 X' 0 0 0
—Z'E, 0 o 0 0 0 0 X{ 0 0
0 wrL, 0 0 0 0 0 0 St o0
o -wfL, 0 0O 0O 0 0 0 o0 S
where
X1 = diag(x1 + pe), X4 = diag(xs + pe), St = diag(s1 + p"e), Sh = diag(s2 + p’e), (3.4)
Zt = diag(z1 + p”e), zh = diag(z2 + p’e), Wl = diag(wy + p”e), Wl = diag(ws + pu”e), '

with 21, 79, 51 and s given by (2.2). Any s may be written as s = LTs, + LTs,, where L, are the rows of I,,, orthogonal to the
rows of Ly, i.e., LTL, = 0. The vectors s, and sy are the components of s corresponding to the “free” and “fixed” components
of s, respectively. The variables L, s and L,s form a subset of sp. Throughout, we assume that s satisfies Lys — hy = 0, in
which case Asy = 0 and As satisfies

As=LTAs, + LT As, = LT As,.

Similarly, any = may be written as * = EXz, + Elz,, where 2, and =, denote the components of 2 corresponding to the “free”
and “fixed variables”, respectively. The variables E,z and E,x form a subset of xr. Throughout, we assume that =, satisfies
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Eyx

— by =0, in which case Az, = 0 and Az satisfies

Az = EYAz, + EY Az, = EY Az,

After premultiplying the first and fifth blocks of equations of (3.3) by E. and L, respectively, and substituting Az = EF Ax,.
and As = LT As,., the equations (3.3) can be written in the reduced form F'(v.)Av, = —F(v,), where Av, = (Azy, Asp, Ay,

Av, Azy, Azg, Awy, Aw,),

H, 0 -JI —AT —ET ET 0 0 Az gp — J;Fy ATv —EYz + EL 2,
0 0 Lo 0 0 0 - T || A4s ~ LT w, + LT w,
Jr —Lt D, 0 0 0 0 0 Ay c()—s+u(y y®)
Ap 0 0 D, 0 0 0 0 Av | Az — b+ p(v — ")
Z'E,, 0 0 0o X 0 0 0 Az | | 2 - (Buz — EX) + uP(zy — 20) + p”
—ZNE,, 0 0 0 0 X% 0 0 Azy 22 (u = Eyx) + pP(zy — 25) + p? (Eyx® )
0 WHL,, 0 0 0 0 Si 0 Aw,y (L s —0°%) + pP(wy —wi) + p?(Lys — Ls®)
0 -WHL,, 0 0 0 0 0 Sk Aws wy - (u® — Lys) + p? (wy — wh) + p?(Lys”
where H, = E,HE}, J, = J(x)EY, A, = AE}, 9, = E.Vf(x), E,, = E,E}, E,, = E,E}, y. = Lyy, L,, = L, L} and

LUF

= LULE. The matrices Jp, Ar, E;r and E, are the columns of J( ) A, E, and E, associated with the “free” components

of x. The matrices L, and L,, are the columns of L, and L, associated with the “free” components of s. Then scaling the

last four blocks of equations by (respectively) (Z4)~

H, o -Jr' -AT —-pL  ET
0 0 Ly 0 0 0
J. —-LT D, 0 0 0
Ay 0 0 D, 0 0
E.r 0 0 0 Df 0
—Eyp 0 0 0 0 Dj
0 L, 0 0 0 0
0 —L,, 0 0 0 0

L(Zy)t (W)~ and (W5
0 0 Axp
—LE LT || Ase
0 0 Ay
0 0 Av _
0 0 AZl -
0 0 AZQ
D{V 0 Aw1
0 DEV A’LUQ

gF_JTy AT

gives

Z1+EUTFZ2
LTwl—i—LUﬁwz
C( ) —s+p"(y—y°)
Az — b+ p*(v — v¥)
Df(zlfﬂf) ’
D3 (22 — m3)
1( — ")
D2W(w2—7r )

(3.5)

where A, = AET are the columns of A associated with the “free” components of x, and

1
Dy = u" L, =y - —

7%
DY =Stwi)™t om = p”(S)) T (wi

Dy =Sy(Wi)™h,  my = pu"(S5) " (ws

—(c— ),

1 =51 +57),

5 — 8o+ 83),

-DA = ,U/AIA7
DY = Xy(Z{
D3 = X3(Zy

)7,
),
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with auxiliary quantities
E __ E X E __ X E E __ E S E __ S E
x; =Ep 2 =0, x5 =u" —Eyx", sy =L;s"—{¢°, and s; =u’ — L;s".

Given the definitions (2.3), the vectors As and Awy are recovered as As = LT As, and Awy = [y + Ay — w]y. Similarly, Az
and Az, are recovered as Ar = LT Az, and Az, = [g+ HAz — JT(y + Ay) — 2]«.

4. A shifted primal-dual penalty-barrier function
Consider the shifted primal-dual penalty-barrier problem applied to (NP):

lgrln};lzlrbnsllz€2 M(;v,xl,x2,8,81,32,y7v,w1,w2;MP,MB7yE,UE7wf7w§)
y,v’21¢22,w1;w2
subject to E,x — 1z =%, L;s—s; =4£°, x1+ pe >0, 21+ ple >0, s1+ pfe >0, wy + pPe > 0,
Eyox+20=u", Lys+ sy =u’, o+ ple >0, 29 + e >0, so + e >0, we + pu’e >0,

Exx—by =0, Lys—hy=0,

where M (z,x1, T2, 8, 81, 82, Y, v, 21, 22, W1, Wa ; -, w?, y? v 28 25 w¥ wh) is the shifted primal-dual penalty-barrier function

@) = (6(@) = )" + slele) = sl + 5zlel) =5+ = 97|
— (Ar =)™+ e =+ 5 An = b (0 =)
=S (e Yy Lt ) (214 el + e 2) = Lo (o4 0]y — 200 ]y}
j=1
=R (a5 4 ) ([z2 o ey e ]}) = (22 - (a2 + "))y - 207 (w2, }
S {u ot b Lot it ) I (L lss + %€ 2) = [ = (51 + %) )i — 20° 51 ]}
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The gradient may be written as

VM (z,x1, T2, 8, 51, S2,Y, U, 21, 22, W1, W) =

Vf(z) — AT (2(v" ——Am—b)) v) — J(z)T(2(y" -
2y +2pfe — 2p” (X{) ™ (21+x1+,u €)
2y +2p7e — 207 (X5) (25 + 25 + ple)

2(y" — or(c—s)) —y
wy + 2p”e — 207 (SY) 7 (wf + 8§ + pUe)
Wy + 21 — 2u" (SH) T (wE + s5 + uPe)
(@) — 5+ 1"y — 9°)
Ax—b—i—,uA(v—v)
xy + ple — pP(ZY) (2 + af + pe)
Ty + ple — B( 5) (25 + a5 + pe)
s1+pe — p? (W) ~Hwf + sf + pe)
Sy + ple — pt (W3)~H(w§ + s§ + ue)

where X', X5, SV, S5, ZI', Z, W' and W' are defined in (3.4). Equivalently,

VM =

Vf(z) = AT(x" + (77 —v)) = J(2) T (7" + (77 —
2y — 2mf
29 — 215
™t (x —y)
wy; — 2my”
wy — 27y

y))

1
i

(c—s)) -




5. Derivation of the primal-dual line-search direction 10

The Hessian V2M (z, x1, T2, 8, 81, 82, Y, U, 21, 22, W1, Wa) is given by

H, 0 0 —2JTD;! 0 0 JT AT 0 0 0 0
0 2G5 0 0 0 0 -I, 0 I* 0 0 0
0 0 2G3 0 0 0 o o0 0 I* 0 0

—2D7'J 0 0 2D; ! 0 0 0 0 0 0 0 0
0 0 0 0 265 0 0o 0 0 0o I 0
0 0 0 0 0 265 0 0 0 0 0 I3
J 0 0 —In 0 0 D, 0 0 0 0 0|

A 0 0 0 0 0 0 D, 0 0 0 0
0 e 0 0 0 0 0 0 G 0 0 0
0 0 Ie 0 0 0 o 0 0 Gi 0 0
0 0 0 0 I 0 0o 0 0 0o Gr 0
0 0 0 0 0 Is 0 0 0 0 0 Gy

where Hy; = H(z, 21" —y)+ MQ—AAT/H— MlpJ(ar)T.](x), and I¥, IZ If I are identity matrices of size n,, n,, my, m, respectively.
In addition

1= &) + u), = (X§)7" (113 + p"1),
Gi = (S)' (1" + 1), = (85)7' (1Y + 1),
G = (Z1) (I + p"1), = (2y)" (11} + u"1),

i (

Gy = (WE) (T + ), 5 = N3 + ),

with IT# = diag(n?), IIZ = diag(n%), IIV = diag(ny"), II.

= diag(my’), X7 = diag(zf), X5 = diag(xz3), ST = diag(sf),
W = diag(wy), Wy = diag(w?), Z7 = diag(zy) and Z§ = dlag( 5.

5. Derivation of the primal-dual line-search direction

The primal-dual penalty-barrier problem may be written in the form

mininI1ize M(p) subject to Cp = b,
pe

where

Z={p:p=(x,21,22,5,51,82,Y,0, 21, 22, W1, ws), with z; + pe >0, s; + p’e >0, z; + p’e > 0, w; + pe > 0 for i = 1,2},
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and
Ey 0 0 0 0 0 0 0 00 0 O by
E, -I? 0 0 0 0 0 0 00 0 O X
E, 0 I? 0 0 0 0 0 00 0 O | u
=1%o o o I, 0o 0o 0 0 0 0 o of @ =1, (5-1)
0 0 o L, -I; 0 O O O O 0 O 08
0 0 0 Ly, 0o I; 0 0 O O 0 O u®
Let p be any vector in Z such that Cp = b.. The Newton direction Ap is given by the solution of the subproblem
minimize VM (p)T Ap + %ApTV2M(p)Ap subject to CAp =b. —Cp = 0. (5.2)
»

Let N denote a matrix whose columns form a basis for null(C), i.e., the columns of N are linearly independent and CN =
0. Every feasible direction Ap may be written in the form Ap = Nd. This implies that d satisfies the reduced equations
NTV2M(p)Nd = —NTVM (p). However, instead of solving (5.2), we formulate a linearly constrained approximate Newton
method by approximating the Hessian V2M (p) by a matrix B(p) such that NTB(p)N is positive definite with NTB(p)N ~
NTV2M (p)N. Consider the matrix B obtained by replacing 7¥ by y, 77 by 2, 75 by 2y, 7/ by wy, 74 by w,, ¥ by z,, z& by
Ty, 87 by sy, 5 by s9, 27 by 21, 25 by 2y, w¥ by wy and w§ by wy in VM (z, 21, o, S, S1, S, Y, U, 21, 29, Wy, Wy). This gives
an approximate Hessian B(x, x1, x2, S, $1, S2, Y, v, 21, 22, w1, ws) of the form

H + ZATA+ ZJT 0 0 —2JTD;! 0 0 JT AT 0 0 0
0 2(D7)~1 0 0 0 0 0 0 Iz 0 0
0 0 —2(D3)~! 0 0 0 0 0 0 Ix 0
—2D;1T 0 0 2D; ! 0 0 —1I, 0 0 0 0
0 0 0 0 2(Dy)~t 0 0 0 0 0 Is
0 0 0 0 0 2(Dy)~t 0 0 0 0 0
J 0 0 I, 0 0 D, 0 0 0 0
A 0 0 0 0 0 0 D, 0 0 0
0 Ir 0 0 0 0 0 0 D7 0 0
0 0 Iz 0 0 0 0 0 0 Dj 0
0 0 0 0 Is 0 0 0 0 0 Dy
0 0 0 0 0 Is 0 0 0 0 0

where H® ~ H(x,y) is chosen so that the approximate reduced Hessian NTB(p)N is positive definite (see Section 7). Given
B(p), an approximate Newton direction is given by the solution of the QP subproblem

minimize VM (p)T Ap + %ApTB(p)Ap subject to CAp = 0.
P

~

S w

>

N3

o O oo o

oo o oo
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Let N denote a matrix whose columns form a basis for null(C'), i.e., the columns of N are linearly independent and CN = 0. Every
feasible Ap may be written in the form Ap = Nd. This implies that d satisfies the reduced equations NTB(p)Nd = —NTVM (p).
Consider the null-space basis defined from the columns of

ET 0 o 0 0 0 0 0

E, 0 o 0 0 0 0 0

~E, 0 o 0 0 0 0 0

o L o o0 0 0 0 0

o L, O 0 0 0 0 0

B o -L, 0O 0 0 0 0 0
N= 0 o I, 0O 0 0 0 0] (5.3)

0 0 0 I, 0 0 0 0

0 0 o 0 I* 0 0 0

0 0 o 0 0 I 0 0

0 0 o o0 o0 0 If!f 0

0 0 o o o0 o0 o0 It

where E,, = E,E}, E,, = E,E}Y, L,, = L,L

L—F)

NTB(p)N such that

Tand L,, = L,LY. The definition of N of (5.3) gives the reduced Hessian

~

H, —2JTD; LT JT AT ET _ET 0 0
—2L.D;'J,.  2L.(Dy'+DI)LT —L. 0 0 0 LT LT
Jr —LT Dy 0 0 0 0 0
A, 0 0 D, 0 0 0 0

E.p 0 0 0 D? 0 0 o |’
—Eyp 0 0 0 0 D3 0 0
0 L. 0 0 0 0 DY 0
0 —Lys 0 0 0 0 0 Dy
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where Jp = J(2)EF, Ay = AEY, B, = E,H'ET + %ATA, + %I 0, + 2(BEL(D{) " By + EL(D5)'Eyy) and D, =
(LE(DY) 'Ly + LE(DY)™L,))T. Similarly, the reduced gradient NTVM (p) is given by

where g, = E Vf(z), 7} =
then

g, — AT (2nY —v) — JT(2nY —y) — (207 — 21) + Eue (275 — 25)
2y —yp — Lp (27} — wy) + Lyp (27 — w,)

=Dy (1" —y)
—D,(n" —v)
—Di(r{ — z)
—D3 (73 — 25)
=Dy (" —wy)

L-7" and y = Lyy. The reduced approximate Newton equations NTB(p)Nd = —NTVM (p) are

H, —2JID;LT JI AT EL —-ET 0 0 dy
—2L.D;YJ,.  2L.(Dy'+DI)LT —L. 0 0 0o LT LT ||d
Jr —LT D, 0 0 0 0 0 zlls

Ay 0 0 D, 0 0 0 0 4

E, 0 0 0 D? 0 0 0 ds
—Eyr 0 0 0 0 D3 0 0 ds

0 L.y 0 0 0 0 Dy 0 dr

0 —Lyr 0 0 0 0 0 DY) \ds

21y —yp — Lip (27} — wy) + Lyr (27 — w,)
—Dy (¥ —y)
— —Da(n" —v)
o —Di(nf — 2)
—D3 (73 — z,)
—DY (xl —w)
=Dy (m3" — wy)

g, — AF (27TV - v) —Jr (271'" - y) — E - (2% — 2)) + Eyr (275 — 2,)

(5.4)
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Given any nonsingular matrix R, the direction d satisfies RNTB(p)Nd = —RNTVM (p).

In particular, consider the block
upper-triangular matrix R such that

Ip 0 277Dyt 247D 2B (DY)”'  2E;.(D3)7! 0 0
I3 2L.Dy! 0 0 0 —2L}L (DY)~ 2Ly (Dy)~!

1, 0 0 0 0 0

n_ I, 0 0 0 0 ’
Iz 0 0 0
Iz 0 0
I: 0
I

where again, I¥, I¥, I?, I; are identity matrices of size n., n,, m., and m, respectively. Then R is nonsingular with

E H°ET 0 -JrI —-AT -pEY EL 0 0

0 0 L. 0 0 o -LT LT
T LT D, 0 0 0 0 0
- Ay 0 0 D, 0 0 0 0
RN"B(p)N = E,, 0 0 0o DI 0 0 0
— By 0 0 0 0O D 0 0
0 Ly 0 0 0 0o DY 0

0 ~Ly 0 0 0 0 0 DY

Also,
9 —Jry —Afv— 2z + 2

RN'VM (p) =
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This gives the following (unsymmetric) reduced approximate Newton equations for d:

E.H'ET 0 -—JT —AT _ET

0 0 L. 0 0
Jr ~LT D, 0 0
A, 0 0 D, 0
E.p 0 0 0 D?

—Eyp 0 0 0 0

0 L, 0 0 0
0 Ly 0 0 0

Then, the identity Ap = Nd implies that

EL 0 0
0 -LT LT,
0 0 0
0 0 0
0 0 0

D3 0 0
0 DY 0
0 0 Dy

Az
Al‘l
ALIJQ
As
Asy
Asg
Ay = Nd=
Av
Az
AZQ
Aw1
Awg

dy
do
ds
dy
ds
de
dr
dg

Erd,

—d
Lyd,

—d,
d3
dy
ds
ds
d7
dg

9y — ng - AEU — E};‘z1 + ElﬁwzQ

Yp — Liwy + Liw,
=Dy (" —y)
—D (7" —v)
—Di(n{ — =)
—D3(n5 — 2,)
=Dy’ (my" —w,)
=Dy’ (3" —wy)
(5.5)
(5.6)
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These identities allow us to write equations (5.5) in the form

E H°E} o -Jr -AY —-pgt BT 0 0 Az gp —JYy—ATv—ELz + EL 2
0 0 L. 0 0 0 —LL LT || Ase Y — Lipwy + Ljw,
Je —LT D, 0 0 0 0 0 Ay —Dy (¥ —y)
A, 0 0 D, 0 0 0 0 Av | —D, (7" —v)
o 0 0 0 D? 0 0 0 Az | —Di(nf - 2) ’
—Eup 0 0 0 0 Di 0 0 Az —D3 (75 — 2,)
0 L., 0 0 0 0 DY 0 Aw, =Dy (n{" —wy)
0 —Ly 0 0 0 0 0 DY ] \Aw, =Dy (r3 —w,)
(5.7)

with Ar = EYAz,, As = LT As,, Avy = Axp — (0 — E 2 +11), Azg = —Azp + (u¥ — Eyz —x9), Asy = Asp — (05— Ls+51)
and Asg = —Asp + (u® — Lys — s3).

The shifted penalty-barrier equations (5.7) are the same as the path-following equations (3.5) except for the (1,1) block,
where H is replaced by E,H?E}.

6. The shifted primal-dual penalty-barrier direction

In this section we consider the solution of the shifted primal-dual penalty-barrier equations (5.7). Collecting terms and reordering
the equations and unknowns, we obtain

D, 0 0 0 0 0 A, 0 Av D,(v—n")
0 Di 0 0 0 0 E.. 0 Az D?(z — %)
0 0 Dj 0 0 0 —Eu 0 Az Di(z — %)
0 0 0 DY 0 Ly 0 0 || Aw | DY (wy — )
0 0 0 0 DY —Ly 0 0 ||Aw |~ DY (wy — 7¥)
0 0 0o LY LT 0 0 Ly Asy Y, — LT w, + LT w,

-AT -EL  EL 0 0 0 E.H°EY —Jf Azp 9o —Jfy—ATv—ELz + EL 2,

0 0 0 0 0 -—LT I D, Ay Dy, (y—7")

(6.1)
Consider the diagonal matrices

DW = (LLT(D{V)ilLL +L’5(D5‘/)71LU)T and D, = (ELT(Df)ilEL +E;(D§)71EU)T3
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where ( . )T denotes the Moore-Penrose pseudoinverse of a matrix. The identity I,, = LYL, + LT L, implies that the m x m
matrix D, satisfies the identities

L'L,D, =D, =D,LL

., and LYL.D, =0.

If equations (6.1) are premultiplied by the matrix

I,
0 Ie
0 0 Ie
0 0 0 Is
0 0 0 0 Is
0 0 0 L;[‘F(D{V)il _LEF(‘Dé}V)il If“
AgDyt EL(D)TY —EL(D5)T! 0 0 0 Iy
0 0 00 DLLI(DY)' -D,LNDY) LID, 0 I
gives the block upper-triangular system
D, 0 0 0 0 0 A, 0 Av D,(v—7")
0 DI 0 0 0 0 E,. 0 Az D#(z, —w?)
0 0 Di 0 0 0 —Eue 0 Azo D3 (zy — 75)
0 0 0 DV 0 Loy 0 0 Aw; DY (wy, — ")
0 0 0 0 DY  —Ly 0 0 Aws, |~ DY (wy — 7l ’
0 0 0 0 0 L,Di, LT 0 L, As,. Y, — Y
0 0 0 0 0 0 H, —JT Az 9 —Jry — Afm¥ — 7wl
0 0 0 0 0 0 J.  Dy+D,) \Ay Dy (yr — 7)) + Dy (y —77)

where ﬁF = E.HE +ATD'A, +E,DLEY 7/ = LT 7 — LTy and n%2 = EL7? — EX 74, Using block back-substitution,
Az and Ay can be computed by solving the equations

H, —JT (AxF) B ( gy — JTy — ATnv — 72 )
J., D,+D, ) \AQy Dy(y—m")+D,(y—7"))"
Once Az, and Ay are known, the full vector Az is computed as Az = E} Az,. Using the identity As = LT As, in the sixth

block of equations gives
As=—-D, (y+ Ay —7").
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There are several ways of computing Aw; and Awsy. Instead of using the block upper-triangular system above, we use the last
two blocks of equations of (3.5) to give

Awy = —(S) " (wy - (Lo(s + As) — €5 + pPe) — p"wi + pP L, (s — s” + As)),

and
Awy = —(S5) 7 (wy - (u® — Ly(s + As) + p’e) — p"wh + p’ Ly (s” — s — As)).
Similarly, using (3.5) to solve for Az; and Az, yields

Azy = —(X{) 7z - (Bo(z + Az) — 0 + pPe) — p2f + pPE(z — 2° + Ax)),

and
Azy = —(XE) (2 - (0" — By(x + Az) + ple) — pz5 + p°Ey (2" — x — Ax)).
Similarly, using the first block of equations (6.1) to solve for Av gives Av = —(v — V), with 77 = 0¥ —

Finally, the vectors Aw, and Azy are recovered as Awy = [y + Ay — w]x and Azy = [g+ HAz — J T (y
w=LTw, + LTw, — LTw, and 2 = EY2, + Ef2 — ET2,.

(@ + Ax) — b).

(4
+ Ay) — z]x, where

7. Summary: equations for the primal-dual line-search direction

The results of the preceding section imply that the solution of the path-following equations F'(v,)Av, = —F(vp) with F' and
F’ given by (3.2) and (3.3) may be computed as follows. Let  and s be given primal variables and slack variables such that
Exx =by, Lys = hy with £ — u? < Epz, Fyx < u® + p?, 05— p? < Lps, Lys < u® 4+ p®. Similarly, let z1, 29, w1, we and y
denote dual variables such that wy > 0, we > 0, 21 > 0, and 22 > 0. Consider the diagonal matrices X{ = diag(E, x — (¥ + p”e),
XY = diag(u* — Eyx + pPe), Z1 = diag(z1), Z2 = diag(zz), W1 = diag(wq), W2 = diag(ws), S} = diag(L,s — £ + p”e) and
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Sy = diag(u® — L,s 4+ p”e). Consider the quantities

1
Dy = p" I, T :yE_E(C_S)a
1
D, = u'l,, WVZUE—E(AJU—Z)),
(DY)~ = (X{) 721, (D)™ = (1)WY,
(D3) ™ = (X)"' 24, (Dy) ™ = (85)'W,
D, = (EXND})'E,+E] (D) 'E,), Dy = (LY(D{) 'L, + LY (DY) 'L,)T,
= p(XT) 7 (e — ), mi = P (S1) 7wy — sy + s7),
my = 1 (X5) " (2 — @y + a3), my = pf(S5) T H(wg — s, + 53),
n? = EXn? — EXnZ, 7% =LTal — L7V
Choose HE so that HZ approximates E, H(z,y)EY and the KKT matrix
(HFB +AYD'A, + E,DLE Iy )
Iy —(Dy + Dy)

is nonsingular with m negative eigenvalues. (A common choice of HZ is the matrix E, (H (z,y) + aIn)EFT for some nonnegative
scalar ¢.) Solve the KKT system

<H£+AEDA1AF+EFD;EE V(A = (s P )
J, D, +D,,) \Ay Dy (ye —7¥)+D,(y—7"))"
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and set
Az =FEYAz,., 7=ux2+ Az, Azy = —(X1) (2 - (BoZ — 05+ pPe) — pP2f + p’ By (z — 2” + Ax)),
Azy = —(X5) (2 - (W — EyZ + pPe) — p®25 + n"E, (2" — z — Ax)),
y=y+ A4y, As =—Dy([y—="),
§=s+ As, Awy = —(S8) N (wy - (L8 — € + p”e) — p"wi + p’ L (s — s” + As)),
Awy = —(85) " (wy - (u° — L5+ pe) — p"wh + p”Ly(s” — s — As)),
~ 1, ~
7¥ =v" — — (AT - b), Av = 77—,
pA
w = Lyw, + Lywy — Ljw,, 2= E{z +E 2 —Ejz,
U =v+ Av, Awy = [y —w]y,

Azy = [Vf(z)+ H(z)Az — J(2)T5 — AT0 — 2],.

The associated merit function (4.1) can be written as

F@) = (6(@) = )" + slele) = sl + 5zlel@) =5+ 0 = 97|
— (Az —b)T0" + ﬁHAx —b|)* + 23” |Az — b+ p* (v —v")|?
S (B = ]y ) (4 e By — 0 4 pe) = [ - (B — 54 %) ], 20 By — 17, )
e
YL L = B ) In (o el [0 — Byt pel?) [ (0 — Byt %)), — 2u” [ — Byal;)
j=1
- % {uB([wf]i [ Los” = i+ p”) I ([wr + p” L[ Los — € + pPe]?) = [wi - (Los — € + pPe) i = 2" [ Ls — fs}i}

— Z {;ﬁ’([wi]z +[w® = Lys”] + p®)In ([wa + p” i[u® — Lys + p”e]7) — [we - (u® — Lys + p’e)|; — 2u”[u® — LUs]i}.



8. The primal-dual trust-region direction 21

8. The primal-dual trust-region direction

Given a vector of primal-dual variables p = (x, 1, x2, s, S1, S2, Y, U, 21, 22, W1, ws), each iteration of a trust-region method for
solving (NLP) involves finding a vector Ap of the form Ap = Nd, where N is a basis for the null-space of the matrix C of (5.1),
and d is an approximate solution of the subproblem

minimize gad+ 1d"By(p)d subject to ||d|+ <4, (8.1)

where gy and By are the reduced gradient and reduced Hessian gy = VM and By (p) = NTB(p)N, ||d|+ = (dTTd)/?, § is the
trust-region radius, and T is positive-definite. The subproblem (8.1) may be written as

minimize gL T '/2Av,, + %AUTT*I/ZBN(p)Tfl/QAvM subject to || Avy |2 < 0, (8.2)

M
VM

where Av,, = T'/2d. The application of the method of Moré and Sorensen [3] to solve the subproblem (8.2) requires the solution
of the so-called secular equations, which have the form

(By +01)Av,, = —gy, (8.3)

with o a nonnegative scalar, By = T~'/2B(p)T~/2, and gy = T~'/%g,. In this note we consider the solution of the related

equations
(By +0T)d = —g, (8.4)

and recover the solution of the secular equations (8.3) from the computed vector d.

The identity (5.6) allows the solution of the approximate Newton equations By (p)d = —gy (5.4) to be written in terms of
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the change in the variables (z, z1, 2, s, s1, S2, ¥, v, 21, 22, W1, we). In particular, we have

~

H, —2JYD7ULT Jr AT B —EL 0 0 Azp
—2L.D;J, 2L.(Dy'+D{)LT —L. 0 0 0 LT LT || Ase
Je —LT Dy 0 0 0 0 0 Ay

Ay 0 0 D, 0 0 0 0 Av

B, 0 0 0 D? 0 0 0 Az
7EUF 0 0 0 0 Dg 0 0 AZ?

0 L.r 0 0 0 0 Dy 0 Awy

0 —Lyp 0 0 0 0 0 Dy ) \Aws

g, — AL (277" — v) —Jr (27ry — y) — B (218 — 20) + Eyp (275 — 25)
2wy —yp — Lp(27) — wy) + Lypr (27 — wy)
—Dy (¥ —y)
1%

where
~ 2 2
H,=EH(z,y)E; + o AFA, + " Jed, +2(EL (DY) 'E,, + E(D5)"'E,,),

with H(z,y) the Hessian of the Lagrangian function, and

Dy = u" I, m=y" — —(c—s), D, = pu'l,, " =0 —

"
DY = SEWI)TY, = p (S (wf - sy +s5), D= XP(ZI)Y wf = (XY
DY = SEWE)Y, my = p () (wh sy s5),  Di=XE(Z)T w = (XY

Note that in the trust-region case we make no assumption that By is positive definite.

The first step in the formulation of the trust-region equations (8.4) and their solution is to write the reduced gradient
and Hessian of the merit function in terms of the vectors & and ¢ that combine the primal variables (z,s) and dual variables
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(y,v, 21, 22, w1, w2). Let g, H, J and D denote the quantities

Jp LT D, 0 0 0 0
A0 0O D, 0 0 0
- _ (9F 7o HF 0 r_ ELF 0 R 0 0 Df 0 0
9‘(0)’ H‘(o 0)’ T=l e, o ™ P=l0o o 0o D o0
R o 0 0 0 DY
0 _LUF 0 0 0 0 0

o O o oo

Dy

Similarly, let T, = diag(T*,T*) and fy = diag(TY, TV, T¢, T3, T, T3"). The equations (By + ¢T)Ap = —gy may be written

in the form . . .
(H+2frD_1J+aTw JT > <A:E> - <§— JT7— JT(% — *))

T D+oT,) \A7) = —D(# - )
where

Yy T Ay

v o4 Av
N 21 N N aY L | Az
y= o | T = | AT = (ASF) , and Ay= Ay

w1 7TfV Aw1

Wo my Awsg

—2JTp-1

7 ) to both sides of (8.5) gives the equivalent system

Applying the nonsingular matrix (I

H+oT, —J'(I+20D7'T,)\ (AZ\ _ (G- J"§
J D +oT, Ay D(y—=))"

(8.5)

As in Gertz and Gill [1], we set T, =1 and fy = D. With this choice, the associated vectors AZ and Ay satisfy the equations

H+4ol —JT AZ (T
J ¢D ) \(1+20)47) — \DG-=))’

(8.6)



8. The primal-dual trust-region direction 24

where @ = (14 0)/(1 4 20). In terms of the original variables, the unsymmetric equations (8.6) are

H 4ol 0 —JT —AT —ET ET 0 0 Ay
0 ol L. 0 0 0 -—-LY LY Asp
J, LT &Dy 0 0 0 0 0 (1+ 20)Ay
A, 0 0 D, 0 0 0 0 (1+ 20)Av
E, 0 0O 0 &D¢ 0 0 0 (1+ 20)A21
—B,, 0 0 0 0 D 0 0 (1+20)Az
0 Ly 0 0 0 0 DY 0 (1+ 20) Aw,
0 Ly 00 0 0 0 DY) \(1+20)Aw
EF(g —JTy — ATy — z)
Ly (y - w)
c(x) —s+p(y—y")
_ Az — b+ p(v — ") (8.7)
B (Zi‘)’l(zl sy 4 pf(z — 2 ‘*‘»Tl_iff)) ’ )
(Z5) Mz - wa + 1" (20 — 25 + 19 — 25))
(WY~ wy - s1+ pf(wy — w? + 51 — sf))
(w3~ ( 5)

Wy - g+ 1P (wy — w5 + 59— s

where & = (1 + 0)/(1 4 20). Collecting terms and reordering the equations and unknowns, we obtain

D, 0 0 0 0 0 A, 0 Av D,(v—7Y)
0 ¢&Dh? 0 0 0 0 E.r 0 Az Di(z — %)
0 0 D} 0 0 0 —Eyp 0 Az, D4(z0 — 75)
0 0 0 DY 0 L, 0 0 Ay | DY (wy — 7¥¥) @9
0 0 0 0 DY —Ly 0 0 Ady DY (wy — 7¥) ’ '
0 0 o -—-Lt LT oI 0 Ly As,. Lio(y—w)
-AT -ET EL 0 0 0 Hy+ol2 —JT Az Er(g—JTy— ATv —2)
0 0 0 0 0 -LT J, &Dy) \ Ay Dy(y — ")

where D, = 6D ,, DJ = 6D}, DY = ¢DY, D = 6D%, D = 6D, Dy = 6Dy, Ay = (1 +20)Ay, Av = (1 + 20)Av,
AzZy = (14 20)Az1, AZy = (1 4+ 20)Azy, Awy = (14 20)Awy, and Awy = (1 4 20) Aws. We define

Dy = (LY (D) 'L, + LE(Dy)—lLU)T =¢(LY (DY) "L, + LE(Dy)—lLU)T =GDy,
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with Dy, = (LL.(D{) 'L, + L}, (DY)~ L,;)". Similarly, define
Dy = (D}, + 06L}L,)".
Premultiplying the equations (8.8) by the block lower-triangular matrix

I,
0 Iz,
0 0 Iz,
0 0 0 I:,
0 0 0 0 I,
0 0 0 sLL(DY)Y —2L.(Dy) I3
LATD;  LEL(DY)' —1EL (D) 0 " 0 Iz
0 0 0 D,LY(DM)~' —D,LT(DY)"r D, LT 0 I,
gives the block upper-triangular system
aD, 0 0 0 0 0 A, 0 AY
0 a&Df 0 0 0 0 E.r 0 A7,
0 0 6D 0 0 0 —Eup 0 A%,
0O 0 0 &DY 0 L.r 0 0 At
0 0 0 0 Dy —Lyp 0 0 Ao
0 0 0 0 0 Lir,.DiL} 0 Ly Asy
0 0 0 0 0 0 H,+ol" —JT Az,
0 0 0 0 0 0 Je &(Dy + Dy)) \AY
D,(v—m7")
Df(z1 — )
D3 (22 — 73)
Dy’ (wy — ")
== Dy (wy —m3’)
1
LF(ywarj[waW])
g
1
Ep(g—JTy—ATU—z—&—j ATw—n")+z—7
G
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where

~ 1 1
Hy = B, (H(w,y)+ A™D;' A+ ~DL) BF,

g (o
w= LTwy + LTw, — LTw,, 2 = EY2x + EY 2 — EYzy, 7% = LTn} — LT7y and 7% = EXn? — ET74. Using block back-
substitution, Az and Ay may be computed by solving the equations

HF+O'I§ 7[]3‘ <A$F> _ EF <g_JTy_AT’U—Z—|— 1[AT(U—7TV)+Z—7TZ]>

-
Iy a(Dy + D)) \Ay D, (y—7")+D,, (6(y —w)+w—=x")

Once Az, and Ay are known, the full vector Az is computed as Az = E} Az,. Using the identity As = LT As, in the sixth
block of equations gives

As=—aD,, (y+(1+2U)Ay—w+1[w—WW}>.
g

There are several ways of computing Aw; and Aws. Instead of using the block upper-triangular system above, we use the last
two blocks of equations of (8.7) to give

1 )

Awy = —14_70(55)71(11;1 “(L(s+ As) — 00 + p"e) — p"wi 4+ p”L, (s — s" + As)) and
1 ;

Awy = —m(sg)_l(w2 “(u® = L,(s+ As) + p"e) — p"wh + p"Ly(s" — s — As)).

Similarly, using (8.7) to solve for Az; and Az, yields

1

Az = =g (X7 (21 - (Bu(w + Ax) = % + pe) — "2y + p "By (w — 2" + Av)) and
1

Azp = =g (X5) ' (22 - (" = By(w + Aw) 4 pe) — 'z + p"Ey (2" — v — Ax)).

Similarly, using the first block of equations (8.8) to solve for Av gives Av = —(v—7")/(1+0), with 7V = v — M%, (A(z+Az)—b).
Finally, the vectors Awy and Az, are recovered as Awy = [y + Ay —w]y and Azy = [g+ HAzx — J¥(y + Ay) — 2]«.

9. Summary: equations for the trust-region direction

The resu_lts of the preceding section implies that the solution of the secular equations (B ~+ol)Avy,, = —gy, with o a nonnegative
scalar, By = T1/2B, (p)T‘l/Q7 and Gy = T-'/2g, may be computed as follows. Let z and s be given primal variables and
slack variables such that Exxz = by, Lxs = hy with £ — u? < Erx, Eyx < u* + p?, 05 — p? < Lps, Lys < u® + p”. Similarly,
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let z1, z2, wy, we and y denotes dual variables such that w; > 0, wo > 0, z; > 0, and 2o > 0. Consider the diagonal matrices
Xy = diag(E,z — 0% + pe), Xy = diag(u™ — Eyx + pe), Z1 = diag(z1), Zo = diag(z2), W1 = diag(w1), W2 = diag(w2),
Si' = diag(Lys — ¢° + p”e) and S4 = diag(u® — L,s + pu”¢e). Given the quantities

Dy = p" I, T =yE—ip(c—8),
i

D, =u'l,, WVZUE—%(Am—b),

(DY)~h = (x{) " 2y, (DY)~ = (st)~

(D3)~! = (X4) ™'z, (D)™t = (s5) Wy,
D, = (EX(DY)'E, + EX(D§)"'E,)", Dy = (LX(DY) 'L, + LI(DY) L)',

D, = (D}, +oLiL,)",
i = Pt (X) T — @ +a), m" = (SY) T (wf — sy + s7),
w3 = u’(X5) (25 — g+ a3), my = (S5) T (wy — sy + 53),
7’ = EXn? — EXnZ, " =LTrl — LTxy,
solve the KKT system
E. (H(:L’,y) Yol + éATDA*lA + éDJ;)EE _Jr (AacF>
J, &(Dy + Dy) ) \AY

EF<Vf(x) —J(@)"y — ATv — 2+ é[AT(v )+ 2z— ﬂ'Z])
D,(y—m") JrDW(&(yfw) +w—m")
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Then
~ 1 - ~
Az = ET Az, T =ux+ Az, Azlz—m(X{L) Yoy - (BLZ — 04 pe) — p”2f + p"Ly(s — s" + As)),
1
Azy = -1 +0(X§)_1(z2 (W = By 4 pte) — p” 25 + pPLy(s" — s — As)),
- - o 1
Ay = Ag/(1+4+20), y=y+ Ay, As :—5Dw(y—|—(1+20)Ay—w+E[w—ww]),
1
§=s+ As, Awy = 1 +U(Sf)_1(w1 (L5 =0+ pe) — pPwi 4+ p"L, (s — " + As)),
1 ~
Awy = 1 +U(S§‘)71(w2 (v’ — Ly5+ p’e) — pwh + p”Ly(s” — s — As)),
1 1
T =v" — — (A7 - b), Av = — (v—7"),
o 1+o
w=Liw, + LTw, — LT w,, 2= Elz, +Efz —Erz,
1/)\:U+AU, wa - [?J\*'LU]Xa
Azy = [g+HAx —J ' — 2.
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