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Abstract
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1. Introduction

This note concerns that derivation of the line-search and trust-region equations for a shifted primal-dual penalty-barrier merit
method for constrained optimization. These methods are intended for the minimization of a twice-continuously differentiable
function subject to both equality and inequality constraints that may include a set of twice-continuously differentiable constraint
functions. A description of the line-search and trust-region methods for a problem with nonlinear inequality constraints is given
by Gill, Kungurtsev and Robinson [4] and Gill, Kungurtsev and Robinson [5]. The note concerns the formulation of the equations
for problems written in the general form:

c(x) —s=0, Lys=hy, {°<Lys, Lys<u’,

NLP
Az —b=0, Exz=by, (*<E,x, E,z<u", ( )

minimize x) subject to
zER™ sER™ f(x) J {

where A denotes a constant m, X n matrix, and b, hy, by, £°, u®, £* and u* are fixed vectors of dimension m,, my, nx, m;, my,
n, and n, respectively. Similarly, Ly, L, and L, denote fixed matrices of dimension my x m, m, X m and m, X m, respectively,
and Fy, F, and E, are fixed matrices of dimension ny X n, n, X n and ny, X n, respectively. Throughout the discussion, the
functions ¢ : R® — R™ and f : R™ — R are assumed to be twice-continuously differentiable. The components of s may be
interpreted as slack variables associated with the nonlinear constraints.

The quantity Ey denotes an ny X n matrix formed from ny independent rows of I,,, the identity matrix of order n. This
implies that the equality constraints Exx = by fix ny components of x at the corresponding values of by. Similarly, £, and
E, denote n, x n and n, x n matrices formed from subsets of rows of I,, such that EXE, = 0, EYE, = 0, i.e., a variable is
either fixed or free to move, possibly bounded by an upper or lower bound. Note that an z; may be an unrestricted variable
in the sense that it is neither fixed nor subject to an upper or lower bound, in which case ejT, the jth row of I,, is not a row
of Ex, E, or E,. Analogous definitions hold for Ly, L, and L, as subsets of rows of I,,,. However, we impose the restriction
that a given s; must be either fixed or restricted by an upper or lower bound, i.e., there are no unrestricted slacks'. Let Er
denote the matrix of rows of I,, that are not rows of Ey, and let L denote the matrix of rows of I,,, that are not rows of L.
If n, =n—ny and mp = m — my, then E. and L, are np X n and mp X m respectively. Note that n, + n, may be less than
ng, but my must equal m, + m;. The matrices (E;f EE) and (L}; LE) are column permutations of I,, and I,,,. Moreover,
there are n x n and m x m permutation matrices P, and P, such that

E; _(Lr
P, = (Ex) and P; = (Lx> , (1.1)

with E,EY =%, E,EY =I1%,and E,EY =0,and L, LT =13, L, LT =13 and L,LT =0.
All general inequality constraints are imposed indirectly using a shifted primal-dual barrier function. The general equality
constraints ¢(xz) —s = 0 and Ax = b are enforced using an primal-dual augmented Lagrangian algorithm, which implies that the

1This is not a significant restriction because a “free” slack is equivalent to a unrestricted nonlinear constraint, which may be discarded from the
problem. The shifted primal-dual penalty-barrier equations can be derived without this restriction, but the derivation is beyond the scope of this note.
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equalities are satisfied in the limit. The exception to this is when the constraints Fxx = by, and Lys = hy are used to fix a
subset of the variables and slacks. These bounds are enforced at every iterate.

An equality constraint ¢;(x) = 0 may be handled by introducing the slack variable s; and writing the constraint as the
two constraints ¢;(x) —s; = 0 and s; = 0. In this case the ith coordinate vector e; can be included as a row of Ly. Linear
inequality constraints must be included as part of ¢. A linear equality constraint can be either included with the nonlinear
equality constraints or the matrix A. The constraints involving A may be used to temporarily fix a subset of the variables at
their bounds without altering the underlying structure of the approximate Newton equations. In this case, A and b have the

form A
_ L _ EA
A= (_AU> and b= (_UA> ,

where A, and A, are rows of the identity matrix and ¢, and u, are the associated vectors of temporarily fixed lower and upper
bounds (see Gill, Kungurtsev and Robinson [4] for more details).

The optimality conditions for problem (NLP) are given in Section 2. The shifted path-following equations are formulated
in Section 3. The shifted primal-dual penalty-barrier function associated with problem is discussed in Section 4. This function
serves as a merit function for both the line-search and trust-region method. The equations for a line-search modified Newton
method are formulated in Sections 5 and 6, and summarized in Section 7. The analogous equations for the trust-region method
are derived in Section 8 and summarized in Section 9.

Notation. Given vectors z and y, the vector consisting of « augmented by y is denoted by (z,y). The subscript i is appended
to vectors to denote the ith component of that vector. Given vectors a and b with the same dimension, the vector with ith
component a;b; is denoted by a - b. Similarly, min(a, b) is a vector with components min(a;, b;). The vector e denotes the column
vector of ones, and I denotes the identity matrix. The dimensions of e and I are defined by the context. The vector two-norm
or its induced matrix norm are denoted by || - ||. For brevity, in some equations the vector g(z) is used to denote Vf(z), the
gradient of f(x). The matrix J(z) denotes the m x n constraint Jacobian, which has ith row Ve;(z)T. Given a Lagrangian
function L(z,y) = f(z) — c(z) Ty with y a m-vector of dual variables, the Hessian of the Lagrangian with respect to z is denoted
by H(z,y) = V3f(z)— Y1~ y:V?c;(z). Both the line-search and trust-region equations utilize the Moore-Penrose pseudoinverse
of a diagonal matrix. In particular, if D = diag(dy, da, ..., d,), then the pseudoinverse D' is diagonal with DL» =0ford;, =0
and D, = 1/d; for d; # 0.
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2. Optimality conditions
The first-order KKT conditions for problem (NLP) are

Vf(z*) = J(x*)Ty* — ATv* —Elzt — Bl + EX 25 =0, 27 >0, 25 >0,
y* — Liwh — LTw + Liw; =0, wi >0, wy >0,
c(z") —s" =0, Lys* —hyx =0,
Ar* —b=0, Eyx* —by =0, (2.1)
E.x*— 0 >0, u* — Eyx* >0,
L,s*—¢°>0, u® — Lys* >0,
2] - (Ex* —0%) =0, 2y - (u* — Eyx®) =0,
wi - (L,s* —£°) =0, wh - (u® — Lys™) =0,

where y*, w%, and z% are the multipliers for the equality constraints c¢(z) — s = 0, Lxs* = hx and Exz* = by, and 2z}, 25, wi
and wj may be interpreted as the Lagrange multipliers for the inequality constraints E,x —¢* > 0, u¥ — E,x >0, L,s —£° > 0
and u® — Lys > 0, respectively. The components of v* are the multipliers for the linear equality constraints Az = b.

The discussion that follows makes extensive use of the auxiliary quantities
r1=FEx -0, xzo=u*—Eyx, sy=0L;s—/¢° and sy =u’— Lys. (2.2)

In some cases x1, x2, s; and so are used to simplify the appearance of certain equations, in others they are regarded as
independent variables associated with the problem

minimize f(z)
©,T1,T2,8,81,82
subject to c(x) —s =0, Az —b=0,
E.x—x =105, L,s— s = /1%, x1 >0, s1 >0, (NP)
Eyx+ zo = u”, Lys+ sy =u°, x9 >0, s9 >0,
Exx—by =0, Lys—hyx =0,

which is equivalent to problem (NLP). In this case, the dual variables 27, 23, wi, and w} associated with the optimality conditions
(2.1) are the Lagrange multipliers for the inequality constraints x1 > 0, x5 > 0, s > 0, and sy > 0, respectively.
In the derivations that follow, the vectors z and w are defined as

2=FEYz, +EY2 —EYz, and w=Liw,+ L w, — L w,. (2.3)
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3. The path-following equations

Penalty and barrier methods are closely related to path-following methods. These methods follow a continuous path that passes
through a solution of (NLP). In the simplest case, the path is parameterized by a positive scalar parameter that serves as both
a perturbation of the equality constraints and a perturbation of the complementarity conditions associated with the optimality
conditions for problem (NLP). In Gill, Kungurtsev and Robinson [4], the perturbations involve estimates of the Lagrange
multipliers for the equality and inequality constraints.

Let z7 and 25, w} and w5 denote nonnegative estimates of zf and 23, wi and wj. Given small positive scalars p”, pu* and
w?, consider the perturbed optimality conditions

Vi(z) = J(x)"y — ATw —EYz, —EY2, + EY 2, =0, z1 >0, 29 >0,
y— Lywy — Liw; + Ljw, =0, wy >0, wy >0,
c(x) —s=p"(y" —vy), Eyx—by =0, Lys—hy =0,
Az — b= p*(v® —v), (3.1)
Ex—0*>0, u* — Eyxz >0,
L,s—¢°>0, u® — Lys >0,
b (B — ) = (5 = 2), 2 (0 — Bya) = u (25 — 2),
wy - (Lys = £7) = pP(wy —wy),  wy - (u” = Lys) = p’(wy — wy).

Let v, denote the vector of variables v, = (x, s, y, v, wx, 2x, 21, 22, W1, w2). The primal-dual path-following equations are
given by F(vp) = 0, with

Vf(x) — J(z)Ty — ATv — ETz, — EYz + El2,
Yy — ngx — L?wl + ngQ
c(z) —s+p"(y—y”)
Az — b+ p*(v — v¥)
FEix — by
Lys—hy

Vf(z) — J(z)Ty — ATv — 2
y—w
c(z) — s+ p"(y —y")
Az — b+ p(v — v¥)
E.x— by
Lys— hy

21 - (Brw — %) 4+ p” (2, — 27)
2y - (u* = Eyw) + p¥ (2, — 23)
wy - (Lys = 0°) + p? (wy — wf
Wy - (u¥ = Lys) + p (wy — w3

2 - (Buw = 09) + pP(zy — 2
22 (0 — Bya) 4 (2 — 24
wy - (Lys =€) + pf (wy — wf
wy - (" — Luys) + i —

where the first n+m equations are written in terms of z and w such that 2 = EXz, +Efz, —EYz, and w = LTw,+LTw, — LY w,.
(To simplify the notation, the dependence of F' on the parameters p*, pu”, u?, y*, v®, 2£ 25 w¥ wi is omitted.) Any zero (z,
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S, Y, U, Wx, Zx, 21, 22, Wi, wg) of F such that £¥ < E,z, Eyx < u®, {5 < L,s, Lys < u®, z1 >0, 20 >0, w; >0, and we > 0
approximates a point satisfying the optimality conditions (2.1), with the approximation becoming increasingly accurate as the
terms u”(y — y”), pt(v — v?), p®(zy — 27), p(z9 — 28), p?(wy; — wy) and p”(wy — wh) approach zero. For any sequence of z7,
25, wy, wy, v” and y” such that 27 — 27, 25 — 23, wy = wi, w5 = w3, v¥ — v* and y* — y*, and it must hold that solutions
(z, s, y, v, 21, 22, w1, we) of (3.1) must satisfy z; - (x —€*) = 0, 25 - (¥ —2) = 0, wy - (s —€%) = 0, and w, - (v’ —s) — 0,
This implies that any solution (z, s, y, v, wx, zx, 21, 22, W1, we) of (3.1) will approximate a solution of (2.1) independently of
the values of p”, p* and p” (i.e., it is not necessary that p” — 0, p* — 0 and p” — 0).

If vp = (z, s, y, v, wWx, 2x, 21, 22, W1, Wa) is a given approximate zero of I’ such that ¢* — pfe < E x, Eyx < u* + pPe,
05 —uPe < Lys, Lys < u® + pfe, z1 > 0, 20 > 0, w; > 0, and we > 0, the Newton equations for the change in variables
Avp = (Azx, As, Ay, Av, Awy, Azy, Azy, Az, Awy, Aws) are given by F'(vp)Av, = —F(vp), with

H(z,y) 0o —JxT -4 o -EY -EY ET 0 0

0 0 I 0o —-LT 0 0 0 -LT LT

J(z) —1I D, 0 0 0 0 0 0 0

A 0 0 D, 0 0 0 0 0 0

, 0 Ly 0 0 0 0 0 0 0 0
Fve) = Ey 0 0 0 0 0 0 0 0 N E (3.3)

Z,E, 0 0 0 0 0o Xt 0 0 0

—ZsFy, 0 0 0 0 0 0o Xt 0 0

0 WiL, 0 0 0 0 0 0o St 0

0 —WaLy 0 0 0 0 0 0 0 Sk

where X! = diag(z; + p”e), X5 = diag(za + pe), Si' = diag(s1 + pe), Sy = diag(sa + pe), Z1 = diag(z1), Zo = diag(2a),
Wy = diag(w;) and Wy = diag(ws), with x1, z2, s1 and sy given by (2.2). Any s may be written as s = LTs, + LLs,, where
sp and sy denote the components of s corresponding to the “free” and “fixed” components of s, respectively. Similarly, any =
may be written as x = EYx, + EXz,, where 7 and z denote the free and fixed components of .

The partition of z into free and fixed variables induces a partition of H(z,y), A, J(z), E, and E,. We use Hj to denote the
ny X Np symmetric matrix of rows and columns of H associated with the free variables and A, Ay, Jr, Jx to denote the free
and fixed columns of A and J(x). In particular,

H,=E.H(z,y)EY,  A.=AEY — A.=AFEl,  J.=J@E!, and Jy=J(x)E],
Similarly, the n, X ny matrix F,» and n, X np matrix F,, comprise the free columns of £, and F,, with
E,.=FEEF and E, =FE,EL.

It follows that the components of F, .z, are the values of the free variables that are subject to lower bounds. A similar
interpretation applied for E,-xr. Analogous definitions apply for the m; x my matrix L;r and my X mp matrix Lp.
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The next step is to transform the path-following equations to reflect the structure of free and fixed variables. Consider the
block-diagonal orthogonal matrix Q = diag(Py, Ps, I,,, I, I3, I%, I¥, IE, I¢, IS), where P, and P, are defined in (1.1). Given

the identities A A A A
Tr\ _ (EpAzx Sp\ _ (LpAs
(Axx) =P Az = (EXA:U> and (ASX) =PsAs = (LXAS) ’

and QF'(v:)QTQAv, = —QF(vy), we obtain the transformed equations

H, i 0 0 —JT —AT o 0 —-ET ET 0 0 Az,

H, Hy 0 0 —JF —AT o -1z 0 0 0 0 Az

0 0 0 0O L. 0 0 0 0 0 —LT LT || As:

0 0 0 0 Ly 0 —If 0 0 0 0 0 Asy
Je Je LT LT D, 0 0 0 0 0 0 0 Ay
A Ay 0 0 0 D, 0 0 0 0 0 0 Av

0 0 0 L0 0O 0 0 0 0 0 0 |[Aws

0 Iz 0 0 0 0O 0 0 0 0 0 0 Azy
ZiE,. 0 0 0 0 o o0 0 X 0 0 0 Az

~ZyEye 0 0 0 0 o 0 0 0o Xt 0 0 Az

0 0  WiL, 0 0 0o 0 0 0 0o S 0 Aw;

0 0 —WaoLy O 0 0O 0 0 0 0 0 St \Aw,

where H, = E H(z,y)EY, H, = E,H(x,y)EY, g, = E,.g, 2, = E,z and y, = L,y.
As the constraints Lys —hy = 0 and Exx — by = 0 are enforced throughout, it follows that Asy = 0 and Azy = 0, in which
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case As and Ax satisfy

As=LTAs, + LTAs, = LTAs, and Az =FErAz, + EYAz, = EY Az,

After scaling the last four blocks of equations by (respectively) Z; L Zy L VVl_1 and W5 ! collecting terms and reordering the
equations and unknowns, we obtain

Hy 0
0 0
J. —LT
Agp 0
E,.; 0
_EUF 0
0 LLF
0 _LUF
where
D, = ,uPIm;
DY = Stwit,
Dy = SyWy !,

~JT AT _ET  ET
Ly 0 0 0
Dy 0 0 0
0 D, 0 0
0 0 Dy 0
0 0 0 D3
0 0 0 0
0 0 0 0
;1
T =y" - E(C*S)v
m = (St "t
my = 1 (Sf) g,

0 0 Az
-LT LT Asp
0 0 Ay
0 0 Av
0 0 AZ1
0 0 AZQ
va 0 Aw1
0 Dé}V A’wg
DA = ,uAI/U
Di = X'zt
D} =Xzt

Yr — Wr
—Dy (¥ —y)
=D (m" —v)
| -ppm-ay |0 BV
—D3(m — 23)
=Dy (m" —wy)
=Dy (m3" — w,)
1
' =0v" — —(Az - b),
1
nf = (X)), (35)
my = p(X5) " 2.

Given the definitions (2.3), the vectors As and Awy are recovered as As = LT As, and Awy = [y + Ay — w]x. Similarly, Az
and Azy are recovered as Az = Ef Az, and Az, = [Vf(z) + H(z,y)Az — J(2)T (y + Ay) — AT (v + Av) — z]«.

4. A shifted primal-dual penalty-barrier function

Consider the shifted primal-dual penalty-barrier problem applied to (NP):

minimize
z,r],r9,5,81,89,
Y,V,21,22,W1,W2

subject to E,x —x1 = £~

., P B ,E . E E B
M($7$17$27S,817827y7v7w17w27,U U ,Y U 7w1aw2)

X
Fyx+x9 =u",

Eyx—by =0,

Lis—s1=0°, x1+p"e>0, 20 >0, s1+pe>0, w >0,
Lys+sy=u’, mo+p%e >0, 20 >0, so+ p’e >0, wy >0,
Lys—hyx =0,
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where M (x, 1, x2, S, $1, S2, Y, v, 21, 22, W1, we;u", u?, y?, v¥ 27, 25 wy, wh) is the shifted primal-dual penalty-barrier

function

c(@) —s+p (y—y")|?

c(z) = s)* +

1
— (Az — b) T + ﬁ||Aa; —b||* +

Fl@) = (clz) — ) y" +

o =)

—i{uB[zﬂjln(mmxlme]g)—[zl 1+ 7))}
i{uﬁzsmn([@mmme]ﬁ)[z (2 + )]s}
_i{ﬂwf]ﬂn([W]i[Sl +ufel?) — [wr - (s1 + pe) }

‘Z{ n ([ws]i[s2 + p"el}) — [ws -(52+;ﬁe)]i}. (4.2)

The gradient VM (z, x1, 22, 8, 81, 82, Y, U, 21, 22, W1, wa) may be defined in terms of the quantities X{" = diag(F,x — X + pe),
X4 = diag(u* — Eyz + pPe), Z1 = diag(z1), Zo = diag(z2), W1 = diag(w;), Wa = diag(ws), S} = diag(L,s — ¢° + p”e) and
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10

Sh = diag(u® — Ly s + p”e), in particular

g— AT(2(’UE + }%A(Ax -b)) — v) — JT(2(yE —
2 = 2p” (X)) 2p
zy — 2u7(X5) 712
2(y" — & (c—5))
wy — 20" (SY) T wf
wy — 201" (SY) " wy
c—s+p(y—y*)
Az — b+ p*(v — ")
@)+ ple — pPZy 2y

VM =

@y + pfe — pPZy 2
s1+ple — pfWy g
S0 4+ pPe — pP Wy twh
9= AT(2(0" + Lk (Az — b)) —v) — JT(2(y" —
(X1) M (21 -y + 0”2 + 1P (5
(Xg)fl(zé C Xy pP 25 4 (2
2(y" — p(c—9)) —y

—z
— Z

c—s+pu"(y—-y")
Az — b+ pt(v — v¥)

Zf1(21 cay (2 — ZlE))
Zy 2o -y + P (2 — 25))
Wit (wy - sy + p®(wy — wf))
Wy (wy - 55+ 5 (wy — wi))

where the quantities Dy, 7", D, n¥, D{", DY, n{", 74, D}, D3, n7, and =

d(e—s) ~y)

L(c—9)—y)
)
5)

)

(Sii)_l(wl -8 4 pfwi 4 pt(wy — wf))
(55)71(1"2 < 8y + pPwg + pf(wy — wS))

Z
2

g—AT(x" + (xV —v)) = JT(x" +
—(f + (7 — 21))
— (75 + (75 — 25))

T (" —y)

— (" + (7] = wy))
_(7T2W + (73 _wz))
—Dy(m" —y)
—D (7" —v)
—D{(n{ — 2)
—D3 (75 — 25)
—Dy" (" —wy)
—Dj (13 — w,)

are defined in (3.5).
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The Hessian V2M (z, 11, T2, s, 81, S2, Y, U, 21, 22, W1, W) is given by

=

H, 0 0 —2JTD;! 0 0 JT A 0 0 0 0
0 2017 (X1 ~1 0 0 0 0 ~I, 0 Ir 0 0 0
0 0 2IT5 (X451 0 0 0 0 0 0 I: 0 0
—2D; Mg 0 0 2D;! 0 0 0 0 0 0 0 0
0 0 0 0 20T (S4) ! 0 0 0 0 0 Is 0
0 0 0 0 0 201 (S5~ 0 0 0 0 0 I3
J 0 0 ~1I, 0 0 Dy 0 0 0 0 0
A 0 0 0 0 0 0 D, 0 0 0 0
0 Iz 0 0 0 0 0 0 X{z;*m? 0 0 0
0 0 I: 0 0 0 0 0 0 X1'z;2103 0 0
0 0 0 0 Is 0 0 0 0 0 SEW ATV 0
0 0 0 0 0 Is 0 0 0 0 0 SEWy 2Ty
where

2 2 _ _
Hy = H(z,2n" —y) + EATA + EJ(x)TJ(x) = H(z,2r" —y) +2ATD P A+ 2J ()" D I (),
and I7, I¥, I?, and I denote identity matrices of dimension n,, n,, m, and m, respectively. The usual convention regarding

diagonal matrices formed from vectors applies, with I1# = diag(n?), I1§ = diag(n%), II" = diag(n}"), and 11" = diag(wd").

5. Derivation of the primal-dual line-search direction

The primal-dual penalty-barrier problem (4.1) may be written in the form

minimize M(p) subject to Cp = be,

peL
where
7= {p :p = (x,21,%2,8, 81,82, Y,V, 21, 22, W1, W), with z; + pe >0, s; + p’e >0, z; >0, w; > 0 for i = 1,2}7
and
Ey 0 0 0 0 0 0 0 0 0 0 0 bx
E, I 0 0 0 0 0 0 0 0 0 0 £
| By 0 17 0 0 0 0 0 0 0 0 0 . vt
“=lo 0o 0 Iy 0 o0 0 0 0 o o of W le=], (5-1)
0 0 0 L, -I; 0 0 0 0 0 0 0 03
0 0 0 Ly 0 17 0 0 0 0 0 0 u®
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Let p be any vector in Z such that Cp = b.. The Newton direction Ap is given by the solution of the subproblem

minimize VM (p)T Ap + %ApTsz(p)Ap subject to CAp =b. — Cp =0. (5.2)

Ap

Let N denote a matrix whose columns form a basis for null(C), i.e., the columns of N are linearly independent and CN = 0. Every
feasible direction Ap may be written in the form Ap = Nd. This implies that d satisfies the reduced equations NTV2M (p)Nd =
—~NTVM (p). However, instead of solving (5.2), we formulate a linearly constrained approzimate Newton method by approxi-
mating the Hessian V2M by a matrix B such that NTB(p)N is positive definite with NTB(p)N ~ NTV2M (p)N. Consider the
matrix defined by replacing 7¥ by y, 77 by 21, 74 by 22, " by w1, 7§ by wy in the matrix V2M (z, x1, 2, s, S1, 82, ¥, U, 21,
z9, w1, wa). This gives an approximate Hessian B(x, x1, 2, S, $1, S2, ¥, U, 21, 22, w1, wa) of the form

H? +2ATD'A+2JTD;LJ 0 0 —2JTD;1 0 0 JT AT 0 0 0
0 2(D#)~t 0 0 0 0 0 0 Iz 0 0
0 0 2(D3)~! 0 0 0 0 0 0 VE: 0
—2D;1J 0 0 2Dt 0 0 ~1I, 0 0 0 0
0 0 0 0 2(Dy)~1 0 0 0 0 0 I8
0 0 0 0 0 2(Dy)~t 0 0 0 0 0
J 0 0 I, 0 0 D, 0 0 0 0
A 0 0 0 0 0 0 D, 0 0 0
0 I* 0 0 0 0 0 0 D? 0 0
0 0 VE: 0 0 0 0 0 0 D3 0
0 0 0 0 I 0 0 0 0 0 Dy
0 0 0 0 0 I3 0 0 0 0 0

where H® ~ H(x,y) is chosen so that the approximate reduced Hessian NTB(p)N is positive definite (see Section 7). Given
B(p), the approximate Newton direction is given by the solution of the QP subproblem

minimize VM (p)T Ap + %ApTB(p)Ap subject to CAp = 0.
P

,\Eoooooqﬁooooo
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Consider the null-space basis defined from the columns of the matrix

OO DD DD OO OO OO

o
coococoi"oocococoo
coocofioococoocococo
cooffjoooocoococoo
codjoocococoocococoo
ofloocococoocococococo

(el e en I en e Jen M e M e}

~

S w

where E,, = E,EY, E,, = E,EY L,,=L,LT and L,, = L,L}. The definition of N of (5.3) gives the reduced approximate
Hessian NTB(p)N such that

~

H, —2JID;ILT JY AT EY —EL 0 0
—2L.Dy'J, 2L, (Dy'+ D)LY —L, 0 0 0 Lt LY
Jr —LT Dy 0 0 0 0 0
Ap 0 0 D, 0 0 0 0

E,. 0 0 0 D? 0 0 0|’
—~Ey, 0 0 0 0 D3 0 0
0 Lye 0 0 0 0 Dy 0
0 —Lyyp 0 0 0 0 0 Dy

where J, = J(z)EF, Ap = AEY, H, = Ex(H” + 2ATD; A+ 2J(2) "Dy J (z) + 2D}) EY, with

D; = E;I‘(Df)ilEL + EE(Dg)ilEU’ and Div = LLT(D{V)ilLL + LE(D;/)ilLUa
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Similarly, the reduced gradient NTVM (p) is given by

9 — Az (2nY —w) = J7 (2n —y) = EL(27] — 21) + By, (275 — 2y)

UF
271—;«: —Yp — LEF(2W{V - wl) + LEF(Z]T;V - U)2)
=Dy (7" —y)
—D, (¥ —v)
—Di(r{ — z) ’
—D3(m3 — 25)
=D (m)" —wy)
=Dy (mg" — w,)

where g, = E.Vf(x), 7’ = Lyn" and y» = Lpy. The reduced approximate Newton equations NTB(p)Nd = —NTVM (p) are
then

~

H, —2JIDLT Jr AT EY —ET 0 0 dy
—2L.D;'J, 2L.(Dy'+ DI)LT —L,. 0 0 0 LY LT | | de
Jr ~LT Dy 0 0 0 0 0 d3
Ay 0 0 D, 0 0 0 0 dy
E.p 0 0 0 D} 0 0 0 ds
Eyr 0 0 0 0 D3 0 0 ds
0 Lir 0 0 0 0 DY 0 dr
0 —~Lys 0 0 0 0 0 Dy ) \ds

g, — A} (27r" — v) - Jr (27rY — y) — EL(2nf —2)) + EL.(275 — z,)

27{; —Yp — LLTF(27T{V - wl) + L;}[‘F(ZWEV - w2)
=Dy (1" —y)
_ —D,(n" —v)
= —D{(rf ~ 2) » 64
—D3 (73 — 25)
=Dy (" —wy)
=Dy (n3 —w,)
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Given any nonsingular matrix R, the direction d satisfies RNTB(p)Nd = —RNTVM (p). In particular, if R is the block
upper-triangular matrix R such that

Iz 0 —2JTD;! —24TD;! —2EL(D?)"! 2EL(DZ)7! 0 0
I3 2L.Dy! 0 0 0 —2L(DY)~ 2Ly (DY)
L, 0 0 0 0 0
B I, 0 0 0 0
R= Ie 0 0 0 ’
Iz 0 0
I 0
I

where I7, I?, I7, I are identity matrices of size n,, ny, m,, and m, respectively, then R is nonsingular with

HE 0 —JI AT -pL ETL 0 0
0 0 Ly 0 0 0o -LT LT,
Jo —LT D, 0 0 0 0 0
. A, 0 0O D, 0 0 0 0
EN'BpN=1 p 0 0 DI 0 0 0o |’
—FEyp 0 0 0 0 D3 0 0
0 L.» 0 0 0 0 Dy 0
0 —Ly 0 0 0 0 0 DY
and
gr — JYy — ATv — 2, EF(g—JTy—ATv—z)
Yr — Wp Ly (y — w)
—Dy (7" —y) Cf({v) —s+ uAP((y - yE))
T _ —D,(m¥ — ) _ x—b+p*lv—o
RNTVM(p) = —Di(7{ — z) B Zl_l(zl (Err — ) +p” Z1 - 21) ) ’
—D3 (73 — 2z) Zy (2 - (u* = Eya) + p” (25 — 25))
—Dy(m)" —wy) Wit (wy - (Lys — %) + p” (wy — wf))
=Dy (7)) — wy) Wy (wy - (U — Lys) + p® (wy — w3))



5. Derivation of the primal-dual line-search direction 16

with H2 = E,H?E}. This implies that we may solve the following (unsymmetric) reduced approximate Newton equations for

d:

HE o -Jr& -AT - EL 0 0 dy gr — Jiy — Alv
0 0 Ly 0 0 0 LT LT ||d Yr — We
Je —LT D, 0 0 0 0 0 ds =Dy ( Y)
Ap 0 0 D, 0 0 0 0 da | _ —D (" —v) (5.5)
E.. 0 0 0 Df 0 0 0 ds | —D#(n? — z,) ’
Eyr 0 0 0 0 Dj 0 0 dg —Di (75 — z,)
0 Lk 0 0 0 0 DY 0 dy =Dy (7} —wy)
0 —Ly 0 0 0 0 0 Dy ds DY (7Y — wsy)
Then, the expression Ap = Nd implies that
Ax EYd,
Aml dl
AJ,‘Q —dl
As Ltd,
ASl d2
ASQ 7d2
Ap = Ay | =Ne=| (5.6)
Av d4
A21 d5
AZQ d6
Awl d7
Aw2 dg
These identities allow us to write the equations (5.5) as
HE 0 -Jr -AT - EL 0 0 Azp —Jry—Alv
0 0 Ly 0 0 0 —LL LT || Ase Yp — W
Je —LT D, 0 0 0 0 0 Ay —Dy (77 —y)
Ap 0 0 D, 0 0 0 0 Av | =D (m" —v) (5.7)
E.. 0 0 0 D¥ 0 0 0 Az | —D#(r? — z) ’ ’
—Er 0 0 0 0 D3 0 0 Az —D3(75 — z,)
0 L., 0 0 0 0 Dy 0 Awq =Dy (n} —wy)
0 —Ly 0 0 0 0 0 Dy Aws —DY(my — wg)

with Ar = EYAz,., As = LT As,., Az = Axp — (0° — Eyx+11), Avg = —Azp + (u¥ — Eyw — x3), Asy = Asp — (05 — L5+ 51)
and Asg = —Asp + (u® — Lys — 82),
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The shifted penalty-barrier equations (5.7) are the same as the path-following equations (3.4) except that H(z,y) is replaced
by H” in the (1, 1) block.

6. The shifted primal-dual penalty-barrier direction

In this section we consider the solution of the shifted primal-dual penalty-barrier equations (5.7). Collecting terms and reordering

the equations and unknowns, gives

_A;F
0

0 0
D? 0
0  Di
0 0
0 0
0 0
_E;FF EEF
0 0

Consider the diagonal matrices

o O O

Dy

_LT

LF

0 0 A,
0 0 E,,
0 0 —Eu,
0 L, 0
DY —L, 0
LT 0 0
0 0  H?

0o —-LT I

O O O O O

Av

Azl
AZQ
Aw1
Awg
Asy
Az
Ay

Dy(v—m")
Di(z1 —7{)
D3 (22 — 73)
Dy (wy —my")

Dy (wy —m3’)
Lp(y —w)
Ep(g—J% — ATy — 2)
Dy(y—7")

Dy = (LF(DY) 'L, + LEDY)'L,) and D, = (BXD))'E, + EL(D})'E,)1,

where (- )T denotes the Moore-Penrose pseudoinverse of a matrix. The identity I,, = LY L, + L} L, implies that the m x m

matrix D,, satisfies the identities

Lr*rL.p, =D, =D,L!L,,

and LYL,D, =0.

In addition, the diagonal matrix LFD:[VLE is nonsingular if every slack is either fixed or bounded above or below. If equations
(6.1) are premultiplied by the matrix

x
IL F

Iz,
0 I,

0 0

0 LL(Dy)!
(D3)~! 0

0 D,LIDY)

_LT

IS
(Dy)~

UF

7DWLE(D5V)71

17

0 e
D,LY 0 I,
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we obtain the block upper-triangular system

D, 0 0 0 0 0 A, 0 Av D (v—7")
0 DI 0 0 0 0 E,. 0 Az D% (z — %)
0 0 Dj 0 0 0 —Eyp 0 Azy D3(zy — 75)
0 0 0 DY 0 Lis 0 0 Awy | DY (wy —7}")
0 0 0 0 DYy —Ly, 0 0 Aws | DY (wy — ) ’
0 0 0 0 0 L,Di, LT 0 L, As;. Lp(y—7")
0 0 0 0 0 0 H, —JT Ay Ep(g—J% — ATxYV — 7%)
o 0 0 0 0 0 Je Dy +Dy) \Ay Dy (y—7")+Dy(y—7")

where H, = H? + ATD'A, + E,DLEY 7% = LT7/ — LT7y and 7% = EXn% — EX7wZ. Using block back-substitution, Az,
and Ay can be computed by solving the equations

H, —JT (Axp) B (EF(Vf(x) — J(z)Ty — ATrv — WZ))
JF DY+DW Ay Dw(y_ﬂ-w)—i_Dy(y_ﬂ-y) .
Once Az, and Ay have been computed, the full vector Az is given by Az = EXAz,. Similarly, substitution of the identity
As = LT As,, in the sixth block of equations gives
As=-D,,(y+ Ay —7").

There are several ways of computing Aw; and Aws. Instead of using the block upper-triangular system above, we use the last
two blocks of equations of (3.4) to give

Awy = — (1) (wy - (L,(s+ As) — €° + p”e) — pw}) and Aws = —(S5) " (wy - (u® — L, (s + As) + p”e) — p"ws).
Similarly, using (3.4) to solve for Az; and Az, yields
Azy = —(X{) Mz (B (z + Az) — 05 + pPe) — p”2f) and Azp = —(X§) 2y - (W — E (x + Az) + p"e) — pn”25).

(x4 Az) —b).
) — z]x, where

Similarly, using the first block of equations (6.1) to solve for Av gives Av = —(v — 7), with 7" = v” — #%(A
Finally, the vectors Awy and Azy are recovered as Awy = [y + Ay —w]x and Azx = [g+ HAz — J(y + Ay
w=Liw, + LTw, — LYwy and 2 = Elz, + EYz, — Elz,.
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7. Summary: equations for the line-search direction

The results of the preceding section imply that the solution of the path-following equations F'(v,)Av, = —F(vp) with F' and
F’ given by (3.2) and (3.3) may be computed as follows. Let  and s be given primal variables and slack variables such that
Exx =by, Lys = hx with ¥ — p? < Eix, Eye < u* + p?, 05 — p? < Lys, Lys < u® + p?. Similarly, let z1, 29, wy, we and y
denote dual variables such that wy > 0, wa > 0, z; > 0, and 23 > 0. Consider the diagonal matrices X! = diag(E,x — X + pe),
XY = diag(u* — Eyx + pPe), Z1 = diag(z1), Zo = diag(z2), Wi = diag(wi), Wo = diag(ws), S} = diag(L,s — ¢° + p”e) and
Sh = diag(u® — Ly s + p”e). Consider the quantities

1
Dy = u"I,, " =y’ = —(c—s),
i
1
D, =u'l,, ' =v" — —(Azx - D),
]
(DY)~H = (X1) 121, (DY)~ = (S1) "W,
(D)™ = (X4) 7' Zs, (D) ™" = (S5) ™ W,
D, = (Bf(Df)'E,+ E}(D;)'E,)", Dy, = (LT (DY) 'L, + L} (Dy)~'L,)",
= e (X0) o rf = ().
"8 = i (X0) U2, Rl = 8 (58) Mk,
7’ = EXn? — EXnZ, a¥ = LTl — LInY
Choose HZ so that HE approximates E,H (z,y)E} and the KKT matrix
(H}; +ArD*A, + E,DLE} JE )
J —(Dy + Dy)

is nonsingular with m negative eigenvalues. (A common choice of HZ is the matrix E, (H (z,y) + oI,)E} for some nonnegative
scalar ¢.) Solve the KKT system

B Vf(z) = J(x)Ty — ATxV — x%)

<Hg +AI'D'A, + E,DLE} —JT > <Axp> B <EF( ) (7.1)
= Dy(y*’fry)‘i’Dw(yfﬂ—W) ) .

g Dy + Dy, Ay
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and set
Ar=EYAz, T =uz+ Az, Azy = —(XI) (2 (B2 — 05+ pPe) — p”27),
Azy = —(XE) (2 - (W — EvZ + p"e) — pP25),
@\:y—i_Ayu As :_DW(@\_T‘—W)7
§=s+ As, Awy = —(S) " (wy - (L5 — €5 + pPe) — pPw?),
Awy = —(S5) " (ws - (u° — Ly5+ pe) — pwh),
- 1 ~
V=0 — — (AT - b), Av = 77—,
A
w = Lyw, + Ljwy — Ljw,, 2= Exzy+ Bz —Ejz,
U=v+ Av, Awy = [§—wlyx,

Azx = [Vf(z) + H(z,y)Az — J(2) Ty — AT0 — 2]4.

As (z,s) — (z*,s*) it holds that ||D} | and ||D}| are bounded, but || Dy || — oo and |ATD;'A,|| — co. This implies
that the matrix and right-hand side of (7.1) goes to infinity. In the situation where AT DA, is diagonal, then the KKT

system can be rescaled so that the equations to be solved are bounded. If sz and D, denote diagonal matrices such that
D2 = (ATD;'A,) Y and D2, = (LTL, + D,,)~ !, then ||D,| and || Dy || are bounded as (x,s) — (z*,s*). The equations (7.1)
may be written in the form

D,H!(z,y)D, + D2E,DSET + 12 —(D,,J,(z)D )T (AEEF> _ (D,E.(Vf(z) - J(x)Ty — ATn" — 17)
5WJF(x)5Z 53VDy+LELF Ag - DNW(DY(y_WY)—’_DW(y_TrW)) 7

with Az, = D, A%, and Ay = Dy Ay. In this case, the scaled KKT matrix remains bounded if H(z,y) is bounded. Similarly,
the right-hand side remains bounded if || Dy Dy, (y — ©")|| is bounded.
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The associated line-search merit function (4.2) can be written as

_ _ T 1 _ <2 1 _ P, _ 2 E\|2
f@) = (e(x) =)y +2MP||C(!E) sl +2MPHC($) s+u"(y—y)ll
1 1
_ _ T o = _pl2 _ Al 2 EN[|2
(Az —b) v +2MAHAx bl +2MA | Az — b+ p' (v —0")|
- il ([ ) [ B — £ 4 e 2) — (21 - (B — £ + )] )
j=1

YWl () - B pe]}) - [z (0~ Bur 4 p'e)) )
=3l len (i Los — € 4 e ]?) = [wn - (Lus = € + ")) }
= > {ulwglim ([ws ilu® = Los + phe]?) = [ws - (u* = Los + ) i }.
=1

8. The primal-dual trust-region direction

Given a vector of primal-dual variables p = (z, 1, ®2, s, s1, S2, Y, v, 21, 22, W1, We), each iteration of a trust-region method for
solving (NLP) involves finding a vector Ap of the form Ap = Nd, where N is a basis for the null-space of the matrix C of (5.1),
and d is an approximate solution of the subproblem

minidmize gad+ 2d"By(p)d subject to |||+ <4, (8.1)

where gy and By are the reduced gradient and reduced Hessian gy = NTVM and By (p) = NTB(p)N, ||d||» = (dTTd)'/?, 6 is
the trust-region radius, and T is positive-definite. The subproblem (8.1) may be written as

minimize g T~ Y2 Av,, + %A’U};T_IQBN(]))T_UQAUM subject to || Avy |2 < 6, (8.2)

Avpr

where Av,, = T'/2d. The application of the method of Moré and Sorensen [8] to solve the subproblem (8.2) requires the solution
of the so-called secular equations, which have the form

(By +0l)Avy = =g, (8.3)
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with o a nonnegative scalar, By = T~ Y2By(p)T~1/?, and gy = T~ '/?gy.

equations

(By +0T)d = —gy,

from which the solution of the secular equations (8.3) may be computed as Av,, = TV/24.

In this note we consider the solution of the related

(8.4)

The identity (5.6) allows the solution of the approximate Newton equations By (p)d = —gx (5.4) to be written in terms of
the change in the variables (z, s, s1, $2, ¥, v, 21, 22, W1, wz). In particular, we have

~

H, —2JYD;LYT Jr AT ET
—2L,D;'J. 2L.(D;'+ DI)LT —L, 0 0
Jr LT D, 0 0
Ar 0 0 D, 0
B, 0 0 0 D%
N O 0 0 0 0
0 Lyr 0 0 0
0 —Lyr 0 0 0
9r — AE (27TV
where R
H,=E,(H(z,y)+J'Dy
with
P Y E 1
DY:,U Ima T =Y _E(C_S)7
DY =Siwit, ol = pf(8) e,
Dy = SyWy oy =t (SE) " wg,
o =LIry — LEnYy

—v) = JF (2" —y) - EL(2nf — z) + E},

-EL 0 0 Az,
0 L?F‘ Lg‘p ASF

0 0 0 Ay

0 0 0 Av
0 0 0 Az
D3 0 0 Azy
0 DY 0 Aw,
0 0 DY ) \Aws

UF

271—; —Yr — LLTF(27T{V - wl) + LEF(2WQW - U)2)

—Dy (¥ —y)
—D, (¥ —v)
—Di(m{ — z)
—D3(m3 — 25)
—D{ (m} — w,)

D, =pu'l,, 7 =0v" —
1

Df = XPZTY, = (X)L

D§:X£LZZ_17 7r§:u 5

(275 — 29

)
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Note that in the trust-region case we make no assumption that B, is positive definite.

The first step in the formulation of the trust-region equations (8.4) and their solution is to write the (reduced) gradient and
approximate Hessian of equations (8.5) in terms of vectors & and ¥ that combine the primal variables (z,s) and dual variables
(y, v, 21, 22, w1, wa). Let §, H, J and D denote the quantities

Jo —LT D, 0 0 0 0 0
A0 0O D, 0 0 0 0
- _ [9F 7_(He O 7_ E.r 0 = |1 0 0 D7 0 0 0
9(0)’ H(o 0)’ =1 B, of ™M P=109 0o 0o D3 0 o]
0 Ly 0O 0 0 0 DY 0
0 —Ly O 0 0 0 0 DYy

where g, = E.Vf(z), J. = J(z)EY, H, = E,H(x,y)EY, and A, = AET. Similarly, let T,, = diag(T*,T*) and T, = diag(T",
TV, T, T4, T, T5"). The trust-region equations associated with the modified Newton equations (8.5) are (By +0T)Ap = —gu,
which may be written in the form

ﬁ—l—ZjTl_j:lf—FO'fw _‘jT_' AT _ g’—fri—fr(?_f—??) (8.6)
T D+ oT,) \Ay -D(7 - 9) ’
where
y T
v i
, Ay
zZ
g= || =T, ar=(3"). and ag= | a
29 7T2 ASF A'LU
w1 i
Wa Ty

—2JTp-1

7 ) to both sides of (8.6) gives the equivalent system

Applying the nonsingular matrix <I

H+oT, —J'(I+20D7'T,)\ (AZ\ _ (G- J"%
J D + 0T, Ay Dy—-7m))"

As in Gertz and Gill [3], we set T, =1 and fy = D. With this choice, the associated vectors AZ and Ay satisfy the equations

H+4ol —JT AZ (T ®.7)
J ¢D ) \(1+20)A7) — \D@—-=))’ '
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where @ = (14 0)/(1 4 20). In terms of the original variables, the unsymmetric equations (8.7) are

Hp +ol¥ o -—-Jr -AY -l EL 0 0 Azp gr — Jfy — ATv — 2,
0 ol Ly 0 0 0 L} L Asp Yr — Wp
Jr -LT D, 0 0 0 0 0 (1+ 20)Ay —Dy (7Y —y)
Ap 0 0 oD, 0 0 0 0 (1+20)Av | _ —D (" —v) (8.8)
E.. 0 0 0 D7 0 0 0 (1+20)Az | —Di(m¥ — z) B
—Eye 0 0 0 0 oDj 0 0 (1420)Az —D3 (75 — z,)
0 L 0 0 0 0 DY 0 (14 20)Aw, —D¥(x} — w,)
0 —Lyr 0 0 0 0 0 Dby (14 20)Aws —Dy (my — w,)

where & = (14 0)/(1 + 20). These equations are equivalent to (5.5) when 0 = 0 and & = 1. Collecting terms and reordering
the equations and unknowns, we obtain

oD, 0 0 0 0 0 A, 0 Av D,(v—m")
0 oDf 0 0 0 0 E.r 0 Az D% (z — n¥)
0 0 ¢¢Dj 0 0 0 —FEur 0 AZs D3(zo — 75)
0 0 0 oDy 0 Ly 0 0 Aw, _ Dy (wy — my") (8.9)
0 0 0 0 DY —Ly 0 0 Atws DY (wg —my) ’ ’
0 0 0 —LT LY oI 0 Ly Asg Ly (y — w)
-AT —-EL EL 0 0 0 H,+ol% —JF Axp Eo(9—J y— AT —2)
0 0 0 0 0 -—L} J, oDy Ay Dy(y—m")

where D, = ¢D,, DY = 6D}, DY = ¢DY, DY = ¢D%, D = 6D}, Dy = 6Dy, Ay = (1 + 20)Ay, Av = (1 + 20)Av,
AZ1 = (14 20)Az, AZy = (14 20)Azs, Awy = (1 4+ 20)Aw;, and Awy = (1 4 20) Aws. We define

Dyw = (L (D{') 'Ly + Ly (DY) 'L, = 6(L (DY) "' Lo + Ly (DY) 'L,)T = 6Dy,
with D, = (LE(D{V)_lLLF + LEF(DQW)_lLUF)T. Similarly, define

Dy = (DI, +o6L}L,)".
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Premultiplying the equations (8.9) by the matrix

D,

where

o O O O o o o

0
&D?

o ©O O o o o

I},
0 I3,
0 0
0 0
0 0
FELDD)Y =3B
0 0
0 0 0
0 0 0
0 0 0
gDV 0 Ly
0 &DY  —Ly
0 lr.Df,L}t
0 0 0
0 0 0

Iie
0 I,
SLL(DY)™H —2L(Dy) ! I3
0 0 0 Iz
D, LT(D¥~t —D, LY(D¥)"' &D, LT 0 In
Ap 0 AV
L 0 Az,
—Eye 0 AZ,
0 0 Ay
0 0 Ay
0 L Asp
Hp+ol® —Jr Az
Jr &(Dy + Dy)) \AY
D,(v—m7")
Df(z1 — m{)
D3 (22 — 73)
Dy’ (wy — ")
= Dy’ (wy — m3")

- 1 1
A.—E, (H +=ATDTIA 4 jDL>EE,
g (o)
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w = Liwy + LTw, — LYw,, 2 = Elzx + EYz; — Efz,, 7% = L7l — LY#y and 77 = Ern? — EXn4. Using block
back-substitution, Az, and Ay may be computed by solving the equations
rr T T 1
H, +olf —Jp <A$F> | Es (g—JTy—ATv—z+6[AT(U—7T")+Z—7TZ})
Iy &(Dy +Dy)) \Ay D, (y—7")+D, (6(y —w)+w—n")

Once Az, and Ay are known, the full vector Az is computed as Ar = EX Az,. Using the identity As = LT As,, in the sixth
block of equations gives

As=—aD,, <y+(1+20)Ay—w+1[w—WW}>.
7

There are several ways of computing Aw; and Awsy. Instead of using the block upper-triangular system above, we use the last
two blocks of equations of (8.8) to give

Auu::*if%‘(S?Y*(wl~(Lxs+fAs)fﬁs%fuB@‘*quf)and
o

1
Awy = —m(sg)fl(ub (u” = L (s + As) + p’e) — plwg).

Similarly, using (8.8) to solve for Az; and Az, yields

Am:_f%¢WV%%%Q@+A@—W+W@—fﬁ)Md
o

1 L\ — X B B E
AZQZ_m(Xé) 1(z2 c(ut = B (x+ Ax) + ple) — p zg).

Similarly, using the first block of equations (8.9) to solve for Av gives Av = —(v—7")/(1+0), with 77 = v — H% (A(z+Az)—b).
Finally, the vectors Awy and Azy are recovered as Awy = [y+Ay—w]x and Azy = [g+ HAz—J T (y+Ay)— AT (v+ Av) — 2] .
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9. Summary: equations for the trust-region direction

The results of the preceding section imply that the solution of the trust-region equations (By + ¢T)Av,, = —gy, with ¢ a
nonnegative scalar, may be computed as follows. Let x and s be given primal variables and slack variables such that Eyx = by,
Lys = hy with £X — p? < Eyx, Eye < u* + p?, 05 — p? < Lys, Lys < u® 4+ p®. Similarly, let z1, 22, w1, we and y denotes
dual variables such that wy; > 0, we > 0, 21 > 0, and z2 > 0. Consider the diagonal matrices X{' = diag(E,z — (X + p”e),
XY = diag(u* — Eyx + pPe), Z1 = diag(z1), Zo = diag(z2), Wi = diag(wi), Wo = diag(ws), S} = diag(L,s — ¢° + p”e) and
Sh = diag(u® — Lys + p”e). Given the quantities

1
D, :,UfPImv " :yE_E(C_S)a
1
D, =u'l,, WV:UE—E(AZ'—Z)),
(DY)~h = (x1) 121, (DY)~ = (S1) "',
(D)™ = (X4) 7' 2s, (D) ~h = (S5) ™ W,
D, = (END])'E, + E;(D3)"'E,)T, Dy = (L{ (DY) 'L, + L (DY) 'L,)T,
D, = (D}, + o6L,LT)T,
i = (X)) 7 e m’ = pf(SY) " wr,
w3 = P (X5) 7 e, w3 = pf(8) " ws,
7’ = EXn? — EXn, o =LTrl — LIxy,
solve the KKT system
1 1
E, (H(x,y) +ol, + iATDxlA =+ iDL)EpT *JE <A$F>
a a ~
J, &(Dy + Dy) ) \AY

_ EF<Vf(x) — J(@)Ty — ATv — 2 + é[AT(U—ﬂ'V)—‘rZ—T(Z])

Dy(y—ﬂ"’) —|—DW(5(y—w) +w—ﬂ'w)
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Then
1
Ar = Ef Az, T =ux+ Az, A21:—1+ (X1 Nz - (B2 — 0+ pPe) — p”z7),
o
1 _ ~
Az2:—1+U(X§‘) Yzy - (W — By + p’e) — p”23),
- BN 9 1
Ay = Ay/(1+20), y=y+ Ay, As :—6Dw(y+(1+20)Ay—w+g[w—7rw}>,
1
§=s+As, Awy = =37 (1) (w1 - (LS = £ + p”€) — p"wi),
1 _ ~
Awy = =77 (85) 7 (wa - (u” = LuS + pe) — pws),
1 1
T =v" — — (AT - b), Av =— (v—7"),
" 140
w= Liw, + LTw, — LY w,, 2= Elz, +Elz —Erz,
1/)\:’U+A’U, Awy = [:/y\*w]xa
Azx = [Vf(x) + H(z,y)Ar — J(2)T5 — AT0 — 2]x.

10. Solution of the trust-region equations with an arbitrary right-hand-side

Moré and Sorensen define a routine z,,(-) that uses the Cholesky factors of By + oI and the condition estimator proposed
by Cline, Moler, Stewart and Wilkinson [2]. As the method of Gill, Kungurtsev and Robinson does not compute an explicit
factorization of By + oI, we define Znun(+) using the condition estimator DLACON supplied with LAPACK [1]. This routine, which
generates an approximate null vector using Higham’s [7] modification of Hager’s algorithm [6], uses matrix-vector products
with (By + oI)~1)~!, rather than a matrix factorization, to estimate ||(By + oI)7'||;. By-products of the computation of
|(By + oI)~1|; are vectors v and w such that w = (By + o)~ 1w, ||v||; = 1 and

IBy -+ oD vl =l = (B + 007y = max |(By +oD)~ul.
ull;=

Thus, unless |Jw|| = 0, the vector y = w/||w|| is a unit approximate null vector from which we determine an appropriate z such
that | Avy + 2|z = 0.
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The reduced trust-region equations with a general right-hand side analogous to (8.9) are given by

6D, 0 0 0 0 0 A, 0 da -
0 oD} 0 0 0 0 Ey 0 . rt
0 0 oDj 0 0 0 —Eur 0 i rs
0 0 0 &bV 0 L.y 0 0 el e
0 0 0 0 &DY Ly 0 0 i@ oy
0 0 o —-LX LT oI 0 Ly ds Lyrs
—AE —EB; E;[; 0 0 0 H;, —‘rO’I;f —J};F dx Eery
0 0 0 0 0 —LT g, aDy/) \ G "y
Premultiplying these equations by
1,
0 I
0 0 Iz,
0 0 0 I,
0 0 0 0 I8,
0 0 0 FLL(DY)™ —2L(Dy)! I;
SARDLY LELR(DD)TY —LEL(D))! 0 0 0 Iy
0 0 0 D, LT (D"t —D,LY(D¥)"' &D, LT 0
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gives the block upper-triangular equations

D, 0 0 0 0 0 A, 0 q,
0 ¢Dh? 0 0 0 0 E.. 0 P
0 0 ¢Di 0 0 0 —Eu 0 i
0 0 0 DY 0 Ly 0 0 i
0 0 0 0 6Dy  —Ly 0 0 e
0 0 0 0 0 irL.D{ L} 0 L, 7
0 0 0 0 0 H,+olZ —JT d.
0 0 0 0 0 0 J, (Dy +Dyw)/) \ iy
TA
riH
r?
i)
= e ,

1

B, (ATD; ', + BXDH) ) — EF(D5) P 4 or )
Dy, (LEDY) ) = LEDY) " 4 or.) 41y

Lo (B2 — LE (D)) + or)

Q| =

~ 1 1 ~ ~
with H, = F, (H(x,y) +—ATD'A+ jDL)EE. Using block back-substitution, gy and ¢, can be computed by solving the
G G

equations
~ _ 1
(HF —J7 > (q) =B, (ATD; b, + EF(DF) ) — EF(D5) "1 + or)
= g
J, (Dy +Dy)) \a@v Dy (LEDI) 9 = LE DY) P + o) 4,
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with the remaining vectors computed as

G = Dy, (L1010 = LE D) D +olrs — )
i = () (P - 1,174
a{m}) = é(D{”)_l(r&}) -L, FqS)
i = §<D§>—1(r<ﬁ> BB, T)
i) =200 (o - BB
7= é(DA)’l(m - 4,4,).
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A, ma X n matrix of linear constraint normals, 2 D?,19, 27

Ap, ny X n matrix of free columns of A, 6 D419, 27

Ax, nx X n matrix of fixed columns of A, 6 Dw, 19, 27

Dt 3 Dy, 19, 27

Er, rows of I, that are not rows of Ex, 2 Ho, nx X ny matrix of fixed rows and free columns of H(zx,y), 7
E}., n;, X n matrix of normals for lower bounds on z, 2 St 19, 27

ELr, n; X nrp matrix of free columns of E;, 6 St defined, 6

Ey, ny X n matrix of normals for upper bounds on z, 2 S 19, 27

Eyr, nuy X np matrix of free columns of Ey, 6 S% defined, 6

Ex defined, 2 XV, 19, 27

Ex, nx X m matrix of normals for fixed z, 2 X1 defined, 6

Hpr, np X np matrix of free rows and columns of H, 6 X5, 19,27

Hx, nx X nx matrix of fixed rows and columns of H(z,y), 7 X5 defined, 6

I, identity matrix of arbitrary dimension, 3 £%, m-vector of lower bounds on s, 2

I} defined, 15 u®, my-vector of upper bounds on s, 2

I7 defined, 15 %, n.-vector of lower bounds on z, 2

I}, defined, 15 u™, ny-vector of upper bounds on z, 2

I defined, 15 Jn, 22

I,,, identity matrix of order n, 2 min(a, b), defined for arbitrary vectors a and b, 3
Jr, free columns of J, 6 mv, 19, 27

Jx, fixed columns of J, 6 w1, 19, 27

Lr, rows of I,,, that are not rows of Lx, 2 w19, 27

Ly, m;, X n matrix of normals for lower bounds on s, 2 W, 19, 27

Ly, my X n matrix of normals for upper bounds on s, 2 w¥, 19, 27

Lx, mx X n matrix of normals for fixed s, 2 w7, 19, 27

P, 2 w5, 19, 27

P, 2 7%, 19, 27

Wi defined, 6 & defined, 24

W defined, 6 21, 19, 27

71 defined, 6 25, 19, 27

Zo defined, 6 a - b, defined for arbitrary vectors a and b, 3
By, 22 b, m4-vector of linear-constraint right-hand sides, 2
Dy, 19, 27 bx, nx-vector of fixed z-values, 2

D", 19, 27 ¢(z), m-vector of nonlinear constraint functions, 2
DY 19, 27 e, vector of ones with arbitrary dimension, 3
Dy, 19, 27 hx, mx-vector of fixed s-values, 2
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ma, number of linear constraints, 2

mp, number of lower bounds on s, 2

my, number of upper bounds on s, 2

mx, number of fixed s, 2

nr, number of lower bounds on z, 2

ny, number of upper bounds on x, 2

nx, number of fixed x, 2

s, m-vector of slack variables associated with c(x), 2

first-order KKT conditions, 4

Hager’s algorithm, 28
Hessian of the Lagrangian, 3

Moore-Penrose pseudoinverse of a diagonal, 3, 17
shifted primal-dual penalty-barrier function, 8

treatment of free slacks, 2
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