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1. Introduction

1. Introduction

This note derives the shifted primal-dual penalty-barrier merit functions and associated path-following equations for an opti-
mization problem with constraints written in eight different ways:

minimize f(z)

TER™
minimize
rER", s€R™
minimize
zER™ secR™
minimize
zE€R™, s€R™
minimize
zER™, s€R™
minimize
zeR™ seR™
minimize
reR™ seR™
minimize
rER™ seR™

subject to
subject to
subject to
subject to
subject to
subject to
subject to

subject to

Ar =b, (<z<u,

(1.1)

(1.2)
(1.3)
(1.4)
(1.5)
(1.6)
(1.7)

(1.8)

Throughout the discussion, the functions ¢ : R® — R™ and f : R"” — R are assumed to be twice-continuously differentiable. The
linear constraints Ax = b are imposed using a shifted primal-dual penalty method. In practice, the constraints involving A are
used to temporarily fix a subset of the variables at their bounds, in which case the rows of A are rows of the identity matrix.
The constraints Exx = by, and Lys = hy are also used to fix a subset of the variables and slacks. However, in this case, the
constraints are imposed directly. All inequality constraints are imposed indirectly using a shifted primal-dual barrier function.

The equations for the eight problem formats are summarized in Sections 2.6, 3.6, 4.6, 5.6, 6.6, 7.6, 8.6 and 9.6 respectively.

The structure of these equations allows us to write down the equations for the general problem

minimize
zeR”, seR™

f(x) subject to {

The equations and merit function for this general problem are given in Section 10.6.

Convergence results for Problem (1.2) are given by Gill, Kungurtsev and Robinson [1].

c(x) —s=0, Lys=hyx, ¢°<L.s,
Az —b=0, Exx=by, {*<Ex,
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Notation. Given vectors z and y, the vector consisting of z augmented by y is denoted by (z,y). The subscript ¢ is appended
to vectors to denote the ith component of that vector, whereas the subscript k is appended to a vector to denote its value during
the kth iteration of an algorithm, e.g., xj represents the value for  during the kth iteration, whereas [z ]; denotes the ith
component of the vector xy. Given vectors a and b with the same dimension, the vector with ith component a;b; is denoted by
a - b. Similarly, min(a, b) is a vector with components min(a;, b;). The vector e denotes the column vector of ones, and I denotes
the identity matrix. The dimensions of e and I are defined by the context. The vector two-norm or its induced matrix norm
are denoted by || - ||. The vector g(z) is used to denote Vf(x), the gradient of f(z). The vector g(x) is used to denote Vf(z),
the gradient of f(z). The matrix J(x) denotes the m x n constraint Jacobian, which has ith row Vc;(x)?. Given a Lagrangian
function L(z,y) = f(x) — c(z)Ty with y a m-vector of dual variables, the Hessian of the Lagrangian with respect to z is denoted

by H(x,y) = V3f(x) = 300, 4:Viei(x).
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2. Linear Equality Constraints and Upper and Lower Bounds on the Variables
Next we consider methods for an optimization problem with linear equality constraints and upper and lower bounds on the

variables.

2.1. Problem statement and optimality conditions

The problem has the form
mini%lize f(z) subject to Azx=0b, (<x<u, (2.1)
reR™

where f: R"™ — R is twice-continuously differentiable. The first-order KKT conditions for this problem are

Ax* =b, ¥ —0>0, u—x" >0, (2.2a)
g(a*) = zf + 25 — ATv* =0, 2 >0, 25 >0, (2.2b)
zi (¢ —0) =0, zy +(u—a")=0. (2.2¢)

The n-vectors 27 and z; may be interpreted as Lagrange multipliers for the inequality constraints x —¢ > 0 and u —z > 0,
respectively. The vector v* is the multiplier vector for the linear equality constraints.

2.2. The path-following equations

Let 2 and 25 denote m-vectors of nonnegative estimates of the Lagrange multipliers for the inequality constraints x — ¢ > 0
and u — x > 0, respectively. Let v” denote an estimate of v*. Given a small positive scalars u® and p*, consider the perturbed
optimality conditions

Az — b= p*(v® —v), x—€>0, u—x >0, (2.3a)

g(x) — 21 + 20 — ATv = 0, 21 >0, 29 >0, (2.3b)

2 (@ =) =p"(2f —2), oz (u—a)=p"(25 — 2). (2.3¢)

Consider the primal-dual path parameterized by u” consisting of points (z, z1, 22) such that F(x, v, 21, 2o ; p2, u*,v%, 28, 28) = 0,

where
g(x) — 21 + 20 — ATv
Az — b+ pt(v — v¥)
zp (@ —L4) + pP (2 — 27)
2z (u—z) + p (29 — 25)

F(J?,’U,ZhZQ;ILLB,/JA,UE,Z{?,ZS) = (24)

Any zero (x,v, 21, 22) of F that satisfies z; > 0 and 25 > 0 approximates a point satisfying the optimality conditions (2.2), with
the approximation becoming increasingly accurate as p*(v — v”) = 0, pu?(z; — 2y) — 0 and p”(z, — 25) — 0. For any sequence
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of v¥, 2z and z§ such that v” — v*, 2z — 27 and 2§ — 23, and it must hold that solutions (z, v, 21, 22) of (2.3) must satisfy
Ar—b—0,2z - (xr—¥) = 0and z, - (u—x) — 0. This implies that a solution (x, v, 21, 22) of (2.3) will approximate a solution
of (2.2) independently of the values of u* and u® (i.e., it is not necessary that p?, p* — 0).

If (z,v, 21, 22) is a given approximate zero of F such that x — ¢ + pfe > 0, u — z + p®e > 0, z; > 0 and 25 > 0, the Newton
equations for the change in variables (Ax, Av, Az, Azy) are given by

H AT -1 I Az g—ATv— 21 + 2
A p'l 0 0 Av | Az — b+ p(v — v¥) (2.5)
Z 0o X o Az | zp (= 0) +pP(zy — 27) |’ :
—Zs 0o 0 X¥ Azo 2o + (U — ) + pf (29 — 25)
where X1 = diag(x; — £; + p”), X5 = diag(u; — z; + p”), Z1 = diag([z,];), and Z; = diag([z,];).
2.3. A shifted primal-dual penalty-barrier function
Problem (2.1) is equivalent to
minimize f(z)
Z,T1,T2
subject to Ax = b, x—x1 =24, x1 >0,
T+ Ty =u, xo > 0.
Consider the shifted primal-dual penalty-barrier problem
minimize M(:c,xl,xz,v,zl,zz;ALB,,UA,"UE,ZfaZf)
Z,%1,22,V,21,22
subject to x —x1 = £, 1+ ple >0, z1 >0, (2.6)

T+ 1z = u, o+ pu’e >0, 29 > 0,
where M (z,x1,x2,v, 21, 20 ; u?, u?, 07, 27, 25) is the penalty-barrier function

1
2ut

n

f(2) — (Az — b7 +

1
| Az — B> + ﬁI\Ax = b+ pt(v =)

{NB[Zf]j In ([z1]; + 1) + p"[27]; In ([0 ([21]; + 17)) = (2] (2] + MB)}

J

- Z {MB[ZéE]j In ([zo]; + p”) + (23] In ([2a] ([l + 17)) = [2a]; ([2a]; + MB)}- (2.7)
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Differentiating M (z, 1, x2,v, 21, 22) with respect to z, z1, 2, v, 21, and 2, gives
g— ATv" + #%AT(AJ: —b) + #%AT(AI — b+ pt(v —v7))
5 - 2P (Xp) Lo
2g — 20" (X§) 725

VM(x,Z‘l,xQ,’U,Z]_,ZQ): Ax—b+ﬂA(U—UE) ’
xy + ple — Pzt y
—1 E

Ty +ple—ptly 2
where X{' = diag(z1 + p”e) = diag(z; — ¢; + p*) and X} = diag(zs + pe) = diag(u; — z; + p”).
Vectors of the form @, + e — u®Z; ' 2§ may be written as
wy +ple — pP 2 e = 20 (Zy (2 + pPe) — pPap) = 27N (Zyay + pz — i)
=77 (21 - (2 = 0 + 1" (21 = 21)). (2.8)

Similarly,
z +ple—pPZr ) = Zl_l(Zl(xl +p’e) — MBZf) = Zfl(szl - MBZf) = ZfIXfL(ZH - MB(X{L)_lzf)
= Df (24— 0), (2.9)

where DY = X' Z7! = Z;7 ' X! and 7§ = p®(X1") 127, Analogous identities hold for xy + pPe — u®Zy *25.
The identities above imply that the gradient may be written in several equivalent forms

g — ATv" + /%AAT(Ax —b)+ ,%AAT(AJU — b+ pt(v—v")) g— AT(2(v" + lTlA(Ax —b)) —v)
2y = 27 (X]) e (XT) "z -y — 2] + p” (2 — 27))
VM (z, 21, %2, 21, 22) = 2 = 208 (X5) 72 = (X5)7H (22 - @ — "2 + (2 — 23))
Az — b+ p(v —v") —,uA(vE—I%A(Ax—b)—v)
Ty +pte— pPZtzf Z7 (2 @+ (2 - 2))
Ty + pfe — pPZy 2k Zy (7 » @y + (25 — 25))
g — AT(2m" —v)
—(2nf — 2)
=275 — 2,)
| . —v) |
A
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where
1
D, =p'l, ™ =v" — —(Az - b), (2.10a)
1
DI =XizZ7Y,  wl =t (XP) (2.10b)
D =X4yz;t, wh=pf (X))l (2.10c)

Similarly, the Hessian of M (x, z1, 22, v, 21, 22) is given by

H+ % ATA 0 0 0 0 0
0 2ut (X1 2Z¢ 0 0 I 0
0 0 2uP (X225 0 0 I
0 0 0 D, 0 0 ’
0 I 0 0 uzZ7%zy 0
0 0 I 0 0 nrZy %78

where H = V2f. Substituting u?Z¥ = X}'[17 and p®Z% = X5 115 from (2.10) gives the Hessian

H+ ZATA 0 0 AT 0 0

0 2(X1) -ty 0 0 I 0

0 0 20Xtz 0 0 1

A 0 0 D, 0 0

0 I 0 0 X{'z7*Imj 0

0 0 I 0 0 XL 721013
2.4. Derivation of the shifted primal-dual penalty-barrier direction
The primal-dual penalty-barrier problem may be written in the form

mininzlize M(p) subject to Cp = be, (2.11)
pe
where
I={p:p=(z,21,22,v,21,22), with zq + p®e >0, x5 + p’e >0, 21 > 0, 29 > 0},

and

I =T 00 0 0 ¢
C(I 0 I 00 0>’ and bc(u)'
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Let p € Z be given. As in the bounded slack case, assume that p is not necessarily feasible for the linear constraints, i.e., it may
not hold that z — z; = ¢ and x + x2 = u, in which case b — C'p may not be zero. The Newton direction Ap is given by the
solution of the subproblem

rninAimize VM (p)TAp + %ApTVQM(p)Ap subject to CAp = be — Cp. (2.12)
p
However, instead of solving (2.12), we define a linearly constrained modified Newton method by approximating the Hessian

V2M (2,21, 22,0, 21, 22) by a matrix B(z,x1,22,v,21,22). Consider the matrix defined by replacing 77 by z; and 75 by 2o
everywhere in the matrix V2M (z,x1, T2, v, 21, 22). This gives an approximate Hessian

H + I%AATA 0 0 AT 0 0
0 2(X117, 0 0 I 0
0 0 2AXMH-1Z, 0 0 I
B(x,x1, 72,0, 21, 22) = A 0 ( 23 2 D 0 0
A
0 I 0 0 XxizH 0
0 0 I 0 0 Xbz;!

H+2ATD'A 0 0 AT 0 0
0 2(D7)~1 0 0 I 0
0 0 2(D3)1 0 0 I
A 0 0 D, 0 0
0 I 0 0 DZ 0
0 0 I 0 0 Di

Given B(p) = B(z, x1,z2,v, 21, 22), a modified Newton direction is given by the solution of the QP subproblem

minimize VM (p)T Ap + %ApTB(p)Ap subject to CAp = b. — Cp. (2.13)
P

Let N denote a matrix whose columns form a basis for null(C), i.e., the columns of N are linearly independent and CN = 0.
The vector

0 0
—(l—x+4z1) -7,
_ (u_x_-%?) N Ty
Apy = ; 2, (2.14)
0 0

0 0
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satisfies CApg = b — Cp, and every feasible Ap may be written in the form
Ap = Ap() + Nd.
This implies that d satisfies the reduced equations
N'B(p)Nd = —N"(VM (p) + B(p)Apo).
Consider the null-space basis defined from the columns of
N = (2.15)

OO NO OO
O ~NO O OO
~N O OO oo

The definition of N of (2.15) gives the reduced Hessian

Similarly,

and

H+2AT™D'A+2((DY)~t+(D3)~Y) AT 1T —I

A D 0 0
T _ A
N B(p)N = I 0 D? 0
-1 0 0 Dj
g— AT(2n" —v)
—(2rf — 2) g— AT2n" —v) = (27] — 2) + (275 — 2,)
T _ar| @2 —z) | —D (7" —v)
NVME) =N _p e =) |~ —Di(nf - )
—Di(r{ — z) —D3 (75 — z,)
—D3(m3 — 25)
0
_Q(Df)_lrL _2((Df)71rL + (Dg)ilr(])
z\—1
NTB(p)apy = N | HPETre | ’ ,
0 -7
-1, Tu



2. Linear Fquality Constraints and Upper and Lower Bounds on the Variables

where r, =¢ — x + x1 and r, = u — x — x5. This gives the reduced gradient

g — ATQr" —v) = @nf —2) + (215 — 2) —2((D)'r, +(D5) 7'ry)
NT(VM (p) + B(p)Apo) = __gf“‘gf __Z”l)) .

7D§(7T§ - 22) +7ry
The reduced modified Newton equations NTB(p)Nd = —NT(VM (p) + B(p)Apo) are then

H+2A™D A+ 2((Df)~ '+ (D)) AT 1T -1\ (&
A D, 0 0 ds
I 0 D7 0 ||ds
I 0 0 D3} \d
g—AM2r* —v) — (27] — 2) + (275 — 2,) — 2((D]) " 'r, + (DF)"'r,)
—D (n* —v)
- —Di(ri —z) -,
—Df(ﬂg - 22) + 1y

Given any nonsingular matrix R, the direction d satisfies
RNTB(p)Nd = —RN"(VM (p) + B(p)Apo)-

In particular, as Z; and Z, are positive definite, the block upper-triangular matrix

I —2ATD;Y —2(D#)~' 2(D3)~!

1 0 0
R= Z1 0 ’
Z2
is nonsingular, with
H AT I 1 H AT I 1
A D 0 0 A D 0 0
T _ A _ A
RN"B(p)N = A 0 Z D} 0o | Al 0 Xt 0
—2Zs 0 0 Z,Dj —2Zs 0 0 X%
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Also, RNT(VM (p) + B(p)Apo) is given by

I —2ATD7' (D7)t 2D3)~1\ [9—AT@r" —v) = (27 — z) + (275 — z,) — 2((Df)"'r, + (DF) "',

I 0 0 —D (7" =)
Zy 0 —Df(ﬂ'f - Z1) -,
22 —Dj(n§ — z,) + 7,

g—ATv — 21 + 2o
—D (7" —v)
—Z, D (n{ — 2) — Zyr,
—ZyD3(75 — 25) + Zor,,

This gives the following unsymmetric equations for d

H —-AT g I dy g—ATv— 21 + 2
A D, 0 0 de | _ Az — b+ p*(v —v”) (2.16)
Zy 0 Xt 0| lds| zp (=0 +p(zy —27) | ‘
—Zs 0 0 X%/ \d4 Zy (U —x) 4+ p’(zg — 25)
Then, (2.14) implies that
Az d1
Az (d1 =)
AI‘Q o . . —(dl - ’I“U)
Av = Ap = Apg+ Nd = ds
AZl d3
AZ2 d4
These identities allow us to write equations (2.16) in the form
H -AT _—g I Az g—ATv— 21 + 2o
A D, 0 0 Av | Az — b+ p(v —v") (2.17)
Zy 0 X" o0 Az | 2y o (w—0) + pP(zy —27) |7 ’
—Zy 0 0 X¥ Azo 2o+ (u—x) + pP (29 — 25)
from which we can compute Axy = Ax—({—z+x1) and Azxg = —Az+ (u—x—x2). If 21 and x5 satisfy z—xz1 = Land 2429 = u
(i.e., they are feasible for (2.6)), then Azy = Az and Azy = —Az. This assumption is made for the remainder of this section.

Under this feasibility assumption, if X; and X5 are written in terms of z, i.e., X; = diag (zj — Zj) and Xy = diag(uj — xj),
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respectively, then equations (2.5) are the Newton path-following equations (2.18) for a solution of the perturbed optimality
conditions (2.3). The variables 1 and x5 may be computed implicitly for the line search, in which case the appropriate merit
function is

1 1
T, 2 2
(o) = (A =070+ gl b 4+ o Ax — b (v = o))

=S i (g — €+ )+ L) I ([ (g = G+ 7)) = [ — 4+ ) }
j=1
=S { ] g — ) (2] I (2] (g — 4 %)) = [z (= 5+ %)
j=1
2.5. Computation of the shifted primal-dual penalty-barrier direction

Next we consider the solution of the path-following modified Newton equations (2.5), which will be written in the form

H AT —I I Ax g—ATv — 21 + 2z
A -D, 0 0 Av | D,(v—7*)
Z 0 Z,D? 0 Az | Z1D¥(z; — %) ’
—Z2 0 0 ZzDg AZQ ZQDS(Z2 — 7T2Z>
which may be row-scaled to give
H AT g I Az g—ATv — 21 + 29
A -D, O 0 Av | D,(v—mn*) (2.18)
I 0 Dif 0 Az | D#(z; — %) ’ ’
-1 0 0 D3 Azy D3(zy — 75)
The equations and variables can be rescaled and reordered to give
I 0 0 (D#)~! Azy 2z, — ¥
0o I 0 —(D3) ! Azy | 2o — T4
0 0 -I DA Av | T v—mt ’ (2.19)
—I I AT H Az g—ATv — 2, + 2

Applying the nonsingular matrix

N O O M~
~
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to both sides of (2.19) gives the block upper-triangular system

I 0 O (D#)~! Az z, — 7
I 0 —(D3)~! Azg | 2o — T4

I DA Av | T v—mt ’
H+ATD'A+ DY) \Ax g— Alm4 —

where 77 = 7f — 74, and D! = (Df)~' + (D4)~', for which D, = ((D})~' + (Df)’l)fl. It follows that the solution of the

path-following equations is given by

2.6. Summary: linear equalities with upper and lower bounds

Define the quantities

D, =u'l, ' =v" — —(Az - b),
W

i = X7, 7t = (X)L,

Di = X327y, w5 = (X5) 7 e,

D,= (D) + (D5, wf=af i,

then Av, Az, and Az are given by

T =ux+ Az, Azy = —(XI) Mz - (@ — 0+ pPe) — pP27),
Az = —(XE) (34 - (u — B pPe) — "),
1
T =v" — — (A5 - b), Ay =7" — 0,

where Az is the solution of the equations

(H+A™D'A+ D" Az = —(g — ATr* — n%).
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The line-search merit function is
Az — B)ToF + [ Az — b2 + —— [ Az — b+ 4 )12
F@) = (Az = )"+ 5[ Av = b 4 54w — b+ (= 0")]

= Wl (i = 4+ 00)?) = Ll — 4+ )}

=3 (g 4 7)) = [l g ) (220)
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3. Nonnegativity Constraints on the Slacks

We start by considering methods for an optimization problem with nonlinear equality constraints and non-negativity constraints
on the slack variables only.

3.1. Problem statement and optimality conditions

The problem has the form

| — 5= > .
;rel]}gr}llgrgﬂ%g f(z) subject to c(x) —s=0, s>0, (3.1)

where ¢: R" — R™ and f : R™ — R are twice-continuously differentiable. The first-order KKT conditions for this problem are

g(@*) = J(z*)Ty" =0, (3.2a)
yr—w* =0, w* >0, (3.2b)
c(z”)—s"=0, s >0, (3.2¢)

w* - s* (3.2d)

3.2. The path-following equations

Let y* denote an estimate of the Lagrange multipliers y* associated with the equality constraints ¢(z) — s = 0. Similarly, let w*
denote a nonnegative estimate of the multipliers for the inequality constraints s > 0. Given small positive scalars pu” and p?,
consider the perturbed optimality conditions

g@)—J@) =0, (3.3a)
y—w=0, w >0, (3.3b)

c(z) —s=p"(y" —v), 5>0, (3.3¢)

w - =u( —w). (3.3d)

Consider the following primal-dual path following equations given by F(z, s, y,w;u", u®,y*, w®) = 0, with

g(z) = J(@)Ty
F(x,s,y,w; p”, 1, y", w") = o (3.4)
Rl ’ ) ) ) C(x)—s—l-up(y—yE) : ‘
w s+ pf(w—w)
Any zero (x,s,y,w) of F that satisfies s > 0 and w > 0 approximates a solution to problem (3.1), with the approximation
becoming increasingly accurate as p”(y — y*) — 0 and p?(w — w®) — 0. For any sequence of y* and w” such that y* — y* and
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w” — w*, and it must hold that solutions (s, w) of (3.4) must satisfy s - w — 0. This implies that a solution (z, s,y,w) of (3.2)
will approximate a solution of (3.4) independently of the values of " and p” (i.e., it is not necessary that u — 0).

If (x,s,y,w) is a given approximate zero of F' such that s + ufe > 0 and w > 0, the Newton equations for the change in
variables (Ax, As, Ay, Aw) are given by

H o —J' o Az g—Jy

0 0 I -1 As _ y—w (3.5)
J =1 p'l 0 Ay c—s+u(y—y°) |’ '

0 w 0o S Aw w s+ pfw—y*)

where S* = diag(s; + u”), W = diag(w;), ¢ = c(z), g = g(z), J = J(z), and H = H(z,y).

3.3. A shifted primal-dual penalty-barrier function

The shifted primal-dual problem associated with problem (3.1) is obtained by including the constraints c¢(x) — s = 0 with the
objective using a shifted primal-dual augmented Lagrangian term, and using a shifted primal-dual penalty-barrier term for the
simple bounds. This gives the problem

minimize M (z,s,y,w;p", 1®,y*, w?) subject to s+ pe >0, w > 0, (3.6)

T,5,y,w
where M (z, s, y, w; u”, u?, y?, w?) is the shifted primal-dual penalty-barrier function

1
2u”

f@) = (c(x) —5)"y" + (@) = sl1* + 5= lle(z) — s+ 1" (y — y*)II?

1
Sle
"

= 3wt i (s 4 )+ n (s, o+ )+ (0f — ) — s}
i=1

which is well defined for all w > 0 and s such that s + u”e > 0. This function has the same gradient as

, S T . 1 1 , .
M0 0,17,y ) = F@) = (o) =) 9" 4 g 5 lela) = sl + 5 lew) =540y =) P
= {mwr (s, + 1) I (wi (s, + p7) = wils + 0t} (37)
=1

Let ¢, g and J denote the quantities ¢(z), g(x) and J(x). For clarity, the dependence of M on the parameters u”, pu?, y* and
w?, will be suppressed when appropriate, with M (x, s,y,w) being used to denote M(z,s,y,w;u”, u?,y? w*). This function
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may be written in the form:

"ly— v - Z{uﬂw-ﬁln(wxsﬁm?)—wi<si+w>}. (3.8)

1
f=le=s)Ty" + 5= " lle = s +

Differentiating M (x, s, y, w) with respect to z, s, y and w gives

with S = diag(s1, s2, ..., $m) and W = diag(wq, wa, ..., wy,). The gradient may be written in several equivalent forms
JE2(y" = Jr(c—3)) - y)
—i(c—s B(SH)~lw? —w
VM(Z’,S,y,’U}): " " P 1) ( )
[ (F(C—S)er—y )
WHw -« s+ pf(w —w”))
g— JT(7TY + (r" — y))

(7" + (7" —y) — (7% + (7" — w))

=Dy (7" —y) ’
—Dy (77 — w)

where
1
D, =u"I, 7ry:yE—E(c—s)7 (3.9a)
Dy = SFW™H ¥ = pf (M) tw”. (3.9b)
Similarly, the Hessian of M (x, s,y,w) is given by
-2 J7T JT 0

-1 utI 0 ’
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where Hy = H(x, 2" —y) + %JTJ. Substituting p?W¥* = SEITY from (3.9) gives the Hessian

H, — T JT 0
— & J 2Dyt (sm) ) 1 I
J I u'l 0 ’
0 I 0 W=2Ivse

where Hy = H(z, 27" —y) + H%JTJ.

3.4. Derivation of the shifted primal-dual penalty-barrier direction

The primal-dual penalty-barrier problem (3.6) may be written in the form

mininIlize M(p), where Z={p:p=(z,s,y,w), with s+ u®e >0, w > 0}.
pe

Let p € Z be given. The Newton direction Ap is given by the solution of the subproblem

minimize VM (p)"Ap + 3 Ap"?M (p) Ap. (3.10)
P
However, instead of solving (3.10), we define a modified subproblem by approximating the Hessian V2M (z, s,y,w) by a matrix

B(z,s,y,w). Consider the matrix defined by replacing 7¥ by y and 7" by w everywhere in the matrix VM (z, s,y,w). This
gives an approximate Hessian B(z, s,y,w) of the form

H —-%JT JT 0
—2.J 2(Dyt+(SM)7W) -1 I
s Y
J —I utI 0 '
0 I 0 Stw!

where Hy = H(z,y) + i—pJTJ. The definitions of D, and Dy, may be used to write B(z, s,y, w) in the form

H+2J'D;'g —2JTD! JT 0
—2D;1J 2(D7'+ DY) -1 I
J ~1 D, o0 |’

0 1 0 Dy
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where H = H(x,y). Given B(p) = B(z, s,y,w), a modified Newton direction is given by the solution of the subproblem

minimize VM (p)* Ap + $ Ap"B(p) Ap. (3.11)
p

Given p, the modified Newton equations for this problem are given by

H+2JTD;1J —2JTD1 JT 0 Az g—J(x" + (7" —y))
—2D;tJ 2(Dy*+ DY) -1 1 As | _ (@7 —y) - (2" —w) (3.12)
J -1 D, 0 Ay —Dy (¥ —y) '
0 1 0 Dy Aw —Dy (" —w)
Consider the nonsingular block upper-triangular matrix
I 0 —2J'D;! 0
B I 2D;tY 2D !
= 1 0
W
Applying T to both sides of (3.12) gives
H 0o —-J* 0 Ax g—Jy
0 0 I -1 As | y—w
J I D, 0 Ay | | e—s+ptly—9°) |- (3.13)
0 W 0o S* Aw s+ w—+ pf(w —y*)

Comparing these equations with the path-following Newton equations (3.5) implies that a solution of the path-following equations
is also a solution of (3.13).

3.5. Computation of the shifted primal-dual penalty-barrier direction

The path-following Newton equations (3.5) may be written in symmetric form

H 0o JT 0 Az g—JTy

0 0 -I 1 As | y—w

J —-I —-D, 0 Ay | T c—s+pf(y—y®) ’
0 I 0 -D,) \-Aw W w -« s+ p”(w—w"))

where Dy = u”I and Dy, = SFW L.



3. Nonnegativity Constraints on the Slacks 20

Consider the following reordered subset of equations and variables involving Aw, As, Az and Ay:

Aw

D, I 0 0 s W (w -« s+ pf(w — w")) —Dy (7" —w)
-1 0 0 I Ar |l = Y—w =— y—w
0 I J  Dvj |, c—s+p"(y—y*) =Dy (n" —y)
This gives the equations
I Dit 0 0 3“’ w—m"
-I 0 0o I A; = y—w . (3.14)
0 -I T Dv) \ =Dy (7" —y)
Applying the nonsingular matrix
1
1 1
Dy Dy I
on the left-hand side of (3.14) gives the block upper-trapezoidal system
I D' 0 0 i“’ w— "
Dt 0 I Ai = y—m"
J Dy + Dy Ay Dy(y—7")+ Dy (y—7")

The solution of this system of equations is given by

As= =Dy (y+ Ay —=")
Aw=y+ Ay — w,

where Az and Ay satisfy the KKT system

g—J

({TI DJj;w) (ﬁz) T (Dy(y —m")+ Dy (y - WW)> '
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3.6. Summary

The results of Sections 3.1-3.5 imply that the solution of the path-following equations (3.5) may be computed as
@\:y+Ay7 AS:_DW(@\_TFW)7
s =s+ As, Aw =y + Ay — w,

where Az and Ay satisfy the equations

H(z,y) —J(@)" Y (Az) _ _ g(z) — J(x)y
J(x) Dy+Dy /) \Ay) Dy(y—n")+Dy(y—7"))"
and Dy, Dy, 7" and 7" are given by

D, =p"I, ™ =y" — —(c(z) - s),
w = S;LW—l’ " = MB(SM)—le.

The associated line-search merit function M (z, s, y,w; u”, u?, y?, w?) is given by

m

1 , 1
@) = sl + 5

f@) = (@) =5) v + 5

i=1

le@) = s+ "y = y) 12 = 3 {uwi n (w,(s, + 1*)%) = w,(s; + u*) |-
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4. Fixed and Nonnegative Slacks

Next we consider nonlinear equality constraints with slacks that are either fixed or nonnegative. The variables are not subject
to bounds.

4.1. Problem statement and optimality conditions

The problem has the form

m}%@nimiﬂge f(z) subject to c¢(x) —s=0, Lyxs, Lps>0, (4.1)
zER™ sER™

where ¢ : R” — R™ and f : R" — R are twice-continuously differentiable and Ly and L are fixed matrices of dimension m, x m
and my X m, respectively, with m = my + my. The matrices Ly and L, are formed from rows of the identity matrix I, in
such a way that Lys and Lys give the fixed and “free” components of s. It follows that there is an m x m permutation matrix

P such that
— LF
r=(12):

with the matrices L, and Ly satisfying the identities L,LT = I,,, L, LT = I, and L,L% = 0. The first-order KKT conditions
for this problem are

g(z*) = Ty =0, (4.22)
c(z®)—s" =0, Lys* =0, (4.2b)

y* — LTwt — LTw: =0, (4.2¢)
Lps* >0, wr >0, (4.2d)

wy + Lps™ =0, (4.2e)

where y* and w% are the Lagrange multipliers for the equality constraints c(z) —s = 0 and Lys = 0, and w} may be interpreted
as the Lagrange multipliers for the nonnegativity constraints L,s > 0.

4.2. The path-following equations

Let y” be an estimate of the Lagrange multipliers for the nonlinear equality constraints ¢(z) — s = 0. Similarly, let w” denote a
nonnegative estimate of the multipliers for the inequality constraints Lys > 0. Given small positive scalars u” and u”®, consider
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the perturbed optimality conditions

g(a) = J(z)Ty =0,
clx) —s=p"(y

y—LTw, — LTw, =0,
Lzs >0, wr 2> 0,

E

E_y)7 LXSZOa

w e+ Lps = p”(w” —w).

Consider the following primal-dual path following equations given by F(z, s, y, wx,wp; p”, p?, 4", w”) = 0, with

g(z) = J(@)Ty
Y- L:;wa - szF
F(m787y7wX7wF;MP7MB7yE7wE) = C(l’) _S+:up(y_yE) . (44)
Lys
We + Lps + pP(we —w”)

Any zero (z,s,y,wx,wy) of F satisfying Lrs > 0 and wp > 0 approximates a point satisfying the optimality conditions (4.2),
with the approximation becoming increasingly accurate as the terms p”(y — y”) and p”(w, — w®) approach zero. For any
sequence of y* and w” such that y* — y* and w? — w¥, it must hold that solutions (z,s,y,wx,ws) of (4.3) must satisfy
y - (c(x) —8) > 0, wp - (Lps) = 0, and wg + Lrs — 0. This implies that any solution (z, s, y, wx,wx) of (4.3) will approximate
a solution of (4.2) independently of the values of u” and p? (i.e., it is not necessary that p”, u? — 0).

Given an approximate zero (z, s,y, Wy, Wr, w2) of F' such that L,s > 0 and w, > 0, the Newton equations for the change in
variables (Ax, As, Ay, Awy, Awy) are given by

H 0 —JT 0 0 Az g—Jy

0 0 I, -Lt LT As y—LTw, — LTw,

J I, D, 0 0 Ay | = - c—s+pu(y—y*) , (4.5)
0 L, 0 0 0 Awy Lys

0 WLy 0 0o S* Awpg We + Lps+ p?(w, —w®)

where D, = p”I, W = diag(wy) and S* = diag(s; + u*).
Any s may be written as s = LTs, + LTs,, where s, and sy denote the components of s corresponding to the “free” and
“fixed” components of s, respectively. Throughout, we assume that sy satisfies Lys = 0, in which case the expansion of As

satisfies
As=LTAs, + LT As, = LT As,.
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This identity allows us to write the equations (4.5) in the form

H 0o -JT 0 Az g—Jy
0 0 L, —Ig As, | _ Yr — W, (4.6)
J —LT D, 0] | Ay c—s+pfly—y®) ’
0 w 0 SH Awp We » Lps+ p?(wy —w?)
The vectors As and Awy are recovered as As = LT As, and Awy = [y + Ay — w]x.
4.3. A shifted primal-dual penalty-barrier function
Problem (4.1) is equivalent to
minimize f(x)
T,8,8p
subject to ¢(z) —s=0, Lxs=0, Lps—s,=0, s>0.
Consider the shifted primal-dual penalty-barrier problem
minimize M(‘T’ 5, 8r, Y, Wr; MP7 /J“Bv yE7 wE)
T,8,SF,Y, WF
subject to Lys =0, Lps—5,=0, sp+p’e>0, wp>0, (4.7)

where M (z, 8, 8, y, wp ; u”, n”, y*, w*) is the shifted primal-dual penalty-barrier function

1
2ur

- Z {NBwiE In ([sr +p”eli) + p"win ([we - (sp +p"e) i) — [wr - (sp + NBG)]i}- (4.8)

i=1

L le(@) = 82 + o lle(@) — 5 + 1" (y — )

f@) = (elw) =) v + 5

Let ¢, g and J denote the quantities ¢(z), g(x) and J(z). Differentiating M (z, s, sp, y, wr, wa) with respect to z, s, sp, y and

Wy gives
9= J"20y" — Gr(c—s) —y)
2(y" — p(c—9)) —y
VM (z,8,8p, Y, Wr) = w, — 2p" (S*)~tw?
c—s+u"(y—y")
sp+ pfe — puPW-tw?
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The gradient may be written in several equivalent forms

9—J"20" — Jrlc—s) —y) g=J" 2" — rlc—s) —y)
2(y" — gr(c—s)) —y 2(y" — r(c—9) —y
VM (2,8, 8p, Y, Wr) = w, — 2u" (S*)~1w?” = [ (") (w, - sp + pfw® + pf(w, — w"))
c—s+u(y—y°) c—s+up(y—y°)
sp + pfe — pPW—tw® W (w, « s, + pf(w, —w"))
g=JHm + (" —y))
™+ (1" —y)
=| —(@"+ @Y —w,)) |,
—Dy(n" —y)
_DW(WW _wF)
where
1
Dy = p" Ly, T’ =y" — ,LT’(C —3), (4.9a)
Dy, = SFWH 1 = pf(SH) T w”. (4.9b)

Similarly, the Hessian of M (x, s, s1, s2,y, w1, ws) is given by

H —-2%JT 0 JT 0
—H%J Niplm 0 -1, 0
0 0 2u”(SH)2w* 0 I. )
J —I, 0 W, 0
0 0 I 0 pWw2we

where Hy = H(x, 27" —y) + H%JTJ. Substituting p?W?# = SHITY from (4.9) gives the Hessian

H -7 0 JT 0
—#%J %Im 0 —I,, 0
0 0 2(8m)~tmv 0 I,
J I, 0 w I, 0

0 0 I. 0  SrFW2IV
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4.4. Derivation of the shifted primal-dual penalty-barrier direction

The primal-dual penalty-barrier problem may be written in the form

minirélize M(p) subject to Cp =0, (4.10)
pe
where
I={p:p=(z,s,8p,Y,wp), with sp + p’e >0, wy > 0},
with

- 0 Ly 0 0 0
0 Ly —Ig 0o 0/
Let p € Z be given. The Newton direction Ap is given by the solution of the subproblem

minimize VM (p)"Ap + L Ap"V2M (p)Ap  subject to CAp = —Chp. (4.11)
p
However, instead of solving (4.11), we define a linearly constrained modified Newton method by approximating the Hessian
V2M (x, 8, 85, y,wy) by a matrix B(z, s, sp,y, wr). Consider the matrix defined by replacing 7¥ by y and 7" by w,, everywhere
in the matrix V?M (x, s, sp,y,wy). This gives an approximate Hessian B(x, s, sz, y, wy) of the form

H -2 gT 0 JT 0
—j—PJ uiplm 0 —I,, 0
0 0 2(5%)"w 0 I,
J ~I,, 0 g - 0

0 0 I, 0 Srwt

where H, = H(x,y)+2JTD;1J. The definitions of D, and Dy, may be used to write B(z, s, sz, y,wy) as

H+2J™D;YJ —2JTD;t 0 JT 0
—2D; 1) 2D 0 —I, O

0 0 2D 0 I,

J —In 0 Dy 0

0 0 I, 0 D,

where H = H(z,y). Given B(p) = B(x, s, $¢,y, wr), a modified Newton direction is given by the solution of the QP subproblem

minimize VM (p)" Ap + £ Ap"B(p)Ap  subject to CAp = —Ch.
P
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If p = (z,s,5r,y,wr) is feasible for the constraints then Cp = 0 and Lys = 0 and Lrs — s = 0. In this case every feasible
Ap may be written in the form Ap = Nd, where N denote a matrix whose columns form a basis for null(C), i.e., CN = 0 and

(C’T N ) is nonsingular. This implies that d must satisfy the reduced equations
NTB(p)Nd = —NTVM (p).

Consider the particular null-space basis given by

I, 0 0 0
0 LT 0 0
N=1]0 I 0 0
0 0 I 0
0 0 0 I
This definition of N gives the reduced Hessian
H+2JTD 1T —2JTDJ LT JT
NTB(p)N = —2L,.D;'J 2(LFD;1L§ + Dv_Vl) —L,
J —LT D,
0 I 0

Similarly, the reduced gradient N7VM (p) is given by
g—JH " + (7" —y))

R
NVMP =1y 0 0 1, o —(n + (@Y —w,)) | =
0 0 o 0 I =Dy (" —y)

—Dy (7" —w,)

The reduced modified equations NTB(p)Nd = —NTVM (p) are then

g=JH " + (7" )

=Dy (7" —y)

T+ (rf —ye) — (7 + (7 —w,))

—Dy (7" —w,)

H+2JTD;YJ —2JTD; LT JT 0 dy g—JT(x" +(x" —y))
—2L,D7'J  2(L.D7'LT +Dj') —L, I, do | |74k —ye)— (7% + (¥
J —LT D, 0 ds | —Dy (77 —y)

0 I, 0 D, ) \da

—Dy (7" —w,)

- wF))

(4.12)
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Given any nonsingular matrix R, the direction d satisfies
RNTB(p)Nd = —RNVM (p).

In particular, consider
I, 0 —2JTD;! 0

R I, 2L,D;' —2D;}
I, 0 ’
w
which is nonsingular if W is positive definite, with
I, 0 2JTD;1 0 I, 0 2JTD;1 0
R1_ I, —2L,Dy' 2W'Dit| I, —2L,Dyt 2(sw)~!
Im 0 Im 0
w1 w1
For this R, the product RNTB(p)N is given by
I, 0 —2JTD;! 0 H+2JTD;tJ —2JTDJ LT JT 0
1, 2L,.D;Y —2D! —2L,D;'J 2(LFD;1L£ + D;V1) —L, 1,
I 0 J —LT Dy 0
W 0 I 0 Dy,
H 0o —Jr 0 H 0o -Jr 0
10 0 L, -1, | [0 0 L, -1,
J —-LT D, 0 J —LT D, 0
0 w 0 WDy, 0 w 0o S*
Similarly, the transformed right-hand side RNTVM (p) is given by
g—J
Yr — Wy
—Dy (¥ —y)
—WDy (7" —w,)
Putting all this together gives the following transformed unsymmetric reduced modified Newton equations for the vector d:
H 0o -JT 0 dy g—Jhy
0 0 L, -—-I, do | _ Yr — W,
J —-LT D, 0 ds | — —Dy (7Y —y) ’
o w0 St) \ds ~WDy (x" —w,)
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or, equivalently,
H o -JT o ds g—JTy
0 0 L, -I, do Yr — W,
= — 4.13
J —-LT D, 0 ds c—s+up(y—y°) (413)
0 w 0 SH dy Wp » Lps + p?(w, — w®)
Then, the definition of N from (4.12) implies that
Az dy
As LTd,
Asp | =Ap=Nd=] dy
Ay ds
Awp dy
These identities allow us to write equations (4.13) as
H o —-J' o0 Az g—J0y
0 0 L, -1, Asp | _ Yr — Wy
J —-LT D, 0 Ay | c—s+p"(y—y”) (4.14)
0 w 0o S Awp We + Lps+ p?(w, —w®)

If S is written in terms of s, i.e., S = diag(LFs), then the equations (4.14) are the Newton equations for the solution of the
perturbed optimality conditions (4.3). The variables s, may be computed implicitly for the line search, in which case the

appropriate merit function is
2
|

1 1
Fle= sy 4 glle = sl 4 g lle = s (=)

ng

=S {rrwtm (s + ptel) + ptwf i ([w + (sp + p2e) ) = [w - (s + o) ;.

i=1

4.5. Computation of the shifted primal-dual penalty-barrier direction
Next we consider the solution of the modified Newton equations (4.14), which are written in the form
0 —Jr 0 Ax g—Jy

H

0 0 L, -1, Asp | _ Yp — W,

J —LT D, 0 Ay | — —Dy (7Y —y) (4.15)
0 Dt 0 I,) \Aw, —(m" —w,)
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using the identities Dy, = S*W ! and wy » sp+p? (w, —w®) = —SH (7" —w,). Consider the following reordered set of equations
and variables involving (in order) Awp, Asy, Az and Ay:

I, D3t 0 0 Awg w, —m"
-1, 0 0 L, Asp | Yp — W,
0 -1 J D2z |T |Dow-m) ] (4.16)
0 0 H -JT Ay g—JTy
Applying the nonsingular matrix
Ir
I I
LDy, LTDy I,
L,
on the left- and right-hand side of (4.16) yields the block upper-triangular system of equations
1, Dt 0 0 Aw, w, —a"
Dt 0 L, Asp | _ Yp — " (4.17)
J Dy+LID,L,| | Az Dy(y—7")+LIDy (y, —7") | ‘
H —JT Ay g—Jy

Solving (4.17) while using the last block equation of (4.14) as an alternative definition of Aw, gives the solution of the path-
following equations as

where Az and Ay satisfy the equations

H —JT Az g—Jhy
J Dy+LTD,L,)\Ady) Dy(y—7")+LIDy (yr —7")) "
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4.6. Summary: bounded slacks

Consider the quantities

then As, Asy and Awy are given by

y=y+A4y,  Asp=-Dy(y.—7"),
As = LTAs,,
Awy = [J—w]x,
§=s+ As, Awp = —(5") " (wp - (LpS+ p’e) — p"w”),

where Az and Ay satisfy the equations

H —JT Az g—Jhy
J Dy+LTD,L,)\Ay) Dy(y—n")+ LIDy (yr — "))

The associated line-search merit function is given by

1 1
F—(c— )Ty + gl s|2 + garlle s+ u"y= y*)I?

ng

=S {utwrm ([sp + e ls) + ptwfn ([w (s, + pPe) i) = [w + (0 + pe) )i} (4.18)

i=1
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5. Nonnegativity Constraints on the Variables and Slacks
Next we consider methods for an optimization problem with nonlinear equality constraints and non-negativity constraints on

the variables and slacks.

5.1. Problem statement and optimality conditions

The problem has the form

m%{nimi]]%e f(z) subject to c¢(x)—s=0, Az=0b, x>0, s>0, (5.1)
z€R™ s€ER™

where ¢: R" — R™ and f : R™ — R are twice-continuously differentiable. The first-order KKT conditions for this problem are

glz*) — ATv* — J(x*)Ty* — 2* =0, z* >0, (5.2a)
yr—w* =0, w* >0, (5.2b)

c(x™) — s =0, Az* = b, x* >0, s* >0, (5.2¢)

2"t =0, w* . st = (5.2d)

The vectors y*, z* and w* constitute the Lagrange multipliers for the equality constraints ¢(z) — s = 0 and the nonnegativity
constraints > 0 and s > 0, respectively. A vector (z,y,z,w) is said to constitute a primal-dual estimate of the quantities
(z*,y*, 2", w*) satisfying the optimality conditions for (5.1).

5.2. The path-following equations

Let v® and y” denote estimates of the Lagrange multipliers for the equality constraints Az = b and ¢(z) — s = 0. Similarly, let
z# and w” denote nonnegative estimates of the multipliers for the inequality constraints > 0 and s > 0. Given small positive
scalars p?, u” and p”, consider the perturbed optimality conditions

g(x) — ATv — J(2)Ty — 2 =0, z >0, (5.3a)
y—w =0, >0, (5.3b)

c(x) —s=pl(y" —v), Az — b= p"(v° —v), x>0, >0, (5.3¢)

z-x=p"(2" — 2), w - s = p’(w —w) (5.3d)
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Consider the primal-dual path-following equations F'(z, s, v,y, z,w; u*, u”, u®,y%, 2%, w”) = 0, with

g(z) — J(x)ly — ATy — 2
y—w
Az — b — p*(v —v")
co(x) =s+p"(y—y")
z x4 pf(z—2%)
w s+ pf(w—w?)

F(x,s,0,y, z,w; p', u", p”, 0" y" w”) = (5.4)

Any zero (x,s,v,y,z,w) of F that satisfies z > 0, s > 0, z > 0, and w > 0 approximates a point satisfying the optimality
conditions (5.2), with the approximation becoming increasingly accurate as u”(y — y*) — 0, p*(v — v*) — 0, p?(z — 2%) — 0,
and pf(w — w?) — 0. For any sequence of v*, y*, z¥ and w* such that v* — v*, y* — y*, z¥ = z* and w? — w*, it must
hold that solutions (s, w) of (5.4) must satisfy z + £ — 0 and w - s — 0. This implies that a solution (z, s,v,y, z,w) of (5.4) will
approximate a solution of (5.2) independently of the values of p*, u” and p” (i.e., it is not necessary that the parameters p*, pu”
and p” go to zero).

If v = (z,s,y,w) is a given approximate zero of F' such that x + pue > 0, s + p®e > 0, z > 0, and w > 0, the Newton
equations for the change in variables (Ax, As, Av, Ay, Az, Aw) are given by

H 0o —-AT —JT I 0 Az g—Jy— ATy — 2

0 0 0 I 0 -I As y—w

A 0 D, 0 0 0 Av [ Az —b+p'(v—0") (5.5)
J I 0 D, 0 0 Ay | c—s+u"(y—9y") |’ ’
Z 0 0 0o X* 0 Az z x4 pf(z—2%)

0 w0 0 0o s# Aw w s+ pf(w—w?)

where D, = p*I, Dy = p"I, X = diag(xj + u”), SH = diag(si +,u3), Z = diag(z;), and W = diag(w;).
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5.3. A shifted primal-dual penalty-barrier function
Consider the shifted primal-dual penalty-barrier function

1

il = bt o =)

1
T 2
f(z) — (Az —b) UEJFTMAHAx*bH +

1

o 16(%) =5+ 1y —yo)?

1
slle(z) 5[ +

T g
—(c(z)—s)'y +2M

-2 {“BZJE In (2 + p") + p"25 In (25 (a; + p”)) + 1" (2] = 25) = ijj}
j=1
=S g In (s, 4 ) wf I (g (5, + ) + e (f — ;) — s,
i=1
which is well defined for all x and s such that x 4+ pu”e > 0 and s+ u”e > 0. This function has the same gradient as the function
M(z,s,v,y,z,w;p*, 1", p?, 0", y", 2%, w") given by

1
f(@) = (Az = )"0 + ﬁHAx = bl* + 5 [ Az — b+ p* (v = 0¥)|?

2u
1
2u”

L (@) — 52 + = Jle(@) — 5 + 1" (y — )

= (@) =) v +

n
Sy ) (g ) — 2y ) )
j=1

m

= {mwE I (s, + 1)+ pwf I (wi (s, + p7) = wils + 6"} (5.6)

=1

Let ¢, g and J denote the quantities ¢(x), g(x) and J(z). For clarity, the dependence of M on the parameters u”, u?, y*, 2%, and
w?, will be suppressed, with M (z, s,v,y, z,w) being used to denote M (x,s,v,y, z,w; p*, u*, u?,v=, y=, 2%, w*). This function
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may be written in the form:

M(‘T7 s,0,Y,%, ’U}) - f - (A{E — b)T’UF

o=

—@—S)y+- L e s "ly—y")|I?

2P

n

}j{ 2y + 1)) — } ﬁf&iwln s+ 1)) = wy(s; + u) ). (5.7)

Differentiating M (z, s, v,y, z, w) with respect to z, s, v, y, z and w gives

g— AT(2(v" + M%‘(Aa: —b)) —v) = JT(2(y" — /%p(c —3s)) —y) —2uF(XH) 1" 4 2
2(y” — —(c— s)) —y —2u"(SM) w4 w
Az — b+ p(v — v¥)
c—s+p"(y—y*)
x+pfe—plz 12"
s+ pfe — ptW=tw?®

VM(x7 87 v? y’ Z? w) =
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with X = diag(z1, z2, ..., x,), S = diag(s1, s2, ..., $m), Z = diag(z1, 29, ..., 2z,) and W = diag(wy, wa, ..., Wy). The
gradient may be written in several equivalent forms

g— AT(2(v" + P%A(Ax —b)—v) = JT(2(y" - I%P(c —5)) —y) = 2uF(XH) 1" 4 2
2(y” — Hip(cf s)) —y — 2" (SM) " tw" +w
Az — b+ pt(v — v¥)
c—s+up(y—y°)
x+pfe— plz 12"
s+ ple — pPWlw”
g— AT(2(v" + I%A(Aa; —b)) —v) = JT(2(y" — l%P(c —5)) —y) —2ut(XH) 1" 4 2
2(y" — /%P(c— s)) —y — 2" (SM) T rw" +w
Az — b+ p*(v — v¥)
c—s+p"(y—y*)
Z7 Nz - w4 pf(z = 27))
WHw -« s+ pf(w — w?))
g—AT(r* + (7t =) = IV (77 + (7" —y)) — (77 + (77 — 2))
(7 + (@ —y) = (7" + (7" —w))

VM('I:’ S’ y) Z’ w) =

B —D (7" —v)
—Dy (7Y —y) ’
—D,(n% — 2)
—Dy (7" —w)
where
1
D, =p'l, WA:UE—E(A(E—Z)), (5.8a)
1
D, = p”"I, WY:yE—E(c—s), (5.8b)
D, =X"7Z"1, 77 = pf (XM T1P, (5.8¢)
Dy, = SFW 7" = pf(S") " tw” 5.8
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Similarly, the Hessian of M (z, s,v,y, z, w) is given by

H, 5T AT T I 0
—d 20l A pt(SM) W) 0 0 I
A 0 pr 0 0 0
J —1 0 uiI 0 0 ’
I 0 0 0 uiz=2z° 0
0 I 0 0 0 pEW2WE

where Hy = H(z, 21" —y) + ZATA+ 57T + 2p°(X#) 722", Substituting p°Z” = X*I1” and p*W* = S*II" from (5.8)
gives the Hessian

Hy " AT gt I 0
—d 2(gpl+(SM)THIY) 0 0 I
A 0 p'l 0 0 0
J —I 0 p'I 0 0 ’
I 0 0 0 Z72I*XH 0
0 I 0 0 0 W=2Iv sk

where Hy = H(x,2r" —y) + F%AATA + #%JTJ—F 2(XM) e,

5.4. Derivation of the shifted primal-dual penalty-barrier direction

Now consider the matrix defined by replacing 7" by y, 7% by 2z, and 7" by w, everywhere in V2M (x, s,v,y, z, w). This gives an
approximate Hessian B(x, s,v,y, z,w) of the form

H, -2 JT AT T I 0
—d 20l (S TTW) 0 T 0 I
A 0 p' L0 0 0
J —I 0 u'I 0 0 ’
I 0 0 0 Zlxw 0
0 I 0 0 0 W-lsH
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where ﬁl = H(z,y)+ -2 ATA+ % JTJ +2(X*)~1Z. The definitions of Dy, D,, and Dy, may be used to write B(z, s, v, y, 2, w
I I

in the form

H+2AT™D YA +2JTDJ g + 2D —2JTDyt AT gt T 0
—2D;tJ 20D;'+DYy o -1 0 I
A 0 D, 0 0 0
J —I 0 D, O 0o |’
I 0 0 0 D, O
0 I 0 0 0 Dy

where H = H(z,y). A modified Newton direction satisfies
B(IE, $,0,Y,%, w)d = 7VM(£? $,0,Y,%, ’LU)
Given any nonsingular matrix R, the modified Newton direction also satisfies
RB(zx,s,v,y,z,w)d = —RVM (z, s,v,y, z,w).

In particular, consider the block upper-triangular matrix

I 0 —24TD;' —2J7D;' —2D;! 0
I 0 2D 1 0 —2D;!
I 0 0 0
I= I 0 0 ’
A 0
w

which is nonsingular if Z and W are positive definite. For this R, the product RB(z, s, v,y, z, w) is given by

I 0 —24™D;' —2JT'D;! —2D;! 0 H+2ATDYA+2JTD;YJ + 2Dt —2JTD1 AT
I 0 2Dt 0 —2D;! —2D;1J 2(D;'+ DY) 0
I 0 0 0 A 0 D,
I 0 0 J —I 0
A 0 1 0 0
w 0 I 0

H 0 AT —JT I

0 0 0 1 0

A4 o D, o0 0

~|lJ -I 0 D, 0

Z 0 0 0 XH

0 w 0 0 0

O O O N~NO
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Similarly, for the right-hand side vector RVM (z, s, v,y, z, w) we obtain

I 0 —24"D;' —2JTD;' —2D;' 0
I 0 2D; ! 0  —2D;!

I 0 0 0

I 0 0

z 0

W

This gives the (unsymmetric) transformed modified Newton equations

H 0o AT —Jgr -1 0 Az
0 0 0 1 0 -1 As
A 0 D, 0 0 0 Av
J I 0 D, 0 0 Ay
Z 0 0 0 X# 0 Az
0 w 0 0 0 SH Aw

g—AT(n" + (7t —v)) = JE (7" + (77 —y)) — (77 + (77 — 2))

(7ry + (r¥ = y)) - (7rW + (7" — w))

—D (7" — )
—Dy(n" —y)
—D,(n% — z)
—Dy (" —w)
g— ATy — JTy — 2 g— ATy — JTy — 2
y—w y—w
—D (7" — ) | Az = b+ pt (v —v")
=Dy (r" —y) c—s+pu"(y—y®)
—ZD, (% — 2) z-x+p’(z—2")
—WDy (7" —w) w - s+ pf(w—w)

g— ATy — JTy — 2
y—w

Az — b+ p*(v —v®)

c—s+p"(y—y°)

z x4+ pP(z—2%)

w s+ pf(w—w?)

)

which are equivalent to the path-following equations (5.5) associated with the perturbed optimality conditions (5.3).

5.5.

The path-following equations (5.5) may be written in symmetric form

H 0 AT JT 1 0 Az
0 0 0 -1 0 1 As
A 0 —-D, 0 0 0 —Av
J =1 0 —D, 0 0 —Ay
I 0 0 0 -D, 0 —Az
0 I 0 0 0 —Dy, —Aw

Computation of the shifted primal-dual penalty-barrier direction

g— ATy — JTy — 2
y—w
Az — b+ p* (v —v")
c—s+p"(y—y")
Z7 Nz - w4 pf(z — 27))
Wt (w - s+ pf(w —w?))
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where D, = pu*I, Dy = p”I, D, = X*Z~! and Dy, = S*W~! from (5.8).
The solution of this system of equations is given by
Aw=y—w+ Ay
As =W (s - (y + Ay) + p”(y + Ay — w”))
Av=—D;'(A(z + Az) + p' (v — v"))
Az =—(X")"z - (x + Az) + p" (2 — 27)),

where Az and Ay satisfy the KKT system

J Dy + Dy, Ay

(H + ATD'A+ Dt —Jr ) (Ax) _ (g —Jy -z = AT+ (XM) 7 (2 - w4 pB (2 — ZE))>

c—s+pu"(y—y")+ W l(s - y+p(y — w”))
The right-hand side may be simplified using the identity

(X)) Nz e+ p"(z—2") = (X +p"I) (X +p"L)z — p"="
=z —pt(X 4+ ptI)~ 12"

=z -7
Similarly,
Wol(s »y+p"(y —w®)) = WH((S + p" Dy — p"w”)
= (S+p"HW ™ (y — p’(S+ p"I) tw")
= Dy (y — p"(S + p" 1)~ w")
=Dy (w—7").

It follows that the right-hand side is given by

(g— Jly —z— ATr* + (X*) 7z - x—|—,u5(z—z’5)))
c—s+p(y—y") F W (s - y+ p(y —w"))

( ngTyfﬂ'ZfATWA
c—s+pu"(y—y") + W (s - y+ pf(y — w”))

g—JTy—WZ—ATWA
Dy(y —y*) + Dw(w—7"))"

)
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5.6. Summary
The results of Sections 5.1-5.5 imply that the solution of the path-following equations (5.5) may be computed as
:y+Ay7 AS:_DW(@\_TFW)a
s+ As, Aw = —(S")"Hw - 5+ p(w — w")),
=z + Az, Az =—(X") "Nz 2+ p"(z—2")),

Ay =74 — 0,

where Az and Ay satisfy the equations

(H(x,y) + f}]Té));lA + D! JD_YJigSJ))TW) (35) _

and D,, Dy, D,, Dy, 7, %, #¥, m* and 7 are given by

1
D, = p'Il, WA:UE—E(A.T—b),
1
DY:,uPI7 FYZyE—E(C(ﬂj)—S),
D,=X"'z=%,  wf=pf(XH)7hE,
Dy = SFWL " = pf (S*) " w”,
1
T =" — —(AZ - ).
w

The associated line-search merit function M (x, s, v,y, z,w; u*, p”, u?, 0% y?, 2% w”) is given by
T E 1 2 1 A EN||12
f(z) — (Az —b)"v —l-ﬁHAx—bH +7|\Ax—b+u (v —0")|

c(x )—8\\2+ c(w) = s+u"(y—y")|?

— (c(x) - )T ’

_Z{Mwln 5+M)) s+u} zn:{B““ (o 4+ 1)) = 25, + ) }.

Jj=1




6. Fized and Bounded Slacks with Linear Constraints 42

6. Fixed and Bounded Slacks with Linear Constraints

Next we consider nonlinear equality constraints and upper and lower bounds on the slacks. The variables are not subject to
bounds.

6.1. Problem statement and optimality conditions

The problem has the form

m]%nimi]]%e f(z) subject to c¢(x) —s=0, Lxs=hyx, {<Lps<u, (6.1)
z€R™,s€ER™

where ¢ : R” — R™ and f : R"” — R are twice-continuously differentiable and Ly and L, are fixed matrices of dimension m x m
and my X m, respectively, with m = my + my. The matrices Ly and L, are formed from rows of the identity matrix I,, in
such a way that Lys and Lys give the fixed and “free” components of s. It follows that there is an m x m permutation matrix

P such that
— LF
r=(12):

with the matrices L. and Ly satisfying the identities L,LT = I,., L, LT = I, and L,L% = 0. The first-order KKT conditions
for this problem are

g(z") = J(z*)Ty* =0, (6.22)

e(x*) — s =0, Lys* —hyx =0, (6.2b)

y* — LTwi — LTw; + LTwj =0, (6.2c)
L.s*—1{>0, u— Lps* >0, (6.2d)

wi >0, wy >0, (6.2¢)

wy +(Lps* —0) =0, wy +(u—Lps*) =0, (6.2f)

where y* and w?% are the Lagrange multipliers for the equality constraints ¢(z) —s = 0 and Lxs = hy, and w} and wj may
be interpreted as the Lagrange multipliers for the inequality constraints Lps — ¢ > 0 and uw — Lys > 0, respectively. Given any
s > 0, we define the index set F of indices from 1, 2, ..., m that define the rows of L.

6.2. The path-following equations

Let y® be an estimate of the Lagrange multipliers for the nonlinear equality constraints ¢(x) — s = 0. Similarly, let w¥ and wj
denote nonnegative estimates of the multipliers for the inequality constraints Lrs — ¢ > 0 and u — Lys > 0, respectively. Given
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small positive scalars u” and p”, consider the perturbed optimality conditions

g(x) = J(2)Ty =0,

o(z) —s=p"(y" —y), Lxs—hx =0,
y— Liw, — Lywy, + Lyw, =0,
Lps—1{>0, u— Lgs >0,
wy > 0, wy > 0,
wy +(Les =€) = p*(wy —wy),  wy - (u— Les) = p’(wy —wy).

Consider the following primal-dual path following equations given by F(z, s, y, wx, w1, ws; u*, u?, y?, w¥, wh) = 0, with

g(z) = J(x)y
Y- L:)wa - ngl + L£w2
c(x) —s+pu"(y—y*)
Lys— hy
wy -+ (Lps — ) + p(wy — wy)
Wy - (u — Lps) + pf(wy — w3)

F(mvsvyawxaw17w2;vaﬂBayvafvwg): (64)

Any zero (x,s,y, wx,wr,ws) of F satisfying ¢ < Lps < u, wy; > 0, and wy > 0 approximates a point satisfying the optimality
conditions (6.2), with the approximation becoming increasingly accurate as the terms p”(y — %), p”(w; —w?) and p” (wy — wh)
approach zero. For any sequence of y” and wj such that y® — y*, wi — w and wi — w3, it must hold that solutions
(z,8,y,wx, w1, ws) of (6.3) must satisfy y « (¢(x) —s) = 0, wy «(Lps —¥¢) — 0, and wy + (u — Lrs) — 0. This implies that any
solution (z, s, y, wx,w,ws) of (6.3) will approximate a solution of (6.2) independently of the values of p” and u” (i.e., it is not
necessary that p”, u? — 0).

Given an approximate zero (z, s,y, wx, w1, ws) of F such that £ < Lps < u, wy > 0, and we > 0, the Newton equations for
the change in variables (Ax, As, Ay, Awy, Awq, Aws) are given by

H 0 —Jr 0 0 0 Az g—JTy

0 0 L, -rf -t 7T As y— LLw, — LTw, + LTw,

J —Ip, Dy 0 0 0 Ay | _ c—s+u(y—y*®) (6.5)
0 L, 0 0 0 0 Awy Lys—hy ’ '
0 WiLp 0 0o S¢ 0 Awy wy +(Lps —€) + p”(wy; — wy)

0 —Wsls 0 0 0 S Awy Wy + (u — Lps) + p®(wy — wh)

where Dy = "I, Wy = diag([w,];), Wa = diag([w,);), S* = diag(els — ¢, + u?), and S5 = diag(u; — el's + u?).
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Any s may be written as s = LLs, + LTs,, where s, and sy denote the components of s corresponding to the “free” and
“fixed” components of s, respectively. Throughout, we assume that sy satisfies Lys = hy, in which case the expansion of As

satisfies
As =L As, + LT As, = LT As,,.

This identity allows us to write the equations (6.5) in the form

H o -JT 0 0 Az g—JTy

0 0 L., —-I. I, As, Yr — Wy + Wy

J —-LT D, 0 0 Ay | =— c—s+u"(y—y”) . (6.6)
0 W 0o St 0 Awy wy +(Lps — £) + p®(w; — wy)

0 —-Ws 0 0 Sy Awsg wy * (u — Lps) + p?(wy — wh)

The vectors As and Awy are recovered as As = LT As, and Awy = [y + Ay — w]x.

6.3. A shifted primal-dual penalty-barrier function

Problem (6.1) may be written in the equivalent form
minimize f(x)
r,5,51,82
subject to  ¢(x) —s =0, Le.s—s1 =1/, s1 >0,
Lys—hy =0, Lps+ sy =u, s > 0.

The nonlinear equality constraints and bounds may be treated using shifted primal-dual penalty-barrier and augmented La-
grangian terms, which gives the approximate problem

sos s .., P B ,E E E
minimize M(I553517525y7w17w27:u’ YUY 7w1aw2)
Z,5,51,52,Y,W1,W2

subject to Lys — hy =0, (6.7)
L.s—s1 =14, s1+ e >0, wy > 0,
L.s+ s9 =u, s2 + pfe >0, wy > 0,
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where M (z, s, 81, $2,y, w1, ws ; u”, u”, y*, wt wh) is the shifted primal-dual penalty-barrier function

@) = (e(@) = )"y + gslele) = sl + gzlel) =5+ = 97|

-3 {MB[wf]iln ([s1+peli) + plwi]; n ([wr - (s1+ p”e) i) — [w1 - (s1 +NB€)]z'}

-3 {ug[wf]i In ([s2 + p"eli) + p”[w3]; In ([w2 - (s2 + p"e) ]i) — (w2 « (s2+ MBe)]i} (6.8)

i=1
Let ¢, g and J denote the quantities ¢(z), g(z) and J(x). Differentiating M (z, s, s1, 2, y, w1, we) with respect to x, s, s1, s2, ¥,
wy and wq gives
9—=J"2W" — rlc—s) —y)
2(y° = 7r(c—9) —y
1

VM($787815827y7w17w2) =
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The gradient may be written in several equivalent forms
9—J"20" — Jrlc—s) —y) g=J" 20" — rlc—s) —y)
2(y" — p(c—3)) —y 2(y" — r(c—s)) —y
wy —2p°(SY) ~Twf (S1)7H(wy + sy + pPwf + pf (wy — wi))
VM($7373173272U,TU1;7«U2) = Wy —2,&3(35)71“}5 = (Sél’)_l(wQ : 82+MBU)§+MB(7U2—TU§))
c—s+p"(y—y°) c—s+u"(y—y°)
51+ p’e — pPWitwf Wit (wy + sy + pf(w; — w}))
s+ ple — pfWy tws Wy (wy - 55+ p” (wy — wh))
g=JN(r" + (7" —y))
w4 (" —y)
= (7" + (7f" —wy))
=| —(@ + (@ —w)) |,
=Dy (1" —y)
=D (n{" — wy)
=Dy’ (73 — w,)
where
P Y E 1
Dy, = p"I,, T =y’ = —(c—s), (6.9a)
I
DY =Stwit,  wl =t (81w, (6.9b)
DY =SMWy 't wy = pf(SE) T ws. 6.9¢)

Similarly, the Hessian of M (z, s, s1, S2,y, w1, ws) is given by

H -Z%JT 0 0 JT
—“%J “ip[m 0 0 —I,,
0 0 2u”(SH) 2wy 0 0
0 0 0 2u”(SY)2W§ 0
J —I, 0 0 uw I,
0 0 I, 0 0
0 0 0 I, 0
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where Hy = H(x, 27" —y) + %JTJ. Substituting p® W = S{'II}V and p?Wg = SYIIY from (6.9) gives the Hessian

H, —-ZJT 0 0 JT 0 0
— ] #—%Im 0 0 I, 0 0

0 0 2(8¢) -ty 0 0 I 0

0 0 0 2(85)~tmy 0 0 I

J —In 0 0 wly, 0 0

0 0 I 0 0 Stwrrmy 0

0 0 0 I 0 0 SEW, 2Ty
6.4. Derivation of the shifted primal-dual penalty-barrier direction
The primal-dual penalty-barrier problem may be written in the form

minirgize M(p) subject to Cp = b, (6.10)
pe
where
I={p:p=(z,s,51,82,y, w1, ws), with s+ p’e >0, so+ p’e >0, wy >0, wy > 0},

with

0 Ly 0 0 0o 0 O ‘
Cc=10 L, —Ip 0 0 0 0], and b.= (u) .
0 Lye 0 I 0o 0 O

Let p € Z be given. For the moment, assume that p is not necessarily feasible for the linear constraints, i.e., it may not hold
that Lps —s; = £ and Lys+ s9 = u, in which case b — C'p may not be zero. The Newton direction Ap is given by the solution
of the subproblem

miniglize VM (p)TAp + %ApTVQM(p)Ap subject to CAp = be — Cp. (6.11)
However, instead of solving (6.11), we define a linearly constrained modified Newton method by approximating the Hessian
V2M (x, s, 81, 82,9, w1, ws) by a matrix B(z,s, s1, 82, Yy, w1, ws). Consider the matrix defined by replacing ¥ by y, 7" by wi,
and 7y by ws, everywhere in the matrix V2M (z, s, 51, 82, y, w1, w2). This gives an approximate Hessian B(x, s, s1, s2, Y, w1, Wa)



6. Fized and Bounded Slacks with Linear Constraints 48

of the form

H -2 JT 0 0 JTr 0 0
—#%J #iplm 0 0 —I, 0 0
0 0 2(8"~'w, 0 0 I, 0
0 0 0 2(S5) W, 0 0 I, ;
J —I 0 0 w 0 0
0 0 I 0 0o Stwt 0
0 0 0 I 0 0 SEW, !

H+2J'D;lg —2JTD;t 0 0 JI.0 o0
—-2D;YJ 2Dt 0 0 I, O 0
0 0 2(Dy)~t 0 0 I. 0
0 0 0 2(DyH~1 0o 0 I |,
J I, 0 0 Dy, 0 0
0 0 I 0 0 D 0
0 0 0 Ip 0 0 Dy

where H = H(z,y). Given B(p) = B(x,s, s1, S2,y, w1, ws), a modified Newton direction is given by the solution of the QP
subproblem

minimize VM (p)* Ap + %ApTB(p)Ap subject to CAp = b, — Cp.
P

Let N denote a matrix whose columns form a basis for null(C), i.e., CN =0 and (C? N ) is nonsingular. The vector

0 0
0 0
—(l—s4+s1) —r,
Apg = (u—s—s2)| & Ty (6.12)
0 0
0 0
0 0

satisfies CApg = b — Cp, and it follows that every feasible Ap may be written in the form

Ap:Ap0+Nd.
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This implies that d must satisfy the reduced equations
N'B(p)Nd = —N"(VM (p) + B(p)Apo).

Consider the particular null-space basis given by

I, 0 0 0 0

0o LT 0 0 0

0 I 0 0 0

N=|0 -Ip 0 0 0

0 0 I, 0 0

0 0 0 Iy 0

0 0 0 I,

The definition of N of (6.13) gives the reduced Hessian

H+2J'D7'J  —2JTD-LT JT
—9L,D;'J  2(L,D;'LT+D;Y) -L,
NTB(p)N = J -LT Dy
0 Iy 0
0 —Ir 0

where Dt = (D{)~! + (DY)~L. Similarly, the reduced gradient is

g—=JI (" + (7" —y))

I, 0 0 0 0 0 0 T+ (7 —y)
0 L. I, —I, 0 0 0 — (7" + (7} —wy))
NIVM((p)=| 0 0 0 0 I, 0 0 — (73 + (7§ — w,))
o 0 o0 0 0 I. 0 Dy —y)
o 0 o0 0 0 0 I DY (r — wy)
_D2W(7T2W - w2)

(6.13)

0 0
I, -I,

o o[,
DY 0

0 Dy
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Moreover
0 0
0 0
(DI (b= Les+s1) || —2D8) M,
Bp)Apo = | 2(DY) Mu—Les—s2) | = | 208) 7,
0 0
—(l — Lps+s1) —r,
(u—Lps— $2) Ty

where r, = — Lps+ s; and 1, = u — Lps — s3. This implies that N7B(p)Apy is given by

0
I, 0 0 0 0 0 0 0 0
0 L, I, —I. 0 0 0 —2(D{")"1r, —2((Dy")~tr, + (DY) r,)
0 0 0 0 I 0 0 2(D¥) ", | = 0
0 0 0 0 0 I, 0 0 —r,
0 0 0 0 0 0o I —r, ry

Tu

This gives N*(VM (p) + B(p)Apo) such that

g—JH " + (7" —y))

T+ (mf —ye) — (1 + (7 —wy)) + (73 + (78 —wy)) —2((DY) ',

—D, (7Y —y)
=Dy (7" —wy) —r,
—Dj (my —wy) + 1,

+(Dy)"'ry)
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The reduced modified equations N"B(p)Nd = —NT(VM (p) + B(p)Apo) are then

H+2JTD;LJ —2JTD; LT JT 0 0\ /4,
—2L,D7'J  2(L,D7'LT + DY) —L, I, —I.| |4
J —~LT Dy 0 0| [ds

0 Ip 0 DV 0| |da

0 I, 0 0o Dy/) \d

g—JI (" + (7" —y))
Y (rf = wy)) + (7 + (78— wy)) = 2((DY) ", + (D
—Dy (¥ —y)
=D’ (m{" —wy) =71,
—Dé’V(ﬂ—é’V - w2) + Ty

Given any nonsingular matrix R, the direction d satisfies

RNTB(p)Nd = —RN"(VM (p) + B(p)Apo)-

In particular, consider
L, 0 —2JTD;! 0 0
IF 2LF‘D;1 _Q(D{V)_l 2(D£V)_1
R= I, 0 0 ,
Wy 0
Wy
which is nonsingular if W, and W5 are positive definite, with
I, 0 2JTD1 0 0
Ir —2L,Dgt 2(S7)71 —2(8§)~"
R = I 0 0
wt 0
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For this R, the product RNTB(p)N is given by

I, 0 -2JTD;! 0 0 H+2J'D;T —2JTDVILE JT0 0
I, 2L,D;' —2(DI)~' 2(Dy)-1 —2L,Dy' 2(L,DY'LY +Dy') L, I, I,
I, 0 0 J —LT D, 0 0
Wy 0 0 I 0 Dy 0
W2 0 I, 0 0 DY
H 0o -JT 0 0 H 0o —JT 0
o o L, -I, I, o o L, -I,
=|J —-LT D, 0 0 =|\J —-LT D, 0
0 Wi 0 WDy 0 0 Wi 0o Sy
0 W, 0 0 WDy 0 Wy 0 0
Similarly RNTVM (p) is given by
g-J
Yr — Wy + Wy
_DY (ﬂ-y - y) ’
~Wy Dy’ (m)" — wy)
~Wy D3 (73 — wy)
and RNTB(p)Apy is
0 0
I, 0 —2JTD;! 0 0 S w1
IF 2LFD;1 _2(va)71 2(D5V)71 72((D1 ) TLO+ (DQ ) TU) 8
I, 0 0 =
0 0
Wi 0
W - —Wir,
2 Ty Wary

Putting all this together gives the following transformed unsymmetric reduced modified Newton equations for d

d g—Jy
do Yp — Wy + Wy
d3 = - 7DY(7rY7y) )

H 0o -JT 0
o o0 L, -I,

,E%o oo
<
Ny

J —LT D, 0
o W, 0 8¢ W, (D} (zf —wy) +7,)
0 -Wy, 0 0 ds Wy (DY (7Y —wy) — 1)

,S%o oo
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or, equivalently,

H 0o -Jr 0 0 dy
0 0 L, -I, I, dsy
J —LT v 0 0 ds | =
0 Wi 0o Sy 0 dy
0 —W, 0 0 Sy ds
Then, (6.12) and (6.13) implies that
Az 0
As 0
Asq -7,
Asg | = Ap = Apy + Nd = Ty
Ay 0
Aw1 0
Aw2 0
These identities allow us to write equations (6.14) as
H 0o —JT 0 0 Ax
0 0 L, -I, I, Asp
J —-LT D, 0 0 Ay
0 W1 0 Sf 0 Aw1
0 —W, 0 0 S Awy

+

g—Jy
Yr — Wy + Wy

c—s+p"(y—y*) (6.14)
wy + (Lps —€) + p*(w; — wy)
wy +(u — Lps) + p?(wy — w3)
dq dq
Lid, Lid,
do (dz - TL)
—d3 = | —(d2 —rv)
ds ds
dy dy
ds ds
g—J
Yr — Wy + Wy
c—s+up(y—y°) ; (6.15)

wy + (Lps —£) + p?(w; — wy)
wy + (o L)+ i (wy — wf)

with As = LT Asy, Asy = As — ( — Lps+s1) and Asy = —As+ (u — Lys — s2). The Newton equations have been derived for
arbitrary interior s; and s, i.e., it is not assumed that s; and so satisfy the linear constraints Lzs — s; = ¢ and Lys + so = u.
However, unless an extra term is added to the objective function of (6.10) that forces the linear constraints to become feasible,
it is necessary to choose feasible s; and ss. In this case, Lps — s1 = £ and Lps + sy = u, and it follows that As; = As, and
Asy = —Asp. This assumption is made for the remainder of this section.

Under the feasibility assumption, if S; and S are written in terms of s, i.e., S; = diag (eiTs — Ei) and Sy = diag(ui - eiTs),
then the equations (6.15) are the Newton equations for the solution of the perturbed optimality conditions (6.3). The variables
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s1 and s may be computed implicitly for the line search, in which case the appropriate merit function is

_ _ N\, E 1 _ 2 1 _ Pl . E\||2
f=(c=s)"y +2#P||c s|| +2MPIIC s+p"(y—y°)l
- Z {MB[w‘f]iln (si = i+ ") + pPlwi]; n (fwy];(si = €+ p?)) = [wy];(si — € + MB)}
iEF

= 3 ) (i — s+ 1) + s (o), (s — i+ %)) = [l (i — s:+ 1) .
i€EF

where F denotes the index set of slacks with upper and lower bounds.

6.5. Computation of the shifted primal-dual penalty-barrier direction

Next we consider the solution of the modified Newton equations (6.15), which are written in the form

H 0o -JT 0 0 Az g—Jhy

0 0 L, -1, I, Asp Yp — Wy + Wy

J —-LT D, 0 0 Ay | = - —Dy (" —y) . (6.16)
0 Wi 0 WDy 0 Aun W, (Dy¥ (7" — wy)

0 —Ws 0 0 WyDy Aws Wy gDQW(ﬂ'QW - wz)g

Consider the following reordered set of equations and variables involving (in order) Aw;, Awy, Asp, Az and Ay:

I, 0 (D)1 0 0 Aun wy — 7y
0 I, —(DyH~t 0 0 Awg Wy — Ty
-1, I, 0 0 L, Asp | == |y, —w, +wy | . (6.17)
0 0 —LT J Dy Ax Dy(y—7")
H -JT Ay g—Jy

If, as above, Dy, denotes the matrix Dy, = ((D{)~! + (DJ)~')~!, then applying the nonsingular matrix
1 2

I

0 I,

I —Ir Ip
LD, -LTD, LTD, I,
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on the left and right-hand side of (6.17) gives the block upper-trapezoidal system

I, 0 (D)=t 0 0 Awy wy — 7y
I, —(DH=t 0 0 Aws Wy — Ty
Dt 0 L, Asp | = - Y, — 7" , (6.18)
J Dy+LTD,L,| | Az Dy(y—7") + LEDy, (y, — 7*)
H —Jr Ay g—Jy

where 7" = 11" — 7). Solving (6.18) for Ay and As,, and using the last two block equations of (6.15) for Aw; and Aws gives
the solution of the path-following equations as

Asy = =Dy (y, + Ay, —7"),

As = LTAs,,

Ay = ~($) (w1 + (Lo(s + As) — £4 %) — o),
Awy = —(S5) (w2 - (u— Lp(s + As) + p”e) — p"ws),

where Az and Ay satisfy the equations

(5 o 210,0) (30) =~ (oo i - o)
J Dy+LTD,L,) \Ay) Dy(y—n")+LED,, (y- —7")) "

6.6. Summary: bounded slacks

Consider the quantities

1

DY:MPI7 WY:yE_T(C(x)_S)7
)

Dy = Sywyt, i = p" (1) ey,

DY = sEW; = (S ek,

Dy = (DY) '+ D)™, wV =gl —rl,
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then As, Asy, Aso, Awy and Aw; are given by

y=y+4dy,  Asp=-Dy(y,—7"),
As = LzAsF,
Awy = [y-wlx,

S=s+ As, Awy = —(S4) 7 (wr + (LS — £+ p”e) — pPwy),
Awy = —(S5) " (wg - (u— Lp5+ p”e) — p"wi),

where Az and Ay satisfy the equations

H —JT Az . g—Jy
J DY+LZ:DWLF Ay B Dy(y_ﬂ'y)_FLgDW(yF_ﬂ'W) .

The associated line-search merit function is given by

1 1
g le@) = sl 4 5 le(w) = s " = ) P

=S { et ([ (els = €+ 1)) = [wi(els = £+ u") }

i€F

f(@) = (e(x) — s)"y* +

= > { P lwglm ([l (s — s+ 1")?) = fway(ui — el + u*) }. - (6.19)

i€EF
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7. Fixed and Bounded Variables

Next we consider nonlinear equality constraints and upper and lower bounds on the variables but only nonnegativity constraints
for the slacks.

7.1. Problem statement and optimality conditions

The problem has the form

m%@nimi]ge f(z) subject to clx)—s=0, s$>0, Exxr=0by, (< Epx<u, (7.1)
zER™ s€R™

where ¢ : R™ — R™ and f : R™ — R are twice-continuously differentiable and Fy and F, are fixed matrices of dimension n, X n
and ny X n, respectively, with n = np + ny. The matrices Ey and E, are formed from rows of the identity matrix I,, in such
a way that Fyx and Erx give the fixed and “free” components of z. It follows that there is an n by n permutation matrix P

such that
— EF
r= ()

with the matrices E, and Ey satisfying the identities E,EL = I, E,ET = I, and E,EL = 0. The first-order KKT conditions
for this problem are

g(x*) — J(@")Ty* = ET2y — ET2; + EL25 =0, zy >0, z5 >0, (7.2a)
Yy —w* =0, w* >0, (7.2b)

c(x™) — 8" =0, s* >0, (7.2¢)

E.x*—10>0, u—Epx* >0, (7.2d)

2] < (Epz™ —4£) =0, 25+ (u— Epz*) =0, (7.2¢)

w* - s* =0, (7.2f)

Eiz* —by =0, (7.2g)

where y* and z% are the multipliers for the equality constraints ¢(z) —s = 0 and Exx = by, and 27, z5 and w* may be interpreted
as the Lagrange multipliers for the constraints Eyz — ¢ > 0, u — Epx > 0, and s > 0 respectively.
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7.2. The path-following equations

Let y”, 27, 25, and w” denote nonnegative estimates of the Lagrange multipliers for the inequality constraints Epxz — ¢ > 0,
u— Frx >0, and s > 0, respectively. Given small positive scalars p” and p”, consider the perturbed optimality conditions

g(x) — J(x)y — ELz, —ET2 + El 2, =0, z1 >0, z9 >0, (7.3a)
y—w =0, w >0, (7.3b)

c(x) —s=p"(y" —y), s >0, (7.3¢)

E.x—1(>0, uw— FEpx >0, (7.3d)

o (Bet = 0) = (55— 2), 29+ (u— Fp) = (o5 — ), (7.3¢)

w - s=p’(w’ —w), (7.3f)

Ecz—byx =0. (7.3g)

Consider the following primal-dual path following equations given by F(x, s,y, zx, 21, 22, w; u*, u?,y%, 2%, 25 w?) = 0, with

g(x) = J(x)y — ELz, — ELz) + El 2,

y—w
c(x) —s+p"(y—y)
F($7S7y7zx,zl,22,w;/J,P,/J,B,yE,Z‘1E722E,wE) = Zl : (EFx - Z) + /’LB(ZI - ZlE) . (74)

2+ (u— Epx) + p" (25 — 25)
w s+ pf(w—w)
FEix — by

Any zero (x,8,y, zx, 21, 22, w) of F that satisfies £ < Fpx < u, 21 > 0, 20 > 0, and w > 0 approximates a point satisfying
the optimality conditions (7.2), with the approximation becoming increasingly accurate as the terms p”(y — y*), p”(z; — 27),
15 (zq — 2%), and p?(w — w®) approach zero. For any sequence of z{, z§, w® and y” such that z¥ — 27, 2§ — 25, w* — w*,
and y* — y*, it must hold that solutions (x, s,y, zx, 21, 22, w) of (7.3) must satisfy z; + (Erx —€) — 0, 25 « (u — Erz) — 0, and
w + s — 0, This implies that any solution (z,s,y, zx, 21, 22, w) of (7.3) will approximate a solution of (7.2) independently of the
values of p” and p” (i.e., it is not necessary that pu” — 0 and p® — 0).

If (z,8,y, 2x, 21, 22, w) is a given approximate zero of F such that £ — p’e < Epx < u+ p’e, s+ ue >0, z; > 0, 22 > 0, and
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w > 0, the Newton equations for the change in variables (Ax, As, Ay, Azx, Az, Azy, Aw) are given by

H 0
0 0

J  —I,
Z1Er 0
—ZyE, 0
0 1%

Ey 0

where Dy = p"I, W = diag(w;), X{' = diag(e]z — {; + p”), X5 = diag(u; — ejz + p”), and S* = diag(s; + pu”).
Any x may be written as z = EXx, + ET2,, where x, and xx denote the components of = corresponding to the “free” and
“fixed variables”, respectively. Throughout, we assume that xy satisfies Exx = by, in which case the expansion of Ax satisfies

_Jr
I
Dy

_EZ:

Xy

ET 0 -ET\ [Az

0 -I, 0 As y—w

0 0 0 Ay c—s+pu"(y—y®)

0 0 0 Az | =— 21+ (Epx — ) + p?(
X% 0 0 Az 29 + (U — Epx) + p®

0o s# 0 Aw w s+ pf(w—w?)

0 0 0 Az Eyx —by

Az = ET Az, + ET Az = ET Az,..

This identity allows us to write the equations (7.5) in the form

HF
0
Jr
Z
—Z
0

where H, and J, denote the “free” rows and columns of H and the “free” columns of J, ie., H, = E,H Ef and J, = J Ef
Once these equations are solved, Az and Azy are recovered as Ar = EL Az, and Azy = [g+ HAz — JT(y + Ay) |x — 2x.

0

0
I,

0

0
W

_Jg
I,
Dy

0
0
0

—I, I, 0 Az g Gr — JLy — 2 + 29
0 0 —Iy As y—w
0 0 0 Ay | _ c—s+up(y—y°)

Xt 0 0 Azy |~ | 2 - (Brx — 0) + pP(2y — 27)
0 X% 0 Azy 2o + (U — Epx) + P (29 — 25)
0 0o S Aw w -+ s+ pf(w—w?)

7.3. A shifted primal-dual penalty-barrier function

Problem (7.1) is equivalent to

S

minimize f(z)

xr,r1,Tr2,8

ubject to  ¢(x) —s =0, s>0,
Exx—by =0,
Erx—x =1, x>0,

Erx 4+ 29 = u, z9 > 0.

g—Jy—ELz, — Elz + Elz

2y — 27)
(22 — 23)
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Consider the shifted primal-dual penalty-barrier problem

C e . ., P B ,E _E _E , E
minimize M(Z,Z1,$2,S,y,zl,22,w,ﬂ Y Y 521, 2, W )
T,T1,T2,8,Y,21,22,W
subject to Eyx = by, Eyx —x1 =4, x1 + p’e > 0, 21 > 0, (7.7)

E.x + x9 = u, Ty + ple > 0, 20 > 0,

where M (z,x1, T2, 8,y, 21, 22, w; u*, 2, y?, 2% 25 w*) is the barrier function

@) = (6(@) = )"y + gslefe) = sl + gz lel@) =+ = 97|
- Z {HB[Zf]j In ([24]; + p”) + p[21]; I ([21]; ([0 + 17)) = (2] (4] + MB)}
JEF
= 3 {1 0 (fwaly + %) + 128 (2] (] + %) = [z (] + 1) }
JEF
= {mwr (s, 4 1)t (wi (s, + p7) = wils + ut)f o (78)
=1

Let ¢, g and J denote the quantities ¢(x), g(x) and J(z). Differentiating M (x, 21, x2, 8, ¥, 21, 22, w) with respect to z, z1, xa, s,
Y, 21, 22, and w gives

9= J"(2(y" = r(c—3)) —y)
2 = 27 (XY) e
zo — 20" (X)) 7125
2(y" — r(c—5)) —y—2u”(S") " 'w” +w
c—s+pu"(y—y°)
@)+ ple — pPZy

VM(xaxlax%SvyaZlaZva) =

2y + e — pPZy 2l
s+ ple — uPWlw®
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The gradient may be written in several equivalent forms

VM (z,x1,x2,8,Y, 21, 22, W) =

9= J"(2(y" — r(c—5)) —y)
2 = 2p7(XY) T e
o0 — 2 (X))
2(y" — p(c—s)) —y—2u”(S")"w” +w
c—s+p"(y—y")
wy + pfe— pPZt2f
@y + e — pPfZy 2
s+ pfe — pPW—tw?
9—J"(2(y" = 3r(c—5)) —y)
(XT) " (21 - @y + w2 + 1 (2 = 27))
(X5) " (20 » @y + p"25 + pP (20 — 25))

2(y° — ir(c—9)) —y = 2p°(S + p") " 'w® +w

m
c—s+u"(y—y")

Zy 7 -+ (2 = 21))

Zy (7 o + (25 — 25))

W (w -« s+ pf(w—w"))

where now, X{' = diag([z,];) and X} = diag([z,];), with

1

D, =p"I, Wy:yE—E(C—S)7
DY =X{z7',  owf =pt(XE) 7 e,
D =X87Z;" 5 = put (X512,
E
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Similarly, the Hessian of M (z,z1, 22, s, y, 21, 22, w) is given by

H, 0 0 — T JT 0 0 0
0 2u”(X!)2z¢ 0 0 0 I, 0 0
0 0 2u” (X4 275 0 0 0 I, 0
— 0 0 2(5p L +pP(SM)PWE) —Iny 0 0 I,
J 0 0 ~1I,, 'l 0 0 0 ’
0 I, 0 0 0 p’z%z¢ 0 0
0 0 I, 0 0 0 w’Zy 27y 0
0 0 0 I 0 0 0 W W e

where Hy = H(z,2n" —y) + M%JTJ. Substituting pu?Z§ = X{'I[I{, n? 25 = (Xy + p” 1115, and "W = SEITY from (7.9) gives
the Hessian

H, 0 0 — T JT 0 0 0
0 2(X) -ty 0 0 0 1, 0 0
0 0 2(X5) -tz 0 0 0 1, 0
—d 0 0 2(5p +(S*)7HIY) I, 0 0 I,
J 0 0 —I, w I, 0 0 0
0 I, 0 0 0 Xtz 0 0
0 0 I, 0 0 0 XY 72113 0
0 0 0 L, 0 0 0 SHW 2TV
7.4. Derivation of the shifted primal-dual penalty-barrier direction
The primal-dual penalty-barrier problem may be written in the form
miHiHIIiZG M(p) subject to Cp = b, (7.10)
pe
where
IT={p:p=(x,21,22,5,9,21,22,w), with 1 + p’e >0, xo + p’e >0, s+ u’e >0, 21 >0, z5 >0, w > 0},
and
Ex 0 0 0 0 0 0 O bx
C=\|\Er -I, 0 0 0 0O O O, and bo=| ¢
Ex 0 I. 0 0 0 0 O U
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Let p € Z be given. Assume that z is feasible for the equality constraints Eyz = by, but not necessarily for the linear inequality
constraints, i.e., it may not hold that Epx — 1 = £ and Erx + x5 = u. The Newton direction Ap is given by the solution of the

subproblem

minir;lize VM (p)"Ap + 3 Ap™V°M (p) Ap  subject to CAp = b, — Ch. (7.11)
However, instead of solving (7.11), we define a linearly constrained modified Newton method by approximating the Hessian
V2M (2,21, 22, 8,9, 21, 22, w) by a matrix B(x,x1,%9,5,¥, 21, 22,w). Consider the matrix defined by replacing 7* by y, 77
by z1, 74 by 29, and 7" by w everywhere in the matrix VM (z,1,22,$,y, 21,22, w). This gives an approximate Hessian
B(x,x1,22,8,Y, 21, 22, w) of the form

Hy 0 0 ~ZJT JT 0 0 0
02Xz, 0 0 0 I 0 0
0 0 2(X4)1 2, 0 0 0 I 0
— 0 0 2(5pl +(S*)7'W) —I 0 0 I
J 0 0 I I 0 0 0 ’
0 I 0 0 0 (XhHz! 0 0
0 0 I 0 0 0 Xzt 0
0 0 0 I 0 0 0 Sk 1

where ﬁl = H(xz,y) + %JTJ. The definitions of Dy, D}, and D4 may be used to write B(x, 1,2, $,y, 21, 22, w) in the form

H+2JTD;LJ 0 0 —2JTD1 JT 0 0 0
0 2(D7)~! 0 0 0 I, 0 0
0 0 2(D3)~! 0 0 0 I, 0
—2D;1J 0 0 2(D7+ DY) —1y, 0 0 I,
J 0 0 —I D, 0 0 o |’
0 I, 0 0 0 D% 0 0
0 0 I, 0 0 0 Dj 0
0 0 0 I, 0 0 0 Dy,

where H = H(x,y). Given B(p) = B(z,x1,x2,5,Y, 21, 22, w), a modified Newton direction is given by the solution of the QP

subproblem
minimize VM (p)? Ap + %ApTB(p)Ap subject to CAp = be — Cp. (7.12)

Ap
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Let N denote a matrix whose columns form a basis for null(C'), i.e., the columns of N are linearly independent and CN = 0.
The vector

0 0
—(l — Erx+11) -7
(u— Erx — x3) Ty
0 A 0
0 0
0 0
0 0
satisfies CApg = b — Cp, and every feasible Ap may be written in the form
Ap = Apg + Nd.
This implies that d satisfies the reduced equations
NTB(p)Nd = —N"(VM (p) + B(p)Apo).
Consider the null-space basis defined from the columns of
ET 0 0 0 0 0
I 0 0 0 0 0
—I 0 0 0 0 0
0 I 0 0 0 0
N= 0 0 I 0 0 0 (7.14)
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 L,
The definition of N of (7.14) gives the reduced Hessian NTB(p)N such that
H, +2Ji Dy e +2((D7) "+ (D5)7Y)  —2J0D;! Joo I, I, 0
—2D; Y, 2(D7'+ DY) —In 0 0 I,
Jr -1, D, 0 0 0
1, 0 0 D% 0 0
—I, 0 0 0 D3 0
0 Iy 0 0 0 Dy,
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Similarly, the reduced gradient N7VM (p) is given by
90— Ji (77 + (77 =)

—(@2nf —2z) gr — JE (T + (17 —y)) = 2n] — z;) + (275 — 25)
—(2m3 — z5) @r" —y) - 27" —w)
V| e e -er—w | Dy ("~ y)
=Dy (n" —y) —Df(r{ — z))
—D{(7{ — %) —D3 (73 — 25)
—Di(75 — z5) —Dy (7" = w)

—Dy (" —w)

Moreover
0

where r, = { — Epx + 21 and 1, = u — Erx — x2. This implies that N7B(p)Apy is given by

—2((Df)~'r, + (D)7 'ry)
0

—r,
Tu

0

This gives the reduced gradient N7(VM (p) + B(p)Apo) such that
ge — JE (7% + (% — y)) = (2] — 20) + (275 — 25) — 2((DF)"r, + (DF)r,)
(20" — ) — (27" —w)
T _ =Dy (" —y)
NT(VM (p) + B(p)Apo) = Dt — 2) 7,
_Dg(ﬂ-g - Z2) + Ty
—Dy (77 — w)
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The reduced modified Newton equations N”B(p)Nd = —NT(VM (p) + B(p)Apy) are then

H,+2JID7VJ, +2((DY) "'+ (D5)7Y) —2JED! Jr I, —I, 0 dy
—2D;1J 2(D7Y+ DY) —In, 0 0 Ln | | do
Jr —1I, Dy 0 0 0 ds
I, 0 0 DZ 0 0 dy
—1I, 0 0 0 D} 0 ds
0 I 0 0 0 Dy/ \ds
gr — JE (T + (77 —y)) - (2771 - Zl) + (27T2 — 25) = 2((D})

@2r" —y) = Q27" —w)

_ _DY(WY y)
—Di(r{ —z) —r,
_Dg(ﬂ—g - 32) + Ty
—Dy (7" — w)

Given any nonsingular matrix R, the direction d satisfies

RNTB(p)Nd = —RN"(VM (p) + B(p) Apo).

In particular, if R is the block upper-triangular matrix R such that

I, 0 —2JID;Y —2(D%H)~t 2(Dj)~! 0
. 2Dt 0 0 —2D;!
I, 0 0 0
R= Z 0 0 ’
Zo 0
W
then R is nonsingular because Z;, Zo and W are positive definite, and
H, 0o —-JI -I, 1, 0 H, 0 —-JI —I,
0 0 Iy 0 0 I 0 0 I, 0
J I D 0 0 0 Jr =1 D 0
T F m Y _ F m Y

RN"B(p)N 7 0 0 Z, D% 0 0 o Z1 0 0 Xt
—Zs 0 0 0 Z,Dj 0 ) 0 0 0
0 W 0 0 0 WD, 0 W 0 0

71TL + (Dg)ilr(/)

|
oooé"o

SH
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Also, RNT(VM (p) + B(p)Apo) is given by

I, 0 =2JfDyt —2(DY)~' 2(D3)! 0 9o = JE(m 4 (77 —y)) — 2n] — 2)) + (205 — 2z,) = 2((D}) " 'r, + (D
I, 2D;1 0 0 —2D;! 2rY —y) — (27" —w)

I, 0 0 0 —Dy (¥ —y)

Z1 0 0 —D¥(n¥ —z)—r,

Z 0 _Dg(’]rg_ZZ)—’_TU
w —Dy (" —w)

9r = Jry — 21+ 2
Yy —w

c—s+p"(y—y"°)
2y - (Bpx — ) 4+ p"(2) — 27)
zg - (u— Epw) + p”(2y — 25)
w . s+ pf(w—w?)

This gives the following (unsymmetric) reduced modified Newton equations for d

HF
0
I
A
—Z,
0

Then, (7.13) implies that

0
0
—I,
0
0
W

—JZ
I,

Y

OOOb

orvT O O O

0
—I,
0
0 dy
0
SH

= Ap = Apg+ Nd =

Gp — JEy — 21 + 29
y—w
c—s+u"(y—y°)
z1 - (Brz —0) + p (21 — 27)
zg +(u— Epx) + pi° (29 — 25)
w s+ pf(w—w?)

(7.15)

Eid,

z
2

)"'ry)
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These identities allow us to write equations (7.15) in the form

H, 0 —-JI -1, 1, 0 Azxp Gy — JEy — 21 + 29

0 0 1, 0 0o -1, As y—w

Je —I, Dy 0 0 0 Ay | _ c—s+p"(y—y") (7.16)

Al 0 0 Xt 0 0 Az | 21 (Epx —0) 4+ p®(zy — 27) |’ ’
—Zs 0 0 0 X¥ 0 Azo 2o +(u— Epx) + uP(25 — 25)

0 w 0 0 0o S# Aw w s+ pf(w—w?)

with Az = ET Az, Ary = Az — ({ — Epx + 21) and Azg = —Ax + (u — Epz — 29).

As in the bounded slack case, it is necessary to choose feasible x1 and o, which gives E,x — x1 = £ and Erz 4+ x5 = u, and
it follows that Azy = Az and Azes = —Az. (This assumption is made for the remainder of this section.) Under this feasibility
assumption, if X; and X, are written in terms of x, i.e., X7 = diag(e?x — Ej) and Xo = diag(uj — e]T:v), respectively, then
equations (7.16) are the Newton equations for a solution of the perturbed optimality conditions (7.3). The variables x; and x4

may be computed implicitly for the line search, in which case the appropriate merit function is

[ =) g, P||c—s||2+ -y
=S (g — ") ) (] (= 4+ 7)) = [ — €+ i)}
JEF
=S =y ") 28] (2] (g — 5+ 1)) = [zl (g — 5+ 0%) |
JEF

= {mwr i sy 4 )+t In (s, + ) = wi (s, + 00)
i=1
7.5. Computation of the shifted primal-dual penalty-barrier direction

Next we consider the solution of the path-following modified Newton equations (7.16), which may be written in the form

H, o —-JI -1, I, 0 Az g — JEy — 21 + 2o
0 0 1, 0 0o -1, As y—w
Jr =1 D, 0 0 0 Ay _ Dy (y—7Y)
I, 0 0 D# 0 0 Az | — D#(z; — 7¥)
-1, 0 0 0 D 0 Azo D3(zy — 75)
0 I, 0 0 0 Dy Aw Dy (w—m")
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Consider the following reordered equations and variables:

D 0 0 0 I, 0 Az Di(z, — %)
0 Dji 0 0o —-I, O Az Di(z, — 74)
0 0 w I, O 0 Aw | Dy (w—m")
0 0 —I, 0 0 I, |las |T™ y—w : (7.17)
0 0 0 -1, J D, Axp Dy(y—7")
-1, I, 0 0 H, —-JI') \Ay Gr — JEy — 21 + 2,
Applying the nonsingular matrix
IF
0 I,
0 I,
Dt I,
Iy, Dy Iy
(D)~ —(D5)~! I
to both sides of (7.17) gives the block upper-trapezoidal system
D}y 0 0 0 1, 0 Az D% (z, — %)
0 Di O 0 -1, 0 Azy D%(z, — 7§)
0 0 Dy I, 0 0 Aw | Dy (w—m")
0 0 0 D}t 0 I, As | -7
0 0 0 0 J Dy + Dy, Azp Dy(y—7")+ Dy (y—7")
0 0 0 0 H,+D}! —JI Ay g, — JLy —n?

with 77 = 77 — 74, and D! = (D?)~! + (D%)~!. Tt follows that the solution of the Newton path-following equations (7.5) is
given by

Ar = EL Ay,

Azy =g+ HAz — JH(y+ Ay) |x — 2x

Aw =y+ Ay —w,

As =W ((w+ Aw) - s+ p*(w + Aw — w”)),

Az = _(Xf)_l(zd “(Er(z+ Az) — L+ pe) — ﬂBzf)’

Ay = —(XE) ™ (2 - (4 — Bp(a+ Ar) + pe) — u"25),
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where Az, and Ay satisfy the equations
H,+D}! —Jr Arp\ _ g, — Jly —m*
Jr Dy +Dy ) \Ay )~ Dy(y—7")+ Dyw(y—7")) "

7.6. Summary: bounded variables

Define the quantities

. 1
Dy = u”I, wy:ybf—P(c(x)fs),
1
Df = X077, w = (X0
Df = X{ 23", 75— (X524,
D, = (DN + D)™, At =i,
Dy, = SFWH " = pf (S*) " tw”,
then As, Aw, Az, Axo, Az; and Az, are given by
Az = ET Az,
y=y+ Ay, Aw =y -w,
W =w+ Aw, As =-W YD+ s+ p’ (@ —w")),
T =x+ Az, Azy = —(X) 7 (2 - (@ — €+ pPe) — pP2f),

AZQ = —(X;)_l(ZQ . (u — ./’I,'\—i— ,uBe) — /,LBZQE),

where Az and Ay satisfy the equations

H.+D;' —JT Azp) gr — Jry —7”
JF DY+DW Ay N DY(Z/_WY)"’—DW(y_T(W) .
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The line-search merit function is

f—(c—9s)y" +

1 1 ,
G 2MPIIC—SJruP(y—y”)IIQ

= 3 ) i ( — 4 ) ] I () g — £+ ) = [ (5 = 4+ %) |
JjeEF

=3 { ] (g — g ) ] (2] (g — i+ 1) — [zl (g — 5+ %) |
JEF

lle —s]1* +

m

- Z {/ﬁwf In (s; + p°) + pPwf In (w;(s; + p”)) — w;(s; + ﬂB)}. (7.18)
i=1
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8. Upper and Lower Bounds on all Variables and Slacks

Next we consider the case with upper and lower bounds on all the variables and slacks.

8.1. Problem statement and optimality conditions

The definition of the problem is

minimize f(z) subject to c(x) —s=0, X <z<u*, £ <s<u’, (8.1)
IER” SGR""

where ¢: R" — R™ and f : R™ — R are twice-continuously differentiable. The first-order KKT conditions for this problem are

g(x®) — J(x)Ty* — 2} + 25 =0, 2y >0, z5 >0, (8.2a)
y* —wi +w; =0, wi >0, wy >0, (8.2b)

c(z*) —s* =0, (8.2¢)

t—0* >0, u* —z* >0, (8.2d)

s*—0° >0, u® —s* >0, (8.2¢)

27 - (x" = 0%) =0, 2y - (u* —2*) =0, (8.2f)

wi - (s* =) =0, wy - (U —s") =0, (8.2g)

where y* are the multipliers for the equality constraints ¢(xz) —s = 0, and 27, 25, wi, and wj may be interpreted as the Lagrange
multipliers for the inequality constraints  — ¢¥ > 0, u¥ —x > 0, s — £° > 0 and u® — s > 0, respectively.
8.2. The path-following equations

Let 2{ and 25, wi and w5 denote nonnegative estimates of the Lagrange multipliers for the inequality constraints z; > 0, z2 > 0,
s1 > 0 and so > 0, respectively. Given small positive scalars u” and p”, consider the perturbed optimality conditions

g(x) = J(x) Ty — 214+ 22 =0, z1 >0, 29 >0, (8.3a)
y—wi +ws =0, wy > 0, wy > 0, (8.3b)

o(x) - 5 = H (" ), (8:3¢)

x—0*>0, u¥ —x >0, (8.3d)

s—45>0, u® —s>0, (8.3¢)

@) =g =), (0 — ) = (= 2), (8.30)

wy - (s =) = p(wi —wy),  wy - (u” =) =p’(wy —w,y), (8.3g)
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Consider the primal-dual path-following equations F(z, s,y, 21, 22, w1, wa ; u”, u?, y%, 2§, 25w, wh) = 0, with

g(z) — J(2)Ty — 21 + 2o
Y —wyr + wa
c(x) —s+u"(y—y”)
F(.’L‘7S7y’217227w17w2;,LLP,,LLB,yE,Zf7Z2E,UJf7'LU§) = 21 °($7£X)+:L"B(Zlizf) . (84)
z9 + ( '
wy - (s = 07) + p¥(w, — wy)
wy - (

Any zero (z, s,y, 21, 22, w1, ws) of F that satisfies £¥ <z < u®, £* <s<u’, 21 >0, 20 >0, w; >0, and ws > 0 approximates a
point satisfying the optimality conditions (8.2), with the approximation becoming increasingly accurate as the terms p”(y — y*),
w?(zy — 28), n?(zq — 28), p?(wy — wf) and p?(w, — wh) approach zero. For any sequence of z¥, z5, w¥, wf and y* such that
z2f = 27, 28 — 25, wi — wi, w§ — w;, and y* — y*, and it must hold that solutions (z, s,y, 21, 22, w1, w2) of (8.3) must satisfy
21 (@—0%) =0, 29 - (0 —2) = 0, w; -(s—£°) = 0, and wy - (u® —s) — 0, This implies that any solution (z, s,y, 21, 22, w1, W)
of (8.3) will approximate a solution of (8.2) independently of the values of u” and p? (i.e., it is not necessary that u” — 0 and
u? — 0).

Ifv = (z,s,y, 21, 22, w1, ws) is a given approximate zero of F' such that ¢* —p? <z < u*+p?, 05— p? < s <u¥+p?, 21 > 0,
zo > 0, w1 > 0, and ws > 0, the Newton equations for the change in variables (Ax, As, Ay, Az, Azo, Awq, Aws) are given by

H 0 —Jb I I 0 O Ax g—J%y — 21 + 2z

0 0 I 0 0o —I I As Yy —wy + ws

J -1 D, 0 0 0 0 Ay c—s+u"(y—y")

7 0 o X 0 0 o0 Azy | == 2z (@ = 0)+uP(z, — 20) |, (8.5)
—Zs 0 0 0 XY 0 0 Azy Zy » (UX — ) + pP(2y — 25)

0 Wi 0 0o 0 S o0 Aw,y wy -+ (s —05) + p?(wy; —wy)

0 -W, 0 0 0 0 SY) \Aw, wy + (U — )+ ”(wz w?)

where Dy = p"I, X{' = diag(x; — 0§ + p”), X§ = diag(uf —z; + p”), Z1 = diag([z,];), Z2 = diag([z,];), W1 = diag([w,];),
W = diag([w,];), S1' = diag(s; — £§ + p”), and Sy = diag(ui — s; + p”).
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8.3. A shifted primal-dual penalty-barrier function
Problem (8.1) is equivalent to

minimize f(z)
T,T1,22,5,51,52
subject to c¢(x) — s =0,
x_@,l:gX, 8_812657 $1207 51207

T+ xo =u”, s+ 59 =10, T9 >0, s9>0.

Consider the shifted primal-dual penalty-barrier problem

R .,.pP B ,E . E . E
minimize M(z, 21,29, 8, 81, S2, Y, wi, wa ; 1~ w”, y®, wi, wh)
r,r1,22,8,51,82,Y,21,22,W1,W2
subject to x — 21 = £~ s—s1=1°, 1+ p’e >0, 21 >0, s1+ pfe >0, wy > 0, (8.6)
T+ x9 = u’, 5+ 80 = u’, o+ ple >0, 29 > 0, so + pfe >0, we > 0,

where M (z,x1, 2, s, 81, S2, Y, 21, 22, W1, wa 3 u~, w2, y*, 2§, 25 w? ws) is the shifted primal-dual penalty-barrier function

f(@) = (e(@) = 5)"y" + = lle(@) = sl + = lle(@) — s + " (5 — v°)
]271:1{“3 (lz1 + pel) + u”[ef];n ([21 - (21 + w%€) ];) = [21 -(w1+uBe)]j}
é{“l} (L2 + nel;) + u"[25) 0 (12 - (02 4+ i) )g) = [22 - (w2 + ") ; }
i{ (L1 +wel) + p" [l ([wr - (s1+ p"e) i) = [wn - (51 + pe) i}

= {u gl ([s2 + ueli) + P [wg]In ([ws - (s2 + 1) )s) = [ws - (52 + p"e) i} (8.7)

=1
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Let ¢, g and J denote the quantities ¢(z), g(z) and J(z), The gradient of the merit function as a function of x, x1, xa, s, s1, $2

Y, Z21, 22, W1, and w2, is

VM =

Similarly, the Hessian of M (x, x1, z2, s, 81, S2, Yy, w1, ws) is given by

H, 0 0
0 2u” (X)) 227 0
0 0 2u” (XY
—H%J 0 0
0 0 0
0 0 0
J 0 0
0 I, 0
0 0 I,
0 0 0
0 0 0

N
|

no
&

—M%JT 0 0 JT

0 0 0 0
0 0 0 0

Hlplm 0 0 —I,
0 20" (S 2WE 0 0
0 0 2uP(SHY2WE 0

I, 0 0 uw Iy,
0 0 0 0
0 0 0 0
0 I, 0 0
0 0 I, 0

coococofto

Wzt zg
0
0

0 0
0 0
I, 0
I, 0
0 I,
0 0
0 0
0 0
w’zZy 27y 0
0 urW AW
0 0

coocoi"coocococo

WWy Wy
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where Hy = H(z, 27" —y) + %JTJ. Substituting p?Z¥ = X{' 117, u? 25§ = XY 114, p"W§ = S{IIYV and p*W§ = SYIIY gives

H, 0 0 — T 0 0 JT 0 0 0 0
0 2(Xx1~tm? 0 0 0 0 0 I, 0 0 0
0 0 2(X4) s 0 0 0 0 0 I, 0 0
—d 0 0 I 0 0 I, 0 I, 0 0
0 0 0 0 2(51) =ty 0 0 0 0 I, 0
0 0 0 0 0 2(SH) iy 0 0 0 0 I,
J 0 0 —I, 0 0 wlny, 0 0 0 0
0 I, 0 0 0 0 0 X!z 0 0 0
0 0 I, 0 0 0 0 0 XMtz 23 0 0
0 0 0 0 I 0 0 0 0 SEW TV 0
0 0 0 0 0 I 0 0 0 0 SEW, Iy
8.4. Derivation of the shifted primal-dual penalty-barrier direction
The primal-dual penalty-barrier problem may be written in the form
minimize M(p) subject to Cp =0, (8.8)

peT

where 7 is the set of vectors p = (z,x1, 22,8, 81, $2,¥, 21, 22, w1, wz) such that z1 + pe > 0, 2 + pfe > 0, s1 + p’e > 0,
So+uPe>0,21>0,20>0>0, w; >0, and wy >0, and

I, -1, 0 0 0 0 0 0 0 0 0
C— I, 0 -I, O 0 0 0 0 0 0 0
o 0 0 o I, —-I, 0 0 0 0 0 0
0 0 0o I, 0 I 0 0 0 0 0
Given p € Z, the Newton direction Ap is the solution of the subproblem
minAimize VM (p)TAp + %ApTVQM(p)Ap subject to CAp = —Chp. (8.9)
P

However, instead of solving (8.9), we define a linearly constrained modified Newton method by approximating the Hessian
V2M (2,21, 22, 8, 81, 82, Y, 21, 22, W1, w2) by a matrix B(z, x1,¥a, 8, 81, S2, Y, 21, 22, W1, ws ). Consider the matrix defined by replac-
ing 7Y by y, 77 by 21, 74 by 2, " by w; and 7y by wo everywhere in the matrix V2M (z, x1, 2, 8, 51, 82, Y, 21, 22, W1, w2 ). This
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These definitions of D#, D% D}’ and D} can be used to write B(x,x1,x2, 8, $1, $2,Y, 21, 22, W1, wsz) in the form

gives an approzimate Hessian B(z, s, Sp,y, wr) of the form

where



8. Upper and Lower Bounds on all Variables and Slacks 78

where H = H(x,y). Given B(p) = B(z, 1,2, 8, 81, $2,Y, 21, 22, W1, w2 ), a modified Newton direction is given by the solution of
the QP subproblem

minimize VM (p)T Ap + %ApTB(p)Ap subject to CAp = —Cp. (8.11)
P

If p = (x,21, 29,8, 81, $2,Y, 21, 22, w1, wa) is feasible for the constraints then Cp = 0. In this case every feasible Ap may be
written in the form Ap = Nd, where N is a matrix whose columns form a basis for null(C), i.e., CN = 0 and (CT N) is
nonsingular. This implies that d must satisfy the reduced equations

NTB(p)Nd = —NTVM (p).

Consider the particular null-space basis given by

(8.12)

SO OO OO oo

coococoocococofHS
\
coococoiifisTooco
coocoj"oococooo
cooffoocoococoocoo
cofocoocococoococoo
oi"cococoococococoo

&
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With this definition, the reduced modified Newton equations NTB(p)Nd = —NTVM (p) for the linearly constrained problem
(8.6) are

H+2JTD; g + 2Dt —2JTD1 JT I, -I, 0 0 dy
—-2D;tJ 2(D7Y+ DY) I, 0 0 I, —I., do

J —I, Dy 0 0 0 0 ds

I, 0 0 D% 0 0 0 dy

I, 0 0 0 Dj 0 0 ds

0 I, 0 0 0 Dy 0 de

0 —I, 0 0 0 0 Dy ) \dr

2" —y) — (2m" —wy) + (2my" — wy)
Dy(y—7")
== Di(z —{) )
D3(zy — 73)
D (w; —m{")
Dy (wy —m3’)

where D, = ((D{")~! + (DQW)’l)fl, and D, = ((D})~*+(D%)™) ~' Given any nonsingular matrix R, the direction d satisfies
RNTB(p)Nd = —RNTYM (p).

In particular, if R is the block upper-triangular matrix

I 0 —2JTD7! —2(D?)~! 2(D%)"! 0 0
I 2Dt 0 0 —2(D¥)~1 2(Dy)?
I 0 0 0 0
R= Z 0 0 0 :
7y 0 0
W, 0
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then
H 0 JT -1, I, 0 0 H 0 JU -1, I, 0 0
0 0 I, 0 I Iy, 0 0 —I, O 0o -I, I,
J -1, D, 0 0 0 J -I,, D, 0 0 0 0
RNTB(p)N = Z 0 0 ZiD? 0 0 = 71 0 0 X0 0 0
-7 0 0 0 Zy D3 0 0 —Zs 0 0 0 X% 0 0
0 Wi 0 0 wWiDy 0 0 Wi 0 0 0 Sh 0
0 —-Wy 0 0 0 WoDy 0 —-Wy 0 0 0 0o St
and
g—Jy—21+2
Y —wip + ws
Dy(y— ="
RNTVM(p) = — [ X{(2 — =)
X5 (29 — 75)
St (wy —7{")
)

Identities of the form

JT I,

—I, O

D, 0
0o Xt
0 0
0 0
0 0

1, 0
0 I,
0 0
0 0
Xt 0
0o s
0 0

dy
do
ds
dy
ds
de
dr

Yy —wp +wa
Dy(y —m"

X{'(z =)
X5 (29 — m5)
St (wy — i)
Sy (wy — m3")

X{L<Z1 - Wf) = Xf(% - MB(Xf)_lzf) =Zy(xy +p’e) —p’z) =z - (x = 0) + p" (2 — 27)
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for each of the terms X1{'(z; — 7f

H 0
0 0
J -I,
A 0

—Zs 0
0 Wy
0 Wy

), X5

JT -1,

~I, 0

Dy, 0
0o Xt
0 0
0 0
0 0

Iy

0
0
0

Xy

0
0

Then, the definition of N from (8.12) implies that

Az

Al‘l
ACEQ
As

ASl
ASQ =
Ay

Azl
AZQ
Aw1
Aw2

Ap = Nd =

coococoocococofH

0
I,
0
0
0
Sy

|
coococoiiffiTooo

0
L,
0
0
0
0
Sy

OOOO?OOOOOO

dy
da
d3
dy | = —
ds
de
d7

cooffocoocoocoococoo
cofiocoocoocoocoocococo

Using these identities to substitute for the components of d in (8.13) yields

H 0
0 0
J =1y
Z 0

—Zy 0
0 W1
0 —Wy

This system is identical to the Newton equations (8.5) for a solution of the path-following equations (8.3).

JT I,

-1, 0
Dy 0
0 X
0 0
0 0
0 0

Xy
0
0

0
St
0

0
Sy

Ax
As
Ay
Az | =—
AZQ
Aw1
Aw2

(Z2 - 7‘—5)7 Sf(wl - ﬂ—{v)7 Sg(w2 - 775‘/) give

Zl‘

22‘

wq -

Wy -+

U)2‘

22‘
wl‘

Dy(y—7")

(x = 0%) + p" (2 — 27)
(u* — @) 4+ p® (2 — 27)
(5 — )+ 1" (y — w})
(0 = )+ o, — )
0 0 dy
0 0 dy
0 0 —d;
0 0 do
0 0 do
0 0| =1|—ds
0 0 ds
0 0 dy
0 0 ds
I, 0 dg
0 1, dr

g—Jy -2+ 2

(@ = 0%) + 5Pz = 21)
(u* =) + p" (2 — 27)
(s =€) + p (w; —wy
(u® =) + p (wy — w3

(8.13)

(8.14)
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8.5. Computation of the shifted primal-dual penalty-barrier direction

The symmetric path-following equations are

H o JT I ~I

0o 0 I 0 0

J —I —-D, 0 0

I 0 0 -—zZ/'xy 0
-I 0 0 0 -Z;' XY

0o I 0 0 0

0 -I 0 0 0

S O NO

Az

As
_Ay
—Az1
7A22
—Awl
_sz

After collecting terms and reordering the equations and unknowns, we obtain

D 0 0

0 D3 0
0 0 Dy
0 0 0
0 0 —I,
0 0 0
-1, 1, 0
where
DY = ,UPIma
DY = Stwi,
Dy = Sywy

If we define H = H + (D{)~' 4+ (D4)™', Dy = Dy + D,, and D,, = ((D}")~' + (D¥)~") "', then premultiplying the equations

(8.16) by the matrix

o o o o o

—
>
=N
~—
L

PS‘NOOOO

Az1
AZQ
Aw1
A’LUQ
As
Ax
Ay

D =Xzt
Dj = X327, ",

i = " (X7)
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gives the block upper-triangular system

D: 0 0 o 0 I, 0 Az Di(z1 — %)
0 D 0 0 0o -I, 0 Az D4(z0 — 75)
0 0 Dy 0 I, 0 0 Auwn Dy (wy — m{")
0 0 0 D;V —Im 0 0 A’u}g = — Dé}v(U)Q — 7T§V) y
0 0 0 0 I, 0 Dyl||as Dy (y — ")
0 0 0 0 0 J D, Ax D,(y—n")+D,(y—7")
0 0 0 0 o H, -JT)] \ay g— JTy — 7t

where 7" = 7" — 7 and 77 = 77 — 74. Using block back substitution, we may compute Az and Ay by solving the equations

(e GG e

with D, = ((D7)~' + (D3)"')~' and D,, = ((D{")~' + (D¥)~') . The fifth block of equations gives
As=—-D,, (y+ Ay — w1 + wa).

There are several ways of computing Aw; and Aws. Instead of using the block upper-triangular system above, we use the last
two blocks of equations of (8.5) to give

Awy = —(S) " (wy - (s + As — 5 + pe) — p’wy) and Awy = —(S5) 7 (wy - (u¥ — (s + As) + pe) — pw}).
Similarly, using (8.5) to solve for Az; and Az, yields

Azp = —(X{) 72y - (x + Az — X + pPe) — pP27) and Azp = —(X5) 7 (25 - (¥ — (z + Az) + pe) — p”25).
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The variables x1, x2, s1 and s may be computed implicitly for the line search, and the appropriate merit function is

f@) = (c(@) = s)"y H (@) = s|* +

c(x) —s+p"(y—y")|?

, jn (g = 0+ )+ 7 (=] ([l — €+ %)) = [l — € + %)}
SN

Jj=

—z; + MB) + p[z3]; In ([%L(uj —x; + MB)) — [za]j(uj —x; + MB)}

Z{ Jin (s, = € + ) + o fwfl n ([wili(s = 6+ 0%) = [wili(s, = 6 + 1)}

=D gl o ) (ol 5 ) B

5; +;ﬁ)}. (8.18)
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8.6. Summary: upper and lower bounds on all variables and slacks

The results of Sections 6.5 and 7.5 imply that the solution of the path-following equations (8.5) may be computed as follows.
Let x and s be given primal variables such that

—pf <z <u¥+p®, and 5 —puf <s<u®+ P,
and dual variables y, wy, wsa, 21, and zo such that
w; >0, wy>0, 2z >0, and 2z >0.

Let X7, X5, S1, and S5 denote the matrices diag(:z:j — E;), diag(u;‘ — xj), diag(si - Zf) and diag(uf — si), respectively. If D7,
D; DY, DY, D, D, D, o n7, 74, m and 74 denote the quantities

1

Dy =u”I, WYZyE—E(C($)—S),
Df =z ' XY, D = Zy' X,
Dy =Wy sy, Dy = W58,
D,= (DN + @), A =p XN m= (),
Dy = (DN (D)) =S e, = (),
then Ax, Ay, As, Awy, Awsy, Az and Azs, can be computed using the equations
" =ny -, y=1y+ Ay, As :—Dw(g’]—ﬂw),
n” =n] — w3, T=ux+ Az, Azy = —(XI) 7 (= - (@ = 0) + 4" (2 — 27)),
Azy = —(X5) 7 (20 + (u* = T) + 4" (25 — 23)),
5=s5+ As, Awy = —(S1) " wy - (5= 0°) + p”(w, —wy)),
Awy = —(85) 7 (wy + (u” = 5) + p” (wy — w3)),

where Az and Ay satisfy the equations

<H(x,y) v DY ()T > <Ax>

_ g(z) = J(x)Ty —n* )
J(x) Dy + Dy ) \ Ay ’

o <DY(?/ —7")+ Dw(y—7")
As (x,5) — (x*,s*) it holds that || Dy || — oo, which implies that the matrix and right-hand side of this system goes to infinity.
If Dy, is the diagonal matrix such that D2, = D!, equations (8.19) may be written in the form

H(z,y)+ D;' —(DwJ(@)T) (Az) _ g9(x) = J(2)Ty — =*
( Dy J () D%,D, +1 ) (Aﬂ) T (ﬁw(py(y — ")+ Dy (y — WW))) A

(8.19)

= Dy, A7 (8.20)
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In this case, the scaled KKT matrix remains bounded if H(x,y) is bounded. Similarly, the right-hand side remains bounded if
|Dw Dy (y — ") is bounded.
The associated line-search merit function M (x, s,y, 21, 22, w1, w2) of (8.18) can be written as

1
2ur

1
2ur

@) = (c(@) = 8)'y" + 5 lle(@) = s|? + 5 lle(@) = s+ p"(y = y*)II?

-

{0 () oy — € + 7)) = [ oy — € + 07}

<.
Il
—_

L7 18], i (Il (0 — 5+ 0)?) = [zal, (=, 1%) )

|
<.
s 1[4

- {MB[wf]i I ([wy];(s; = €5 + p®)?) = fwy],(s; — € + MB)}

-
Il
_

for which the gradient VM (z, s, y, 21, 22, w1, w2) can be written as

g=JN(r" + (1" —y)) = (77 + (77 = 2))

(=) = (7 (Y - w))
—Dy(m" —y)
—Df(ﬂf _Zl> )
—D3 (75 — z,)
—D{"(n{" —wy)
—Dy' (g — wy)

where z = 21 — 29, W = w1 — wa.
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The residuals of the unsymmetric path-following equations (8.5) may be written as

g—Jy—=2 g—Jy—=2
y—w y—-—w
c—s+pu"(y—y°) p(y—m")
r=| 2z (@) +p(z—27) | = | Xi'(zr—7) |,
2z (u* —x) + pP (2 — 23) Xy (29 — 73)
wy - (s —£°) + p¥(wy —wy) Sf(wl_ﬂ—{v)
wy - (u® —s) + B(wz —wy) Sy (wy — 73)

with z = 21 — 29 and w = w1 — ws.
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9. General case: upper and lower Bounds on all variables

Next we consider the case with upper and lower bounds on both the variables and slacks, together with both implicit and explicit
bounds on the variables.

9.1. Problem statement and optimality conditions

The definition of the problem is

c(x) —s=0, Lys=hy, £ <Lgs<u’,

9.1
Az —b=0, Exx =byx, (¥ < FE.z<u", (9.1)

inimize subject to
roipinige f(z)  sub] {
where ¢ : R” — R™ and f : R™ — R are twice-continuously differentiable. Throughout the discussion, the functions ¢ : R™ — R™
and f : R™ — R are assumed to be twice-continuously differentiable. The matrices associated with the linear constraints
Eyxx = by and Ax = b have linearly independent rows. The matrices Ly and Ly are formed from rows of the identity matrix
I, in such a way that sx = Lxs and s = Lzs are the vectors of “fixed” and “free” components of s. It follows that there is an
m X m permutation matrix P such that
L
P, ="
S <LX> )

with the matrices L, and Ly satisfying the identities L, LT = I,., L, LT = I, and L,L% = 0. The matrices Eyx and E, define
an analogous partition of z into fixed and free components z, and zyx of . The bound constraints involving Fy and Ly are
enforced exactly. The linear constraints Az — b = 0 are imposed using a shifted primal-dual penalty method.

The first-order KKT conditions for problem (9.1) are

g(z*) — J(@) Ty — ATv* —ET2t —ET2 + ET25 =0, 27 >0, z5 >0, (9.2a)
y* — LTw? — LTw; + LTw; =0, wi >0, wj >0, (9.2b)

clx*) — s =0, Lys*—hy =0, (9.2¢)

Az* —b=0, Ecz* —by =0, (9.2d)

E.x* —0* >0, u* — E.x" >0, (9.2¢)

L.s*—1¢°>0, u® — Lps* >0, (9.2f)

21 < (Epx™ —0%) =0, 25 (¥ — Epa™) =0, (9.2¢)

wi + (Lps™ —£%) =0, wh + (u® — Lps™) =0, (9.2h)

where y* are the multipliers for the equality constraints c(x) —s = 0, and 27, 25, w}, and wj may be interpreted as the Lagrange
multipliers for the inequality constraints Epx — €5 > 0, u* — Ezz > 0, Lys — ¢°* > 0 and u® — Lps > 0, respectively. The
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components of v* are the multipliers for the linear equality constraints Az =b. If x1 = Erz — €%, 2o = u* — Erx, 51 = Lps— {7,
and sy = u® — Lys, then 27, 23, w}, and wj are the Lagrange multipliers for the inequality constraints x; > 0, 9 > 0, s1 > 0,
and so > 0, respectively.

9.2. The path-following equations

Let 27 and 24, w{ and w4 denote nonnegative estimates of 2z and 23, w} and w3. Given small positive scalars p”, p* and p?,
consider the perturbed optimality conditions

g(x) = J(x)y — AT — ELz, — ET2, + ET2, =0, z1 >0, 29 >0, (9.3a)
y—LYw, — LTw, + LTw, =0, wy > 0, wy >0, (9.3b)

c(x) —s=p"(y* —vy), Evz* —by =0, Lys*—hyx =0, (9.3c)

Az — b= p*(v* —v), (9.3d)

E.x—0*>0, u* — Epx >0, (9.3¢)

Lps—10°>0, u® — Lps >0, (9.3f)

2 - (Epx = £%) = p” (21 — 21), zg - (u" = Epx) = (25 — 25), (9.3g)

wy - (Lps = £7) = pP(wy —wy),  wy -+ (u° — Lps) = p*(wy —wy), (9.3h)

Consider the primal-dual path-following equations F'(z, s, y, v, Wx, 2x, 21, 22, W1, wa;u*, pu*, p?, y2, v, 28 25 wf wh) =0,

with
g(x) — J(x)Til/ — ATy — E):sz - Ez:’zl + E;{zQ
y — Liwyx — LEw, + LTw,
c(z) —s+p"(y—y”)
Az — b+ p*(v — v¥)

Lys— hy (9.4)

. P B E E E E E EY __
F(I787y3v3217227w17w27u Y,V ,2’1722,101,’102)—

2y - (Epx — ) + p”(21 — 27)
zy (N — Epx) + p” (29 — 25)
wy + (Lps —07) + p” (wy — wy)
wy + (u® — Lps) 4+ p®(wy — wk)

Any zero (z, s, y, v, wx, Zx, 21, 22, W1, we) of F such that ¥ < Fpx < u*, {* < Lps <u®, 21 >0, 29 >0, w; >0, and wy >0
approximates a point satisfying the optimality conditions (9.2), with the approximation becoming increasingly accurate as the
terms u”(y — y”), p*(v — v¥), p®(zy — 27), p(z9 — 25), p”(wy; — wf) and p”(wy — wh) approach zero. For any sequence of z7,
25, wi, wy, v” and y” such that 2J — 27, 25 = 25, w{ — wi, w5 — w3, v¥ = v* and y® — y*, and it must hold that solutions
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(x,8,y,v, 21, 22, w1, wz) of (9.3) must satisfy z; « (x —£5) =0, z5 - (v —2) = 0, wy - (s — %) = 0, and w, - (u® — s) = 0, This
implies that any solution (z, s, y, v, wx, 2zx, 21, 22, W1, we) of (9.3) will approximate a solution of (9.2) independently of the
values of p”, p* and p? (i.e., it is not necessary that u” — 0, p* — 0 and p® — 0).

9.3. A shifted primal-dual penalty-barrier function

Problem (9.1) is equivalent to

minimize flx)
Z,T1,L2,5,51,52
subject to  ¢(x) —s =0, Az —b=0,
Epx —x1 =40, Lps—s =1/, 1 >0, s3>0,

Epx+xo=u", Lps+sa=u’, 122>0, s3>0,
Exx—by =0, Lys—hy =0.
Consider the primal-dual shifted penalty-barrier problem
minimize M(.’L‘, T1,x2,8,51,52,Y,V, W1, W2 ;MP7 /’1‘37 yE7 ’UEa wfv w;)
Z,1,22,5,51,52,Y,V,21,22,W1,W2
subject to Epx —x1 =%, Lps—s3 =1£°, 1+ pPe >0, z1 >0, s1+ pfe >0, wy >0, (9.5)
Eox+xo=u*, Lps+sy=1u°, xo + pe >0, 29 > 0, s2 + pe >0, wy > 0,
Exx—byx =0, Lyxs—hx =0,
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where M (z,x1,x2, s, 51, 52, Y, V, 21, 22, W1, Wa ; 4~y wu?,y?, v?, 27, 25wy wf) is the shifted penalty-barrier function

c(x) = s+u"(y—y")I°

c(z) - slI* +

fl@) = (e(@) =)y +

1
T E 2 2\ |12
—(Az =0+ o T Az - BT+ v =)
ng
_Z{NB[zf]jln([zl]j[xl +/LBG]?)_[21 x1 + p’e ]}
j=1
ng
=S Wl (2]l + p7e ) [ - (w2 + p70) ], |
j=1
mp
=S {w ol (o ilsy + e ]?) = [wn - (s1 4+ 1€))i |
i=1
mpg
=3 (i lwlim (e il s+ p%e]?) — [ws + (52 + e i} (9.6)
i=1
g—AT(2(v" 4+ L (Az — b)) —v) — JT( (y* = ts(c—s) —y)
I W
2y = 2p° (X 1)
zp — 20" (X5) !
2(y Hlp(c—s)
wy —2p”(S)) " w
_2MB SU
VM(x7x17x2757817827y7v721a227w17w2) = 02_S+M(p ;>_ yE)
Az — b+ p(v — v¥)
vyt ple — pt 2y 5]
Ty + pPe — ptZy 25
s+ pfe — Wi twy

$3 + e — pfWy twg
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The gradient may be written in several equivalent forms

g—AT(2(v" + #%(Ax —b)—v) —JT(2(y" — l%,(c )
2 — 2uP(X{) e
)

VM =

g—AT(2(v" + #%(Ax —b)—v) —JT(2(y" - #ip(c —35))—y) g—AT(7* + (7 —v)) = JI (7" + (7 —y))
(X1) (21 - @y + pP2f 4 5P (20 — 20)) —(7f + (zf = 21))
(X5) " (29« @+ p"25 + pP (20 — 25)) — (75 + (75 — 25))
2(y" — r(c—9) —y T+ (17— y)
(S1) M (wy - 81+ pPwi + p” (wy — wy)) — (" + (zf" —wy))
_ (S) " (wy + 89 4 pPwh + p (wy — w5)) _ — (73 + (73 —wy))
h c—s+u"(y—y") a —Dy (7" —y) ’
Az — b+ p' (v — v”) —D (7" — )
A CRETE A ) —D{(n{ — 2)
Zy 2+ g+ 1P (29 — 25)) —D3(n3 — 25)
Wlil(wl - 51+ p” (wy — wy)) =Dy (m)" —w,)
Wyt (wy + sy + p (wy — wh)) =Dy (73 — ws)

9.4. Derivation of the shifted primal-dual penalty-barrier direction
9.5. Computation of the shifted primal-dual penalty-barrier direction

Next we consider the solution of the path-following Newton equations (9.4). If v = (z, s, y, v, wx, 2x, 21, 22, W1, W3) is a
given approximate zero of F'(v) such that ¢X — u? < Epx < u® + p?, 0 — p? < Lps < u® 4+ p?, 21 > 0, 20 > 0, wy > 0, and
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wg > 0, the Newton equations for the change in variables Av = (Az, As, Ay, Av, Awy, Azy, Az, Azs, Aw;, Aws) are given
by F'(v)Av = —F(v), where
g(x) = J(x)'y — ATv — BTz, — BTz + El 2,

y— LTwy — LTw, + LT w,
c(x) —s+pu"(y—y°)
Az — b+ p (v —v®)
Flv) = é}fc ’zx (9.7)
2y (Erx — EX) nf (2 — 27)
7y + (u* = Epx) + 1" (2, — 23)
wy + (Lps — Eb) + pf(wy — wy)
Wy + (u¥ = Lps) + p (wy — w3)
and
H 0 -Jr AT o -t —ET FET 0 0
0 0 I, 0 -LT 0 0 0 —-LT LT
J I, Dy 0 0 0 O 0 0 0
A 0 0 D, 0 0 O 0 0 0
, 0 Ly 0 0 0 0 O 0 0 0
Floy=1 g, 0 0 0 0 0 o 0o o o} (9:8)
Z\E, 0 0 0 0 o X 0 0 0
~ 7B, 0 0 0 0 0 0 X4 0 0
0 WiL, 0 0 0 0 0o 0 S 0
0 —WaL, 0 0 0 0 o 0 0 S

where Dy = u"l,, D, = p'l,, Xt = diag(Erz — €5 + pPe), X§ = diag(u* — Epx + p”e), Z1 = diag(z1), Zo = diag(za),
Wy = diag([w,];), Wa = diag([w,];), St = diag(Lrs — €5 4+ u”e), and S5 = diag(u® — Lps + pe).

Any s may be written as s = LLs, + LTs,, where s, and sy denote the components of s corresponding to the “free” and
“fixed” components of s, respectively. Throughout, we assume that s satisfies Lys — hy = 0, in which case Asy = 0 and As
satisfies

As =L As, + LT As, = LT As,,.

Similarly, any z may be written as * = ELx, + ELz,, where 2, and xy denote the components of 2 corresponding to the “free”
and “fixed variables”, respectively. Throughout, we assume that xy satisfies Exx — by = 0, in which case Azy = 0 and Az

satisfies
Ar = EX Az, + ET Az, = ET Az,
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After premultiplying the first and fourth block of equations by Ly and Ay respectively, these identities allow us to write the

equations (7.5) in the reduced form F' F' Av,.

H, 0 —JI' —AT —I?
0 0 Ly 0 0
Jr. LT D, 0 0
Ay 0 0 D, 0
7 0 0 0o Xty
—Zy 0 0 0 0
0 W, 0 0 0

0 Wy 0 0 0

~

S OV O O O Onyg

0 0 Azxp
15 I | | Ase
0 0 Y
0 O Av |
0 0 Azl -
0 0 AZQ
Sf 0 Awl
0 Sg A’wg

gr — JFTy - sz

21

22'

wy -
Wo

— 21t 25
Yr — Wy + Wy
co(x) =s+p"(y—y*)

(Bra — ) 4 (21 = =)
(" = Epar) + " (2 — 25)
(Lis — £) + 4P 0y — )
(U = Lps) + 1 (1, — w§)

F where Av, = (Azp, Asp, Ay, Av, Awy, Az, Az, Azo, Awy, Aws),

where A, = AET are the columns of A associated with the “free” components of x. The vectors As and Awy are recovered

as As = LT As,, and Awy = [y + Ay — w]x.
Ty + Ay) — 2]

and reordering the equations and unknowns, we obtain

D, 0 0 0 0
0 D 0 0 0
0 0 Di 0 0

0 0 0 DY 0

0 0 0 0 DY

0 0 0o -1z I

0 0 0 0 0
AT = It 0 0

A, 0 Av
II{: 0 A21
—I‘:E 0 AZQ

0 0 Aw1 _

0 0 AU}Q -
0 Ly Asp

J. Dy Az

H, -JI Ay

Lozt owt and Wyt
D (v—7")

Di(z1 — )

D3 (2o — 73)

Dy’ (wy — ")
Dﬁv(w2*7fzw) ’
Yr — W1 + Wo
Dy (y—7")

—ng—sz—zl—l—zz

where A, = AET are the columns of A associated with the “free” components of z, and

Dy = p"Ipy, T =y - P(C—S)7 D, = p'l,,
i
Di}V :Si‘Wfla 7Tl =M (Sii) 1U}f, Df :X{LZ;17
Dy = SgW;l, (Sg) 1“’57 D3 = nggla
If we define H, = H, + ALD;'A, + (D)"' + (D%)~', Dy = Dy + LD, L, and D,

S

1
™ =v" — —(Azx —b),
w
o = (X)L,
w5 = (X)L

Similarly, Az and Azy are recovered as Ax = LTAJ) and Azy = [g+ HAz —

After scaling the last four blocks of equations by (respectively) Z collecting terms

(9.10)

, then
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premultiplying the equations (9.10) by the matrix

I,
0 Iz
0 0 e
0 0 0 I3
0 0 0 0 I3
0 0 0 (Dy)~! —(Dy)~! I3
0 0 0 LD, (D")~' —LTD,(Dy)~! LTD Iz
ATD ! (D7)~! —(D3)~1 0 0 0 0 I
gives the block upper-triangular system
D, 0 0 0 0 0 A, 0 Ay D,(v—m7%)
0 Df 0 0 0 0 17 0 Az D#(z — «¥)
0 0 Dj 0 0 0 -IZ 0 Az D4(z9 — 735)
0 0 0 Dy 0 I: 0 0 Awy | Dy (wy — (")
0 0 0 0 DYy —I5 0 0 Awy |~ DY (wy — ) ’
0 0 0 0 0 I: 0 DyLe || Ase Dy (yr — )
0 0 0 0 0 0 Je D, Az LID, (yr — 7)Y+ Dy (y — ")
0 0 0 0 0 0 H. -J¥ Ay gr — JLy — ALgr — 12

where 7 = LTr/" — LTrY and n? = ELn? — ETr%. Using block back substitution, we may compute Az and Ay by solving
the equations

(m<x,y>+A£D;1AF+D;1 —J ()" >(AxF><gF<x)—JF<x Tz; Azf W?>, (9.11)

JF(‘T) DY +LZ:DWLF Ay Lng(yF _Wz‘;v Y)

with D, = ((D)~' 4+ (D4)")~' and D,, = ((D{")~' + (D¥)~')~!. The full vector Az is then computed as Az = ET Ax,.
Using the identity As = LT As, in the fifth block of equations gives

As=—LTD L .(y+ Ay — ™).

There are several ways of computing Aw; and Aws. Instead of using the block upper-triangular system above, we use the last
two blocks of equations of (9.9) to give

Awy = —(S8) 7 (wy + (Lp(s+ As) — ° + pPe) — p"wf) and Aws = —(S5) "' (wy - (u® — L(s + As) + p’e) — p"wh).
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Similarly, using (9.9) to solve for Az; and Az, yields
Azy = —(XI) 7 (2 - (B (z + Az) — 0¥ + pPe) — pP2f) and Azp = —(X5) (2 « (u* — B, (z + Az) + p’e) — p”23).
Similarly, using the fourth and fifth block of equations of the Newton equations for a zero of (9.7) to solve for Av gives

Av = —(v—7*), with 7 = v” — ,%,, (A(z + Az) —b). Finally, the vectors Awy and Azy are recovered as Awy = [y+ Ay —w]x
and Azy = [g+ HAx — JT(y + Ay) — z]«.

9.6. Summary: computations associated with the general problem

The results of the preceding section implies that the solution of the path-following equations F/(v)Av = —F(v) with F' and F’
given by (9.7) and (9.8) may be computed as follows. Let z and s be given primal variables such that Exx = by, Lxs = hy,
with

X —pPe < Epx <u* +pfe, and €° —pfe < Lps <u’® + u’e,

and dual variables y, wi, ws, 21, and z such that w; > 0, wy > 0, 21 > 0, and z5 > 0. Let X7, Xo, S1, and Sy denote the
matrices diag([z, — ¢¥];), diag([u* — 2 ];), diag([sr — €°];) and diag([u® — s:];), respectively, and define the quantities

1
DY IU/PITTM w7 :yE_i(C—S),
7
1
D, =u'l,, ﬂA:vE—E(Ax—b),
(DY) = (X' 2, (D)~ = (S) "',
(D)~ = (X5)"' 2, (D3)~" = (S§) ™' W,
Dt = (DY)~t +(D3), Dyt = (D)~ + (DY),
7t = (X)L, = (SN,
n = (X5, my = " (54) " .
? = Eln? — Elng, 7" =LLal — LTay

Solve the KKT system

(HF(x,y) + éfg;lAF + D! o +J£g;xgiLF> (Azp> _ (EF (g(z) — J(z)Ty — ATr* — 7TZ)> .
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Ar=EYAz, 2 =212+ Az, Azy = —(XI) 7 (2 - (BpZ — 0 + pPe) — p"27),
Ay = —(XE) (2 - (" — B+ ) — p25),

y=y+ Ay, As =—-LID, L .(5—7"),
S=s+ As, Awy = —(S) 7 (wr + (LpS — €0 + p”€) — pwy),

Awy = —(S5) " (ws - (u° = LpS+ p’e) — pPw}),
7t =0v" — — (4T - b), Av = 7T —w,

v=v+ Av Awx = [ —w]x,
Azy = [g+HAx — J5— 2]y,

As (z,s) — (x*,s*) it holds that ||D;!| is bounded, but || Dy || — oo and ||[ALD7A,|| — co. This implies that the matrix
and right-hand side of this system goes to infinity. In the situation where AT D7 1A, is diagonal, then the KKT system can be
rescaled so that the equations to be solved are bounded. If D, and D,, denote diagonal matrices such that ﬁ% = (ATD1A,) !
and D2, = (LD, L,)~", then ||D,|| and |D,,|| are bounded as (z,s) — (z*,s*). The equations (9.12) may be written in the
form

D,H.(z,y)D, + D2D;' +1 —(DywJ,(x)D,)T" (Awp> _ D Er(g(x) — J(2)"y — ATn* — %) (9.13)
DwJ,.(z)D, Dy +LTD, L, Ay Dyw(LTDy L, (y —7") + Dy(y — %)) )’ ’

with Az, = D,A%, and Ay = ﬁWAgj. In this case, the scaled KKT matrix remains bounded if H(z,y) is bounded. Similarly,
the right-hand side remains bounded if | Dy LTD, L, (y — 7*)|| is bounded.
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The associated line-search merit function (9.6) can be written as

c(x) = s+u"(y—y")I°

c(z) - slI* +

, 1
— (Az — b)Tv” + ﬂHAa: — b2+

fl@) = (e(x) =)y +

Yo —))?

(Wl s ([ )il — 5+ e 2) = (21 (2r — 0 + p%€));}
> {w (=5 ([ [u = e+ ) = [z - (u* = ap + %) ),
> {ulwflitn (fwiilse = €+ pe]?) = [w - (52— € + %)) }
—f{uﬂ[wg]iln (wa il = s+ 7€) = [z - (u = s, + pe)); ). (0.14)

The residuals of the unsymmetric path-following equations may be written as

g—Jy — =2 g—Jy—=2
y—w y—w
c—s+u"(y—y°) py—m")
r= |z (@) Fpt(n —27) [ =] X{'(z—7) |,
zg - (¥ — ) + p (29 — 25) Xy (29 — 73)
wy -+ (s —£7) + p(wy — wy) St (wy — 1)
wy - (uf —5) + B(wz wy) Sé‘(wQ —my)

with z = 21 — 29 and w = w; — wo.
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10. General case: upper and lower bounds on some of the variables

Finally, we assume that the problem has nonlinear equality constraints ¢(x) — s = 0, where s is the vector of slack variables.
In addition, it is assumed that a subset of the components of x and s are fixed and that a subset of the other components are
subject to upper and lower bounds.

10.1. Problem statement and optimality conditions

The problem of interest has the form

c(x)—s=0, Lys=hyx, €°<L,s, Lys<u’,

10.1
Az —b=0, Exz=by, (*<E,z, E,rz<u", ( )

minimize x) subject to
zeR™ scR™ f( ) J {

where ¢ : R" — R™ and f : R" — R are twice-continuously differentiable. The quantity Ey denotes an ny x n matrix formed
from ny independent rows of I, the identity matrix of order n. This implies that the equality constraints Exx = by fix ny
components of = at the corresponding values of by. Similarly, F, and F, denote matrices formed from subsets of I,, such that
ETE, =0, ETE, =0, i.e., a variable is either fixed or free to move, possibly bounded by an upper or lower bound. Note that a
variable z; need not be subject to a lower or upper bound, or may be bounded below and above, in which case e; is not a row
of Ex, E, or E;,. Analogous definitions hold for Ly, L, and L, as subsets of rows of I,,,. However, we impose the restriction
that a given s; must be either fixed or restricted by an upper or lower bound, i.e., there are no unrestricted slacks. The shifted
primal-dual penalty-barrier equations can be derived without this restriction, but the derivation is beyond the scope of this note.
In addition, E and L denote rows of I,, and I,,, such that (Eg Ef) and (E;‘C Eg) are column permutations of I,, and I,,.
It follows that the rows of E, and E, are a subset of the rows of E., and that L, is formed from the rows of L, and L,. The
bound constraints involving Ey and Ly are enforced explicitly. The linear constraints Ax — b = 0 are imposed using the shifted
primal-dual augmented Lagrangian.
The first-order KKT conditions for problem (10.1) are

g(x*) — J(x")Ty* — ATv* — BTzt — ET2; + ET 25 =0, z] >0, z5 >0, (10.2a)
y* — LTwk — LTwi + LTw; =0, wi >0, wy >0, (10.2b)

c(z®) —s" =0, Lys* —hyx =0, (10.2¢)

Az* —b=0, Exa* —by =0, (10.2d)

E.x*—0*>0, u* — Eyx* >0, (10.2e)

L,s* —¢5>0, u® — Lys* >0, (10.2f)

2] < (E™ —0%) =0, zy - (U — Epz*) =0, (10.2g)

wi «(Lys* —£%) =0, wy « (u¥ — Lys*) =0, (10.2h)
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where y* are the multipliers for the equality constraints ¢(x) —s = 0, and 2§, 25, w} and w} may be interpreted as the Lagrange
multipliers for the inequality constraints E,z — ¢* > 0, v — Eyx > 0, L,s — ¢° > 0 and u® — Lys > 0, respectively. The
components of v* are the multipliers for the linear equality constraints Az =b. If 1 = E,x — €5, 2o = u* — Eyx, 51 = L,s — 0%,
and sy = u® — Lys, then 2], 25, wi, and wj are the Lagrange multipliers for the inequality constraints z; > 0, 2 > 0, s1 > 0,
and sg > 0, respectively. In the derivations that follow, the vectors z and w are defined as

z2=FELz +Elz, —EY2,, and w=Liw, + LTw, — L w,. (10.3)

10.2. The path-following equations

Let 27 and 25, w} and w5 denote nonnegative estimates of 27 and 23, wi and w3. Given small positive scalars p”, p
consider the perturbed optimality conditions

g(x) — J(2)y — ATv — ELz, — ET2, + ET2, =0, 21 >0, z9 >0, (10.4a)
y—LTw, — LTw, + LTw, =0, wy, > 0, wy >0, (10.4b)

clx) —s=pf(y" —vy), Eyz* —by =0, Lys*—hyx =0, (10.4c)

Az — b= p*(v® —v), (10.4d)

E,x—¢*>0, u* — Eyx >0, (10.4e)

L,s— 0% >0, u® — Lys >0, (10.4f)

2 (B = 07) = p”(21 — 2), zg - (u* — Byx) = " (25 — 2,), (10.4g)

wy - (Lys — 05) = pP(wf —wy), Wy + (4 — Lys) = p(wf — wy), (10.41)

Consider the primal-dual path-following equations F(x, s, y, v, Wx, Zx, 21, 22, W1, We; p*, p’, u?, y=, v 27, 25 wi, ws) =0,
with
g(x) = J(2)"y — AT — EXz — Ef 2 + Ef 2
y— LTwy — LTw, + ngg
clx) —s+p"(y—y*)
Az — b+ pt(v — v¥)
Eyx —by
Lys—hy
z1 - (Bpr — 0%) + pP (2 — 27)
zg + (N — Eyx) + pf (29 — 23)
wy + (Lys —£°) + p® (wy — wy)
wy + (u® — Lys) + p® (wy — w3)

.,.,p B ,E ,E _E _E , E E\ __
F(m357yav7zla22aw17w27/-}/ Y,V 7217222,1111,7112)— (105)
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Any zero (x, s, y, v, wx, zx, 21, 22, W1, wa) of F such that ¢* < E,, By < u*, £ < L,s, Ly, <u®, z1 >0, 20 > 0, w; > 0,
and wy > 0 approximates a point satisfying the optimality conditions (10.2), with the approximation becoming increasingly
accurate as the terms p”(y — y”), p*(v — v?), p?(z — 27), pu?(z9 — 25), p”?(w; — wf) and p”(wy, — w5) approach zero. For any
sequence of z7, 25, wi, ws, v¥ and y” such that zy — 27, 25 — 25, w{ = wi, wy — w;, v¥ — v* and y* — y*, and it must
hold that solutions (z,s,y,v, 21, 22, w1, ws2) of (10.4) must satisfy z; - (x —€*) = 0, 2z « (v* —2) — 0, wy + (s — £°) = 0, and
wy + (u® — s) — 0, This implies that any solution (z, s, y, v, wx, 2x, 21, 22, w1, wa) of (10.4) will approximate a solution of
(10.2) independently of the values of u”, u* and p” (i.e., it is not necessary that pu” — 0, u* — 0 and p” — 0).

10.3. A shifted primal-dual penalty-barrier function
Problem (10.1) is equivalent to

minimize flx)
Z,T1,L2,5,51,52
subject to  ¢(z) —s =0, Az —b=0,

Ex—x1 =40, L,s—s =/, 1 >0, 51>0
E,x+xo=u*, Lys+sy=1u’, Lo >0, 89 >0,
Exx—by =0, Lys—hy =0.

Consider the shifted primal-dual penalty-barrier problem

WCIJz’S’gl’ig;i’lr}{lg’zZei7227w17w2 M (z,x1, 29,8, 81, S2, Y, v, w1, wa ; 1, 1, y”, 0% wy, wh)
subject to E,z —x1 =45, L,s— 51 =/{°, 1+ p’e >0, z1 > 0, s1+ pfe >0, wy > 0,
Eyx+xo=u", Lys+ss=u", o + ple > 0, 29 >0, s9 + pfe >0, wg > 0,
Evx—by =0, Lys—hy =0,

(10.6)
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where M (z,x1, 2, s, 51, S2, Y, v, 21, 22, W1, We ; u*, w2, y?, v 27, 25 wf, w§) is the shifted primal-dual penalty-barrier function

c(x) = s+u"(y—y")I°

c(z) - slI* +

, 1
— (Az — b)Tv” + ﬂHA:c — b2+

fl@) = (e(@) =)y +

Yo —))?

_Z{uB[zf]jln([zl]j[ggl+ILLB€]?)—[Z (x1 + pfe);

j=1

b
_i{ﬂB[Zf]jln([Zﬂj[xz+MB€]?)—[Z (w2 + 4l J}
i}

= {w ot ([ Jilsy + e ]?) = Twn « (514 )

i=1

=2 {rlwlitn (walilso + e ?) = [wz - (s2 + p”e) )i} (107

The gradient of M may be defined in terms of the quantities X} = diag(E,x — ¢* + u”e), X} = diag(u® — Eyz + pe),
Zy = diag(z1), Z2 = diag(z2), Wi = diag([w,];), Wa = diag([w,);), St = diag(L,s — ¢° + p”e) and S5 = diag(u® — Lys + u”e).
In particular,
g— AT(2(v" + ,%,,(Ax —b)) —v) = JT(2(y" — M%(c— ) —y)
zp = 2P (X{) e
zg = 20 (X5) 12
2(y" — r(c—s)) —y
wy — 207 (S7)
wy — 2p” (Sh) 7!
VM (x,x1, %2, 8, 81,82,Y,V, 21, 22, W1, W) = c— s+ Yy —yF)
Az — b+ p(v —v")
zy +ple— pPZtEf
Ty +ple — pPZy 2l
s+ ple — pt Wi twf
$y + ple — Wy tws
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The gradient may be written in several equivalent forms

VM =

where Dy = p’I,, Dy = p*I,, D?

g— AT(Q(UE

F (A ) o) -
2 = 27 (X1) !
2 —QMB(Xét)_lzf
2y — rle—5) —
w, — 2p°(SY)
wy — 207(S4)
c—s+p(y—y°)
Az — b+ p* (v —v")
@y + pfe — pPZr ey
Ty + ple — pPZy 12l
s+ pPe — pP Wi twf
$y 4 ple — Wy twh
I (A — b)) - v) — JT (2"
(XT) (21 - @y + p72f + 17 (2
B CRE PR S I G €
2(y" — p(c—3)) —y
(S1) 7" (wy « sy + pPwi + p”(w
2+ g+ pfwg + pf(wy
c—s+p"(y—y")
Az — b+ pt(v —v®)
Zfl (21 :
Z;l(zz .
Wl_l(wl
Wyt (wy -

(
“(

=Xtz

JT((E_

L(e—s))

~(e— )

—27))
— 25))

1—wf))

- w}))

_y)

fy)

= pP (X1t

g—AT( (m* —v)) = JT(7¥ +(
— (7 + (7 — 21))
— (75 + (75 — 25))
T (" —y)

— (" + (7] = wy))
— (g + (73 — wy))
—Dy(m" —y)
—D (7 — )
—D{(n{ — 2)
—D3 (75 — 25)
—Dy" ()" — wy)
—Dj' (73 — w,)

2¥, and w4 = pf(XL) 7125
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10.4. Derivation of the shifted primal-dual penalty-barrier direction
10.5. Computation of the shifted primal-dual penalty-barrier direction

Next we consider the solution of the path-following Newton equations (10.5). If v = (x, s, y, v, wx, 2x, 21, 22, W1, We) is a given
approximate zero of F(v) such that /¥ — u? < E,x, Eyx < u® 4+ p?, 05 — pu? < Lps, Lys <u® + p?, z1 >0, z0 > 0, wy; > 0, and
wg > 0, the Newton equations for the change in variables Av = (Az, As, Ay, Av, Awx, Azx, Az, Az, Awq, Aws) are given
by F'(v)Av = —F (v), where
g(z) — J(2)Ty — ATv — 2
y—w
c(x) —s+pu"(y—y°)
Az — b+ p* (v — ")
Lys—hy
Fv) = Evr— by (10.8)
2 - (Bpr = 0%) + pP (2 — 27)
zg + (u* = Eyx) + p®(2p — 23)
wy + (Lys — £5) + p (wy — wy)

and

H 0 -Jr -AT o -—-pf -ET ET 0 0
0 0 L, 0 -LT 0 0 0 —LT LT

J I D, 0 0 0 0O 0 0 0

A 0 0O D, 0 0 0O 0 0 0

, 0 L, 0 0 0 0 0O 0 0 0

Fi(v) = Ey 0 0 0 0 0 0O 0 0 0 (10.9)

7Z.\E, 0 0 0 0 o X' 0 0 0

—7.E, 0 0 0 0 0 0 X¢ 0 0

0 WiL, 0 0 0 0 0 0 S o0

0 —Wel, 0 0 0 0 o o0 o0 S

(recall that z = ET2z, + ETz, — El 2, and w = LYw, + LTw, — LTw,. Any s may be written as s = LLs, + LLs,, where L,
are the rows of I,,, orthogonal to the rows of Ly, i.e., LLL, = 0. The vectors s, and sy are the components of s corresponding
to the “free” and “fixed” components of s, respectively. The variables L;s and L, s form a subset of sp. Throughout, we assume
that s satisfies Lys — hy = 0, in which case Asy = 0 and As satisfies

As=LLAs, + LT As, = LT As,..
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Similarly, any z may be written as * = ELx, + ELz,, where 2, and x denote the components of = corresponding to the “free”
and “fixed variables”, respectively. The variables E,x and E,x form a subset of x,. Throughout, we assume that = satisfies
Eyx — by =0, in which case Azy = 0 and Ax satisfies

Ar = ET Az, + ET Az, = ET Az,

After premultiplying the first and fifth blocks of equations of (10.9) by E, and L respectively, and substituting Ar = EL Az,
and As = LT As,, the equations (10.9) can be written in the reduced form F'Av, = —F, where Av, = (Axp, Asy, Ay, Av,
Az, Azg, Awq, Aw,),

Hy 0 —-JI —AT BT ET 0 0 Azp Er (g —JTy — ATy — z)
0 0 L. 0 0 0o LT LT || As, Le(y —w)
I —LT D, 0 0 0 0 0 Ay c(x) —s+p"(y—y”)
Ap 0 0 D, 0 0 0 0 Av | Az — b+ pt(v —v¥) (10.10)
Z1\Ep 0 0 0o Xt 0 0 0 Az | 2+ (Bre — 05+ pP (2 — 27) | ‘
—ZsEyp 0 0 0 0o X¥ 0 0 Az zy + (uX — Eyx) + pP (29 — 25)
0 WiL,r 0 0 0 0 S 0 Aw,y wy - (Lys — 0°) 4 p” (wy — wy)
0 —WaoLyp 0 0 0 0 0 Sk Awy wy + (u® — Lys) + p?(wy — wh)

where H, = E,HEL, J, = JET A, = AEY g, = E.g, E,, = E,EL, By, = E,EY y. = Lyy, L,, = L, LY and L, = L,LT.
The matrices Jp, Ap, E,» and E,, are the columns of J, A, F, and E, associated with the “free” components of . The matrices
L,» and Ly are the columns of L, and L, associated with the “free” components of s. Given the definitions (10.3), the vectors
As and Awy are recovered as As = LT As, and Awy = [y + Ay — w]y. Similarly, Ax and Az, are recovered as Az = LT Ax,
and Azy = [g+ HAz — JT(y + Ay) — z]x. After scaling the last four blocks of equations by (respectively) Z; ', Zy*, W' and
Wy ! collecting terms and reordering the equations and unknowns, we obtain

D, 0 0 0 0 0 A, 0 Av D,(v—7*)

0 D% 0 0 0 0 E, 0 Az D#(z — 7¥)

o 0 DI 0 0 0 —E, 0 Az Dj(z — %)

0 0 0 DY 0 L, 0 0 ||Aw]| DY (wy — ) (10.11)
0 0 0 0 DY —Ly 0 0 Awy | DY (wy — i) ’ :

0 0 0o LT LT, 0 0 L. Asp Li(y—w)

0 0 0 0 0 -LT Jr Dy Az Dy(y—m")

-AT -fpl ET 0 0 0 H., —JI') \ Ay Ep(g—Jy — Alv — 2)
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where A, = AET are the columns of A associated with the “free” components of x, and

1
Dy =u"I,, ™ =y" — —(c—s), D, =pu'l,, =" — ~(Az —b),
7 u
DY = Stwi, =P (S wf, Di =X{'Zt,  wf = pP (X))
DY —SEWl,mp (S Ts, DE=XEZy, -t (X)U

The diagonal matrix L, (LT (D{)~*L,+ LT (DY)~1L,)LL is nonsingular if every slack is either fixed or bounded above or below.
If we define Dy, = (L, (LT (D{")"'L,+ LEY(D¥)~*L,)LT)~!, then premultiplying the equations (10.11) by the matrix

L,
0 17,
0 0 17,
0 0 0 17,
0 0 0 0 I;,
0 0 0 LT (D)t —LT, (DW) 1 I3
0 0 0 LTD, LT (D)=t —LTDWLTU;(DQW) ! LTD Iz
ATDT! ET(D#)~' —ET (D31 0 0 0 0 I,
gives the block upper-triangular system
D, 0 0 0 0 0 A, 0 Av D,(v—7")
0 D? 0 0 0 0 E, 0 Az D¥(z; — w¥)
0 0 D} 0 0 0 E,pn 0 Azg Dj (20 — 7§)
0 0 0 Dy 0 L,p 0 0 Awy | Dy (wy — my")
0 0 0 0 DY —Ly 0 0 Awy | DY (wy — @W) ’
0 0 0 0 Dy, 0 Ly Asp Lo(y—m")
0 0 0 0 0 0 Je Dy | | Azy LTD, L.(y—7")+D,(y—7")
0 0 0 0 0 0 H, -JI Ay Ep(g— Jy — ATn* — nZ)

where H, = E.(H + ATD;'A+ ET(D?)~'E, + EY(D5)"'E)EL, Dy = Dy + LD, L,, " = LTr} — LT7y and 7% =
ETr# — ET7%. Using block back substitution, Az, and Ay can be computed by solving the equations

(HF —JZ) <Aa:F) - ( Be(g—JTy — ATn" — ) > (10.12)
Jo Dy )\ay )~ \LIDyL.(y—7") + Dy(y 7)) |
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The full vector Az is then computed as Az = EL Ax,. Using the identity As = LT As, in the sixth block of equations gives
As=—LLD L .(y+ Ay —7").

There are several ways of computing Aw; and Aws. Instead of using the block upper-triangular system above, we use the last
two blocks of equations of (10.10) to give

Awy = —(S) " (wy - (L,(s+ As) — 5+ p”e) — p"wi) and Aws = —(S5) 7" (wy - (u¥ — L, (s + As) + p"e) — p"w3).
Similarly, using (10.10) to solve for Az; and Az yields

Azy = —(XI) (2 - (B (x + Az) — 0 + pPe) — pz)) and Az = —(X5) 7' (25 - (u* — B, (z + Az) + pe) — p"25).
Similarly, using the fourth and fifth block of equations of the Newton equations for a zero of (10.8) to solve for Av gives

Av = —(v—7"), with 74 = v* — A%A (A(z + Az) —b). Finally, the vectors Awy and Azy are recovered as Awy = [y+ Ay —w]x
and Azy = [g+ HAzx — JT(y + Ay) — 2]x.

10.6. Summary: computations associated with the general problem

The results of the preceding section implies that the solution of the path-following equations F'(v)Av = —F(v) with F' and F’
given by (10.8) and (10.9) may be computed as follows. Let x and s be given primal variables and slack variables such that
Evx =bx, Lys = hx with ¥ — p? < E,z, Eyx < u® 4+ p?, 05 — u® < L;s, Lys < u® + p”. Similarly, let z1, 22, w1, we and y
denotes dual variables such that wy > 0, wy > 0, 21 > 0, and 2o > 0. Consider the diagonal matrices X}* = diag(E,z —¢* + p®e),
X4 = diag(u® — Eyx + pPe), Z1 = diag(z1), Z2 = diag(z2), Wi = diag([w,];), Wa = diag([w,);), St = diag(L,s — ¢° + p”e) and
Sh = diag(u® — Lys + p”e). Given the quantities

1
D, ::uPImv " :yE_E(C_S)v
1
D, =u'l,, WA:vE—E(Ax—b),
(Df) ! = (X{) 12, (D)™t = (s7)"'w,
(D3)™" = (X§) 7' Zs, (D)~ = (8) " W,
D' =E[(DY)'E, + E[(D3)"'E,)Ey, Dyt =L (L{ (DY) Ly + L (DY) " Ly) Ly,
" = (X)L, w = (54w
g = (X4) S, m = o (55)
w

7’ = ETn? — ETnl, ¥ =LTqy — LT7¥.
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Solve the KKT system

<HF(x7y) +ATD1A, + D! —J,(z)T ) (Axp) _ (EF (9(x) = J(x)'y — ATn* — 71'2)) (10.13)
J,.(x) Dy +LTD,L,) \ Ay LTD,L.(y—7")+Dy(y—7")
Az =ETAz, Z=uz+ Az, Azy = —(XI) Mz - (B2 — 0+ pPe) — p”27),
Azg = —(X5) M2y - (W — EvT + p’e) — p”25),
J=y+ Ay, As = —LiD, L, (§—7"),
§=s+ As, Awy = — (S (wy - (L3 — £ + ple) — pwl),

Awy = —(S5) 7 (w2 + (u° — Ly + ple) — pPw?),
7t =0v" — — (AT —b), Av = 7T —w,

v=v+ Av Awy = [J—w]x,
Azx = [g+HAz —JG— 2]x.

As (z,s) — (z*,s*) it holds that || D,!| is bounded, but || Dy || — oo and ||[ALD;A,|| — oco. This implies that the matrix
and right-hand side of this system goes to infinity. In the situation where AT D71 A, is diagonal, then the KKT system can be
rescaled so that the equations to be solved are bounded. If D, and D,, denote diagonal matrices such that 1322 = (ATD;tA,)!
and 133‘, = (LTD, L,)" !, then ||132H and ||ﬁWH are bounded as (z,s) — (z*,s*). The equations (10.13) may be written in the
form

(ﬁZHF(m,y)ﬁZ +D2D; 4+ 1 (ﬁWJF(x)ﬁZ)T> (A:cF) B ( D, Er(9(z) — J(z)Ty — ATn* — 77)

b ~ _ . (10.14)
Dy J,(x)D, Dy +LTD,L, ) \Ay Duw(LTD, L, (y —7") + Dy (y — WY))>

with Az, = D, A%, and Ay = D, Aj. In this case, the scaled KKT matrix remains bounded if H(x,y) is bounded. Similarly,
the right-hand side remains bounded if || Dy LTD,, L, (y — 7*)]| is bounded.
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The associated line-search merit function (10.7) can be written as

o o T g 1 o 2 1 o P B2
flz) = (clx) = 5) v + 2MPHC($) s[|” + 2MPIIC(%) s+u"(y =yl
1 1
_ _pT,E L _ plI2 _ Al 2 EN[|2
(Az —b)"v® + 2MAHAac bl|* + 2,uAHAac b+ p(v—2")

=S {W e (o B = € 4 e ) = [+ (Bu = 0+ ) )
=S {W s ()l — Byr +pel}) = [ - (0 = Bz +u'e)); )

=Y (el ([l Lus = € 4 e ) = [wn - (Lus = € 4+ ")) }

-3 {,ﬁ[wg Jiln ([waJi[u® — Lys + pPe)?) — [ws - (u° — Lys + pe) ]} (10.15)
=1
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