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Abstract

In nonlinearly constrained optimization, penalty methods provide an effec-
tive strategy for handling equality constraints, while barrier methods provide
an effective approach for the treatment of inequality constraints. A new al-
gorithm for nonlinear optimization is proposed based on minimizing a shifted
primal-dual penalty-barrier function. Certain global convergence properties are
established. In particular, it is shown that a limit point of the sequence of it-
erates may always be found that is either an infeasible stationary point or a
complementary approximate Karush-Kuhn-Tucker point, i.e., it satisfies reason-
able stopping criteria and is a Karush-Kuhn-Tucker point under a regularity
condition that is the weakest constraint qualification associated with sequen-
tial optimality conditions. It is also shown that under suitable additional as-
sumptions, the method is equivalent to a shifted variant of the primal-dual
path-following method in the neighborhood of a solution. Numerical exam-
ples are provided that illustrate the performance of the method compared to a
widely-used conventional interior-point method.
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1. Introduction

This paper presents a new primal-dual shifted penalty-barrier method for solving
nonlinear optimization problems of the form

minimize
x∈Rn

f(x) subject to c(x) ≥ 0, (NIP)

where c : Rn 7→ Rm and f : Rn 7→ R are twice-continuously differentiable. Barrier
methods are a class of methods for solving (NIP) that involve the minimization
of a sequence of unconstrained barrier functions parameterized by a scalar barrier
parameter µ (see, e.g., Frisch [18], Fiacco and McCormick [13], and Fiacco [12]).
Each barrier function includes a logarithmic barrier term that creates a positive
singularity at the boundary of the feasible region and enforces strict feasibility of
the barrier function minimizers. Reducing µ to zero has the effect of allowing the
barrier minimizers to approach a solution of (NIP) from the interior of the feasible
region. However, as the barrier parameter decreases and the values of the constraints
that are active at the solution approach zero, the linear equations associated with
solving each barrier subproblem become increasingly ill-conditioned. Shifted barrier
functions were introduced to avoid this ill-conditioning by implicitly shifting the
constraint boundary so that the barrier minimizers approach a solution without the
need for the barrier parameter to go to zero. This idea was first proposed in the
context of penalty-function methods by Powell [35] and extended to barrier meth-
ods for linear programming by Gill et al. [22] (see also Freund [17]). Shifted barrier
functions are defined in terms of Lagrange multiplier estimates and are analogous to
augmented Lagrangian methods for equality constrained optimization. The advan-
tages of an augmented Lagrangian function over the quadratic penalty function for
equality-constrained optimization motivated the class of modified barrier methods,
which were proposed independently for nonlinear optimization by Polyak [34]. Ad-
ditional theoretical developments and numerical results were given by Jensen and
Polyak [30], and Nash, Polyak and Sofer [32]. Conn, Gould and Toint [7,8] general-
ized the modified barrier function by exploiting the close connection between shifted
and modified barrier methods. Optimization problems with a mixture of equality
and inequality constraints may be solved by combining a penalty or augmented La-
grangian method with a shifted/modified barrier method. In this context, a number
of authors have proposed the use of an augmented Lagrangian method, see e.g.,
Conn, Gould and Toint [7, 8], Breitfeld and Shanno [4, 5], and Goldfarb, Polyak,
Scheinberg and Yuzefovich [26].

It is well-known that conventional barrier methods are closely related to path-
following interior methods (for a survey, see, e.g., Forsgren, Gill and Wright [16]). If
x(µ) denotes a local minimizer of the barrier function with parameter µ, then under
mild assumptions on f and c, x(µ) lies on a continuous path that approaches a
solution of (NIP) from the interior of the feasible region as µ goes to zero. Points on
this path satisfy a system of nonlinear equations that may be interpreted as a set of
perturbed first-order optimality conditions for (NIP). Solving these equations using
Newton’s method provides an alternative to solving the ill-conditioned equations
associated with a conventional barrier method. In this context, the barrier function
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may be regarded as a merit function for forcing convergence of the sequence of
Newton iterates of the path-following method. For examples of this approach, see
Byrd, Hribar and Nocedal [6], Wächter and Biegler [37], Forsgren and Gill [15], and
Gertz and Gill [19].

An important property of the path-following approach is that the barrier pa-
rameter µ serves an auxiliary role as an implicit regularization parameter in the
Newton equations. This regularization plays a crucial role in the robustness of
interior methods on ill-conditioned and ill-posed problems.

1.1. Contributions and organization of the paper

Several contributions are made to advance the state-of-the-art in the design of al-
gorithms for nonlinear optimization. (i) A new shifted primal-dual penalty-barrier
function is formulated and analyzed. (ii) An algorithm is proposed based on using
the penalty-barrier function as a merit function for a primal-dual path-following
method. It is shown that a specific modified Newton method for the unconstrained
minimization of the shifted primal-dual penalty-barrier function generates search di-
rections identical to those associated with a shifted variant of the conventional path-
following method. (iii) Under mild assumptions (e.g., no Kurdyka- Lojasiewicz type
assumption is needed), it is shown that there exists a limit point of the computed
iterates that is either an infeasible stationary point, or a complementary approximate
Karush-Kuhn-Tucker point (KKT), i.e., it satisfies reasonable stopping criteria and
is a KKT point under a complementary approximate KKT regularity condition. This
regularity condition is the weakest constraint qualification associated with sequential
optimality conditions. (iv) The method maintains the positivity of certain variables,
but it does not require a fraction-to-the-boundary rule, which differentiates it from
most other interior-point methods in the literature. (v) Shifted barrier methods
have the disadvantage that a reduction in the shift necessary to ensure convergence
may cause an iterate to become infeasible with respect to a shifted constraint. In the
proposed method, infeasible shifts are returned to feasibility without any increase
in the cost of an iteration.

The paper is organized in seven sections. The proposed primal-dual penalty-
barrier function is introduced in Section 2. In Section 3, a line-search algorithm is
presented for minimizing the shifted primal-dual penalty-barrier function for fixed
penalty and barrier parameters. The convergence of this algorithm is established
under certain assumptions. In Section 4, an algorithm for solving problem (NIP)
is proposed that builds upon the work from Section 3. Global convergence results
are also established. Section 5 focuses on the properties of a single iteration and
the computation of the primal-dual search direction. In particular, it is shown that
the computed direction is equivalent to the Newton step associated with a shifted
variant of the conventional primal-dual path-following equations. In Section 6 an
implementation of the method is discussed, as well as some numerical examples that
illustrate the performance of the method. Finally, Section 7 gives some conclusions
and topics for further work.
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1.2. Notation and terminology

Given vectors x and y, the vector consisting of x augmented by y is denoted by (x, y).
The subscript i is appended to vectors to denote the ith component of that vector,
whereas the subscript k is appended to a vector to denote its value during the kth
iteration of an algorithm, e.g., xk represents the value for x during the kth iteration,
whereas [xk ]i denotes the ith component of the vector xk. Given vectors a and b
with the same dimension, the vector with ith component aibi is denoted by a · b.
Similarly, min(a, b) is a vector with components min(ai, bi). The vector e denotes
the column vector of ones, and I denotes the identity matrix. The dimensions of e
and I are defined by the context. The vector two-norm or its induced matrix norm
are denoted by ‖ · ‖. The inertia of a real symmetric matrix A, denoted by In(A),
is the integer triple (a+, a−, a0) giving the number of positive, negative and zero
eigenvalues of A. The vector g(x) is used to denote ∇f(x), the gradient of f(x).
The matrix J(x) denotes the m×n constraint Jacobian, which has ith row ∇ci(x)T .
The Lagrangian function associated with (NIP) is L(x, y) = f(x) − c(x)Ty, where
y is the m-vector of dual variables. The Hessian of the Lagrangian with respect to
x is denoted by H(x, y) = ∇2f(x)−

∑m
i=1 yi∇2ci(x). Let {αj}j≥0 be a sequence of

scalars, vectors, or matrices and let {βj}j≥0 be a sequence of positive scalars. If
there exists a positive constant γ such that ‖αj‖ ≤ γβj , we write αj = O

(
βj
)
. If

there exists a sequence {γj} → 0 such that ‖αj‖ ≤ γjβj , we say that αj = o(βj).
If there exists a positive sequence {σj} → 0 and a positive constant β such that
βj > βσj , we write βj = Ω(σj).

2. A Shifted Primal-Dual Penalty-Barrier Function

In order to avoid the need to find a strictly feasible point for the constraints of
(NIP), each inequality ci(x) ≥ 0 is written in terms of an equality and nonnegative
slack variable ci(x)− si = 0 and si ≥ 0. This gives the equivalent problem

minimize
x∈Rn,s∈Rm

f(x) subject to c(x)− s = 0, s ≥ 0. (NIPs)

The vector (x∗, s∗, y∗, w∗) is called a first-order KKT point for problem (NIPs) when

c(x∗)− s∗ = 0, s∗ ≥ 0, (2.1a)

g(x∗)− J(x∗)Ty∗ = 0, y∗ − w∗ = 0, (2.1b)

s∗ · w∗ = 0, w∗ ≥ 0. (2.1c)

The vectors y∗ and w∗ constitute the Lagrange multiplier vectors for, respectively,
the equality constraint c(x)−s = 0 and non-negativity constraint s ≥ 0. The vector
(xk, sk, yk, wk) will be used to denote the kth primal-dual iterate computed by the
proposed algorithm, with the aim of giving limit points of

{
(xk, sk, yk, wk)

}∞
k=0

that
are first-order KKT points for problem (NIPs), i.e., limit points that satisfy (2.1).

An important concept related to the design of efficient algorithms for computing
first-order KKT points for problem (NIPs) is that of perturbed optimality conditions.
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An appropriate set of perturbed conditions for (2.1) is given by

g(x)− J(x)Ty = 0, y − w = 0,

c(x)− s = µP(yE − y), s ≥ 0,

s · w = µB(wE − w), w ≥ 0,

(2.2)

where yE ∈ Rm is an estimate of a Lagrange multiplier vector for the constraint
c(x) − s = 0, wE ∈ Rm is an estimate of a Lagrange multiplier for the constraint
s ≥ 0, and the scalars µP and µB are positive penalty and barrier parameters,
respectively. (The interpretation of µP and µB as penalty and barrier parameters is
discussed below.) In the neighborhood of a first-order KKT point it is well-known
that computing the search direction as the solution of the Newton equations for a
zero of the perturbed optimality conditions provides the favorable local convergence
rate associated with Newton’s method. At the same time, to ensure convergence to a
first-order KKT point from an arbitrary starting point, an algorithm must include a
strategy for deciding when one iterate is preferable to another. These considerations
motivate the formulation of the new shifted primal-dual penalty-barrier function

M(x, s, y,w ; yE , wE , µP , µB) = f(x)︸︷︷︸
(A)

− (c(x)− s)TyE︸ ︷︷ ︸
(B)

+
1

2µP
‖c(x)− s‖2︸ ︷︷ ︸
(C)

+
1

2µP
‖c(x)− s+ µP(y − yE)‖2︸ ︷︷ ︸

(D)

−
m∑
i=1

µBwE
i ln

(
si + µB

)
︸ ︷︷ ︸

(E)

−
m∑
i=1

µBwE
i ln

(
wi(si + µB)

)
︸ ︷︷ ︸

(F )

+
m∑
i=1

wi(si + µB)︸ ︷︷ ︸
(G)

.

It is shown in Section 5.3 that in the neighborhood of a minimizer of (NIPs) satisfying
certain second-order optimality conditions, the Newton equations for a zero of the
perturbed optimality conditions (2.2) are equivalent to the Newton equations for a
minimizer of M . Also, it is shown in Section 3 that if the parameters yE , wE , µP ,
and µB are updated appropriately, then stationary points of M have properties that
may be used in the formulation of a globally convergent algorithm for (NIPs).

Let S and W denote diagonal matrices with diagonal entries s and w (i.e.,
S = diag(s) and W = diag(w)) such that si + µB > 0 and wi > 0. Define the
positive-definite matrices

DP = µPI and DB = (S + µBI)W−1,

and auxiliary vectors

πY = πY (x, s) = yE − 1

µP

(
c(x)− s

)
and πW = πW (s) = µB(S + µBI)−1wE .
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Then ∇M(x, s, y, w ; yE , wE , µP , µB) may be written as

∇M =


g − JT

(
πY + (πY − y)

)(
πY − y

)
+
(
πY − πW

)
+
(
w − πW )

)
−DP(πY − y)
−DB(πW − w)

 , (2.3)

with g = g(x) and J = J(x). The purpose of writing the gradient ∇M in this form
is to highlight the quantities πY − y and πW − w, which are important in the anal-
ysis. Similarly, the penalty-barrier function Hessian ∇2M(x, s, y, w ; yE , wE , µP , µB)
is written in the form

∇2M =


H + 2JTD−1P J −2JTD−1P JT 0
−2D−1P J 2(D−1P +D−1B W−1ΠW ) −I I

J −I DP 0
0 I 0 DBW

−1ΠW

 , (2.4)

where H = H
(
x, πY + (πY − y)

)
and ΠW = diag(πW ).

In developing algorithms, the goal is to achieve rapid convergence to a solution
of (NIPs) without the need for µP and µB to go to zero. The underlying mechanism
for ensuring convergence is the minimization of M for fixed parameters. A suitable
line-search method is proposed in the next section.

3. Minimizing the Shifted Primal-Dual Penalty-Barrier Function

This section concerns the minimization of M for fixed parameters yE , wE , µP and
µB . In this case the notation can be simplified by omitting the reference to yE , wE ,
µP and µB when writing M , ∇M and ∇2M .

3.1. The algorithm

The method for minimizing M with fixed parameters is given as Algorithm 1. At
the start of iteration k, given the primal-dual iterate vk = (xk, sk, yk, wk), the search
direction ∆vk = (∆xk, ∆sk, ∆yk, ∆wk) is computed by solving the linear system of
equations

HM
k ∆vk = −∇M(vk), (3.1)

where HM
k is a positive-definite approximation of the matrix ∇2M(xk, sk, yk, wk).

(The definition of HM
k and the properties of the equations (3.1) are discussed in

Section 5.) Once ∆vk has been computed, a line search is used to compute a step
length αk, such that the next iterate vk+1 = vk + αk∆vk sufficiently decreases the
function M and keeps important quantities positive (see Steps 7–12 of Algorithm 1).

The analysis of subsection 3.2 below establishes that under typical assumptions,
limit points (x∗, s∗, y∗, w∗) of the sequence

{
(xk, sk, yk, wk)

}∞
k=0

generated by
minimizing M for fixed yE , wE , µP , and µB satisfy ∇M(x∗, s∗, y∗, w∗) = 0. However,
the ultimate purpose is to use Algorithm 1 as the basis of a practical algorithm
for the solution of problem (NIPs). The slack-variable reset used in Step 14 of
Algorithm 1 plays a crucial role in the properties of this more general algorithm (an
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analogous slack-variable reset is used in Gill et al. [21]). The specific update can be
motivated by noting that ŝk+1, as defined in Step 13 of Algorithm 1, is the unique
minimizer, with respect to s, of the sum of the terms (B), (C), (D), and (G) in the
definition of the function M . In particular, it follows from Step 13 and Step 14 of
Algorithm 1 that the value of sk+1 computed in Step 14 satisfies

sk+1 ≥ ŝk+1 = c(xk+1)− µP
(
yE + 1

2(wk+1 − yk+1)
)
,

which implies, after rearrangement, that

c(xk+1)− sk+1 ≤ µP
(
yE + 1

2(wk+1 − yk+1)
)
. (3.2)

This inequality is crucial below when µP and yE are modified. In this situation,
the inequality (3.2) ensures that any limit point (x∗, s∗) of the sequence {(xk, sk)}
satisfies c(x∗) − s∗ ≤ 0 if yE and wk+1 − yk+1 are bounded and µP converges to
zero. This is necessary to handle problems that are (locally) infeasible, which is a
challenge for all methods for nonconvex optimization. The slack update never causes
M to increase, which implies that M decreases monotonically (see Lemma 3.1).

Algorithm 1 Minimizing M for fixed parameters yE , wE , µP , and µB .

1: procedure MERIT(x0, s0, y0, w0)
2: Restrictions: s0 + µBe > 0, w0 > 0 and wE > 0;
3: Constants: {η, γ} ∈ (0, 1);
4: Set v0 ← (x0, s0, y0, w0);
5: while ‖∇M(vk)‖ > 0 do
6: Choose HM

k � 0, and then compute the search direction ∆vk from (3.1);
7: Set αk ← 1;
8: loop
9: if sk + αk∆sk + µBe > 0 and wk + αk∆wk > 0 then

10: if M(vk + αk∆vk) ≤M(vk) + ηαk∇M(vk)
T∆vk then break;

11: Set αk ← γαk;

12: Set vk+1 ← vk + αk∆vk;
13: Set ŝk+1 ← c(xk+1)− µP

(
yE + 1

2(wk+1 − yk+1)
)
;

14: Perform a slack reset sk+1 ← max{sk+1, ŝk+1};
15: Set vk+1 ← (xk+1, sk+1, yk+1, wk+1);

3.2. Convergence analysis

The convergence analysis of Algorithm 1 requires assumptions on the differentiability
of f and c, the properties of the positive-definite matrix sequence {HM

k } in (3.1),
and the sequence of computed iterates {xk}.

Assumption 3.1. The functions f and c are twice continuously differentiable.

Assumption 3.2. The sequence of matrices
{
HM
k

}
k≥0 used in (3.1) are chosen to

be uniformly positive definite and bounded in norm.
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Assumption 3.3. The sequence of iterates {xk} is contained in a bounded set.

The first result shows that the merit function is monotonically decreasing. It is
assumed throughout this section that Algorithm 1 generates an infinite sequence,
i.e., ∇M(vk) 6= 0 for all k ≥ 0.

Lemma 3.1. The sequence of iterates {vk} satisfies M(vk+1) < M(vk) for all k.

Proof. The vector ∆vk is a descent direction for M at vk, i.e., ∇M(vk)
T∆vk < 0,

if ∇M(vk) is nonzero and the matrix HM
k is positive definite. Since HM

k is positive
definite by Assumption 3.2 and ∇M(vk) is assumed to be nonzero for all k ≥ 0,
the vector ∆vk is a descent direction for M at vk. This property implies that
the line search performed in Algorithm 1 produces an αk such that the new point
vk+1 = vk + αk∆vk satisfies M(vk+1) < M(vk). If follows that the only way the
desired result can not hold is if the slack-reset procedure of Step 14 of Algorithm 1
causes M to increase. The proof is complete if it can be shown that this cannot
happen.

The vector ŝk+1 used in the slack reset is the unique minimizer of the sum of
the terms (B), (C), (D), and (G) defining the function M , so that the sum of these
terms can not increase. Also, (A) is independent of s, so that its value does not
change. The slack-reset procedure has the effect of possibly increasing the value of
some of its components, which means that (E) and (F) in the definition of M can
only decrease. In total, this implies that the slack reset can never increase the value
of M , which completes the proof.

Lemma 3.2. The sequence of iterates {vk} =
{

(xk, sk, yk, wk)
}

computed by Algo-
rithm 1 satisfies the following properties.

(i) The sequences {sk}, {c(xk)− sk}, {yk}, and {wk} are bounded.

(ii) For all i it holds that

lim inf
k≥0

[ sk + µBe ]i > 0 and lim inf
k≥0

[wk ]i > 0.

(iii) The sequences {πY (xk, sk)}, {πW (sk)}, and {∇M(vk)} are bounded.

(iv) There exists a scalar Mlow such that M(xk, sk, yk, wk) ≥ Mlow > −∞ for all
k.

Proof. For a proof by contradiction, assume that {sk} is unbounded. Since sk +
µBe > 0 by construction, there exists a subsequence S and component i such that

lim
k∈S

[ sk ]i =∞ and [ sk ]i ≥ [ sk ]j for all j and k ∈ S. (3.3)

Next it will be shown that M must go to infinity on S. It follows from (3.3),
Assumption 3.3, and the continuity of c that the term (A) in the definition of M
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is bounded below for all k, that (B) cannot go to −∞ any faster than ‖sk‖ on S,
and that (C) converges to ∞ on S at the same rate as ‖sk‖2. It is also clear that
(D) is bounded below by zero. On the other hand, (E) goes to −∞ on S at the rate
− ln([ sk ]i + µB). Next, note that (G) is bounded below. Now, if (F) is bounded
below on S, then the previous argument proves that M converges to infinity on S,
which contradicts Lemma 3.1. Otherwise, if (F) goes to −∞ on S there must exist
a subsequence S1 ⊆ S and a component j (say) such that

lim
k∈S1

[ sk + µBe ]j [wk ]j =∞ and (3.4)

[ sk + µBe ]j [wk ]j ≥ [ sk + µBe ]l[wk ]l for all l and k ∈ S1. (3.5)

Using these properties and the fact that wk > 0 and sk + µBe > 0 for all k by
construction in Step 9 of Algorithm 1, it follows that (G) converges to ∞ faster
than (F) converges to −∞. Thus, M converges to ∞ on S1, which contradicts
Lemma 3.1. We have thus proved that {sk} is bounded, which is the first part of
result (i). The second part of (i), i.e., the uniform boundedness of {c(xk) − sk},
follows from the first result, the continuity of c, and Assumption 3.3.

Next, the third bound in part (i) will be established, i.e., {yk} is bounded. For a
proof by contradiction, assume that there exists some subsequence S and component
i such that

lim
k∈S

∣∣[ yk ]i
∣∣ =∞ and

∣∣[ yk ]i
∣∣ ≥ ∣∣[ yk ]j

∣∣ for all j and k ∈ S. (3.6)

Using arguments as in the previous paragraph and the result established above that
{sk} is bounded, it follows that (A), (B) and (C) are bounded below over all k, and
that (D) converges to∞ on S at the rate of [ yk ]2i because it has already been shown
that {sk} is bounded. Using the uniform boundedness of {sk} a second time and
wE > 0, it may be deduced that (E) is bounded below. If (F) is bounded below
on S, then as (G) is bounded below by zero we would conclude, in totality, that
limk∈SM(vk) =∞, which contradicts Lemma 3.1. Thus, (F) must converge to −∞,
which guarantees the existence of a subsequence S1 ⊆ S and a component, say j,
that satisfies (3.4) and (3.5). For such k ∈ S1 and j it holds that (G) converges
to ∞ faster than (F) converges to −∞, so that limk∈S1 M(vk) = ∞ on S1, which
contradicts Lemma 3.1. Thus, {yk} is bounded.

We now prove the final bound in part (i), i.e., that {wk} is bounded. For a
proof by contradiction, assume that the set is unbounded, which implies—using
that wk > 0 holds by construction of the line search in Step 9 of Algorithm 1—the
existence of a subsequence S and a component i such that

lim
k∈S

[wk ]i =∞ and [wk ]i ≥ [wk ]j for all j and k ∈ S. (3.7)

It follows that there exists a subsequence S1 ⊆ S and set J ⊆ {1, 2, . . . , m}
satisfying

lim
k∈S1

[wk ]j =∞ for all j ∈ J and
{

[wk ]j : j /∈ J and k ∈ S1
}

is bounded.

(3.8)
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Next, using similar arguments as above and boundedness of {yk}, we know that (A),
(B), (C), and (D) are bounded. Next, the sum of (E) and (F) is

(E) + (F) = −µB

m∑
j=1

wE
j

(
2 ln([ sk + µBe ]j) + ln([wk ]j)

)
. (3.9)

Combining this with the definition of (G) and the result of Lemma 3.1, shows that

[wk ]j [ sk + µBe ]j = O
(

ln([wk ]i)
)

for all 1 ≤ j ≤ m, (3.10)

which can be seen to hold as follows. It follows from (3.7), the boundedness of {sk},
wE > 0, and (3.9) that (E) + (F) is bounded below by −µBwE

i ln([wk ]i) for all
sufficiently large k ∈ S. Combining this with the boundedness of (A), (B), (C), and
(D), implies that (3.10) must hold, because otherwise the merit function M would
converge to infinity on S, contradicting Lemma 3.1. Thus, (3.10) holds.

Using wk > 0 (which holds by construction) and the monotonicity of ln(·), it
follows from (3.10) that there exists a positive constant κ1 such that

ln
(
[ sk + µBe ]j

)
≤ ln

(
κ1 ln([wk ]i)

[wk ]j

)
= ln(κ1) + ln

(
ln([wk ]i)

)
− ln([wk ]j) (3.11)

for all 1 ≤ j ≤ m and sufficiently large k. Then, a combination of (3.9), the
boundedness of {sk}, (3.8), wE > 0, and the bound (3.11) implies the existence of
positive constants κ2 and κ3 satisfying

(E) + (F) ≥ −κ2 − µB
∑
j∈J

wE
j

(
2 ln([ sk + µBe ]j) + ln([wk ]j)

)
≥ −κ2 − µB

∑
j∈J

wE
j

(
2 ln(κi) + 2 ln

(
ln([wk ]i)

)
− ln([wk ]j)

)
≥ −κ3 − µB

∑
j∈J

wE
j

(
2 ln

(
ln([wk ]i)

)
− ln([wk ]j)

)
(3.12)

for all sufficiently large k. With the aim of bounding the summation in (3.12), define

α =
[wE ]i

4‖wE‖1
> 0,

which is well-defined because wE > 0. It follows from (3.7) and (3.8) that

2 ln
(

ln
(
[wk ]i

))
− ln

(
[wk ]j

)
≤ α ln

(
[wk ]i

)
for all j ∈ J and sufficiently large k ∈ S1. This bound, (3.12), and wE > 0 imply
that

(E) + (F)

≥ −κ3 − µBwE
i

(
2 ln
(

ln([wk ]i)
)
− ln([wk ]i)

)
− µB

∑
j∈J ,j 6=i

wE
j

(
2 ln
(

ln([wk ]i)
)
− ln([wk ]j)

)
≥ −κ3 − µBwE

i

(
2 ln
(

ln([wk ]i)
)
− ln([wk ]i)

)
− µB

∑
j∈J ,j 6=i

wE
j α ln([wk ]i)

≥ −κ3 − µBwE
i

(
2 ln
(

ln([wk ]i)
)
− ln([wk ]i)

)
− µBα ln([wk ]i)‖wE‖1



3. Minimizing the Shifted Primal-Dual Penalty-Barrier Function 11

for all sufficiently large k ∈ S1. Combining this inequality with the choice of α and

2 ln
(

ln([wk ]i)
)
− ln([wk ]i) ≤ −1

2 ln([wk ]i)

for all sufficiently large k ∈ S (this follows from (3.7)), we obtain

(E) + (F) ≥ −κ3 + 1
2µ

BwE
i ln([wk ]i)− µBα ln([wk ]i)‖wE‖1

≥ −κ3 + µB
(
1
2w

E
i − α‖wE‖1

)
ln([wk ]i)

= −κ3 + 1
4µ

B ln([wk ]i)

for all sufficiently large k ∈ S1. In particular, this inequality and (3.7) together give

lim
k∈S1

(E) + (F) =∞.

It has already been established that the terms (A), (B), (C), and (D) are bounded,
and it is clear that (G) is bounded below by zero. It follows that M converges to
infinity on S1. As this contradicts Lemma 3.1, it must hold that {wk} is bounded.

Part (ii) is also proved by contradiction. Suppose that
{

[ sk + µBe ]i
}
→ 0 on

some subsequence S and for some component i. As before, (A), (B), (C), and (D)
are all bounded from below over all k. We may also use wE > 0 and the fact that
{sk} and {wk} were proved to be bounded in part (i) to conclude that (E) and (F)
converge to ∞ on S. Also, as already shown, the term (G) is bounded below. In
summary, it has been shown that limk∈SM(vk) =∞, which contradicts Lemma 3.1,
and therefore establishes that lim inf [ sk + µe ]i > 0 for all i. A similar argument
may be used to prove that lim inf [wk ]i > 0 for all i, which completes the proof.

Consider part (iii). The sequence
{
πY (xk, sk)

}
is bounded as a consequence of

part (i) and the fact that yE and µP are fixed. Similarly, the sequence
{
πW (sk)

}
is bounded as a consequence of part (ii) and the fact that wE and µB are fixed.
Lastly, the sequence

{
∇M(xk, sk, yk)

}
is bounded as a consequence of parts (i)

and (ii), the uniform boundedness just established for
{
πY (xk, sk)

}
and

{
πW (sk)

}
,

Assumption 3.1, Assumption 3.3, and the fact that yE , wE , µP , and µB are fixed.
For part (iv) it will be shown that each term in the definition of M is bounded

below. Term (A) is bounded below because of Assumption 3.1 and Assumption 3.2.
Term (B) is bounded below as a consequence of part (i) and the fact that yE is kept
fixed. Terms (C) and (D) are both nonnegative, hence, trivially bounded below.
Terms (E) and (F) are bounded below because µB and wE > 0 are held fixed, and
part (i). Finally, it follows from part (ii) that (G) is positive. The existence of the
lower bound Mlow now follows.

Certain results hold when the gradients of M are bounded away from zero.

Lemma 3.3. If there exists a positive scalar ε and a subsequence S satisfying

‖∇M(vk)‖ ≥ ε for all k ∈ S, (3.13)

then the following results must hold.
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(i) The set
{
‖∆vk‖

}
k∈S is bounded above and bounded away from zero.

(ii) There exists a positive scalar δ such that ∇M(vk)
T∆vk ≤ −δ for all k ∈ S.

(iii) There exist a positive scalar αmin such that, for all k ∈ S, the Armijo condition
in Step 10 of Algorithm 1 is satisfied with αk ≥ αmin.

Proof. Part (i) follows from (3.13), Assumption 3.2, Lemma 3.2(iii), and the fact
that ∆vk is computed from (3.1). For part (ii), first observe from (3.1) that

∇M(vk)
T∆vk = −∆vTkHM

k ∆vk ≤ −λmin(HM
k )‖∆vk‖22. (3.14)

The existence of δ in part (ii) now follows from (3.14), Assumption 3.2, and part (i).
For part (iii), a standard result of unconstrained optimization [33] is that the

Armijo condition is satisfied for all

αk = Ω

(
−∇M(vk)

T∆vk
‖∆vk‖2

)
. (3.15)

This result requires the Lipschitz continuity of ∇M(v), which holds as a consequence
of Assumption 3.1 and Lemma 3.2(ii). The existence of the positive αmin of part (iii)
now follows from (3.15), and parts (i) and (ii).

The main convergence result follows.

Theorem 3.1. Under Assumptions 3.1–3.3, the sequence of iterates {vk} satisfies
limk→∞∇M(vk) = 0.

Proof. The proof is by contradiction. Suppose there exists a constant ε > 0 and a
subsequence S such that ‖∇M(vk)‖ ≥ ε for all k ∈ S. It follows from Lemma 3.1
and Lemma 3.2(iv) that limk→∞M(vk) = Mmin > −∞. Using this result and the
fact that the Armijo condition is satisfied for all k (see Step 10 in Algorithm 1), it
must follow that

lim
k→∞

αk∇M(vk)
T∆vk = 0,

which implies that limk∈S αk = 0 from Lemma 3.3(ii). This result and Lemma 3.3(iii)
imply that the inequality constraints enforced in Step 9 of Algorithm 1 must have
restricted the step length. In particular, there must exist a subsequence S1 ⊆ S and
a component i such that either

[ sk + αk∆sk + µBe ]i > 0 and [ sk + (1/γ)αk∆sk + µBe ]i ≤ 0 for k ∈ S1

or

[wk + αk∆wk ]i > 0 and [wk + (1/γ)αk∆wk ]i ≤ 0 for k ∈ S1, (3.16)

where γ ∈ (0, 1) is the Armijo parameter of Algorithm 1. As the argument used for
both cases is the same, it may be assumed, without loss of generality, that (3.16)
occurs. It follows from Lemma 3.2(ii) that there exists some positive ε such that

ε < wk+1 = wk + αk∆wk = wk + (1/γ)αk∆wk − (1/γ)αk∆wk + αk∆wk
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for all sufficiently large k, so that with (3.16) it must hold that

wk + (1/γ)αk∆wk > ε+ (1/γ)αk∆wk − αk∆wk = ε+ αk∆wk(1/γ − 1) > 0

for all sufficiently large k ∈ S1, where the last inequality follows from limk∈S αk = 0
and Lemma 3.3(i). This contradicts (3.16) for all sufficiently large k ∈ S1.

4. Solving the Nonlinear Optimization Problem

In this section a method for solving the nonlinear optimization problem (NIPs)
is formulated and analyzed. The method builds upon the algorithm presented in
Section 3 for minimizing the shifted primal-dual penalty-barrier function.

4.1. The algorithm

The proposed method is given in Algorithm 2. It combines Algorithm 1 with strate-
gies for adjusting the parameters that define the merit function, which were fixed
in Algorithm 1. The proposed strategy uses the distinction between O-iterations,
M-iterations, and F-iterations, which are described below.

The definition of an O-iteration is based on the optimality conditions for problem
(NIPs). Progress towards optimality at vk+1 = (xk+1, sk+1, yk+1, wk+1) is defined
in terms of the following feasibility, stationarity, and complementarity measures:

χfeas(vk+1) = ‖c(xk+1)− sk+1‖,
χstny(vk+1) = max

(
‖g(xk+1)− J(xk+1)

Tyk+1‖, ‖yk+1 − wk+1‖
)
, and

χcomp(vk+1, µ
B
k ) = ‖min

(
q1(vk+1), q2(vk+1, µ

B
k )
)
‖,

where

q1(vk+1) = max
(
|min(sk+1, wk+1, 0)|, |sk+1 · wk+1|

)
and

q2(vk+1, µ
B
k ) = max

(
µB
k e, |min(sk+1 + µB

k e, wk+1, 0)|, |(sk+1 + µB
k e) · wk+1|

)
.

A first-order KKT point vk+1 for problem (NIPs) satisfies χ(vk+1, µ
B
k ) = 0, where

χ(v, µ) = χfeas(v) + χstny(v) + χcomp(v, µ). (4.1)

With these definitions in hand, the kth iteration is designated as an O-iteration if
χ(vk+1, µ

B
k ) ≤ χmax

k , where {χmax
k } is a monotonically decreasing positive sequence.

At an O-iteration the parameters are updated as yE
k+1 = yk+1, w

E
k+1 = wk+1 and

χmax
k+1 = 1

2χ
max
k (see Step 10). These updates ensure that {χmax

k } converges to zero
if infinitely many O-iterations occur. The point vk+1 is called an O-iterate.

If the condition for an O-iteration does not hold, a test is made to determine if
vk+1 = (xk+1, sk+1, yk+1, wk+1) is an approximate first-order solution of the problem

minimize
v=(x,s,y,w)

M(v ; yE
k , w

E
k , µ

P
k , µ

B
k ). (4.2)
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In particular, the kth iteration is called an M-iteration if vk+1 satisfies

‖∇xM(vk+1 ; yE
k , w

E
k , µ

P
k , µ

B
k )‖∞ ≤ τk, (4.3a)

‖∇sM(vk+1 ; yE
k , w

E
k , µ

P
k , µ

B
k )‖∞ ≤ τk, (4.3b)

‖∇yM(vk+1 ; yE
k , w

E
k , µ

P
k , µ

B
k )‖∞ ≤ τk‖DP

k+1‖∞, and (4.3c)

‖∇wM(vk+1 ; yE
k , w

E
k , µ

P
k , µ

B
k )‖∞ ≤ τk‖DB

k+1‖∞, (4.3d)

where τk is a positive tolerance, DP
k+1 = µP

kI, and DB
k+1 = (Sk+1 + µB

k I)W−1k+1. (See
Lemma 4.3 for a justification of (4.3).) In this case vk+1 is called an M-iterate
because it is an approximate first-order solution of (4.2). The multiplier estimates
yE
k+1 and wE

k+1 are defined by the safeguarded values

yE
k+1 = max

(
− ymaxe,min(yk+1, ymaxe)

)
and wE

k+1 = min(wk+1, wmaxe) (4.4)

for some positive constants ymax and wmax. Next, Step 13 checks if the condition

χfeas(vk+1) ≤ τk (4.5)

holds. If the condition holds, then µP
k+1 ← µP

k ; otherwise, µP
k+1 ←

1
2µ

P
k to place

more emphasis on satisfying the constraint c(x) − s = 0 in subsequent iterations.
Similarly, Step 17 checks the inequalities

χcomp(vk+1, µ
B
k ) ≤ τk and sk+1 ≥ −τke. (4.6)

If these conditions hold, then µB
k+1 ← µB

k ; otherwise, µB
k+1 ←

1
2µ

B
k to place more

emphasis on achieving complementarity in subsequent iterations.
An iteration that is not an O- or M-iteration is called an F-iteration. In an

F-iteration none of the merit function parameters are changed, so that progress is
measured solely in terms of the reduction in the merit function.

4.2. Convergence analysis

Convergence of the iterates is established using the properties of the complementary
approximate KKT (CAKKT) condition proposed by Andreani, Mart́ınez and Svaiter
[2], as described next.

Definition 4.1. (CAKKT condition) A feasible point (x∗, s∗) (i.e., a point such
that s∗ ≥ 0 and c(x∗)−s∗ = 0) is said to satisfy the CAKKT condition if there exists
a sequence {(xj , sj , uj , zj)} with {xj} → x∗ and {sj} → s∗ such that

{g(xj)− J(xj)
Tuj} → 0, (4.7a)

{uj − zj} → 0, (4.7b)

{zj} ≥ 0, and (4.7c)

{zj · sj} → 0. (4.7d)

Any (x∗, s∗) satisfying these conditions is called a CAKKT point.
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Algorithm 2 A shifted primal-dual penalty-barrier method.

1: procedure PDB(x0, s0, y0, w0)
2: Restrictions: s0 > 0 and w0 > 0;
3: Constants: {η, γ} ⊂ (0, 1) and {ymax, wmax} ⊂ (0,∞);
4: Choose yE

0 , wE
0 > 0; χmax

0 > 0; and {µP
0 , µ

B
0 } ⊂ (0,∞);

5: Set v0 = (x0, s0, y0, w0); k ← 0;
6: while ‖∇M(vk)‖ > 0 do
7: (yE , wE , µP , µB)← (yE

k , w
E
k , µ

P
k , µ

B
k );

8: Compute vk+1 = (xk+1, sk+1, yk+1, wk+1) in Steps 6–15 of Algorithm 1;
9: if χ(vk+1, µ

B
k ) ≤ χmax

k then [O-iterate]

10: (χmax
k+1, y

E
k+1, w

E
k+1, µ

P
k+1, µ

B
k+1, τk+1)← (12χ

max
k , yk+1, wk+1, µ

P
k , µ

B
k , τk);

11: else if vk+1 satisfies (4.3) then [M-iterate]
12: Set (χmax

k+1, τk+1) = (χmax
k , 12τk); Set yE

k+1 and wE
k+1 using (4.4);

13: if χfeas(vk+1) ≤ τk then µP
k+1 ← µP

k else µP
k+1 ←

1
2µ

P
k end if

14: if χcomp(vk+1, µ
B
k ) ≤ τk and sk+1 ≥ −τke then

15: µB
k+1 ← µB

k ;
16: else
17: µB

k+1 ←
1
2µ

B
k ; Reset sk+1 so that sk+1 + µB

k+1e > 0;

18: else [F-iterate]
19: (χmax

k+1, y
E
k+1, w

E
k+1, µ

P
k+1, µ

B
k+1, τk+1)← (χmax

k , yE
k , w

E
k , µ

P
k , µ

B
k , τk);

The CAKKT condition is a sequential optimality condition that holds for every local
minimizer. Compared to other sequential conditions, it is relatively tight, i.e., there
are relatively few CAKKT points that are not local minimizers. The mechanism for
relating a CAKKT point to a KKT point is given by CAKKT-regularity, which is the
weakest known constraint qualification that ensures the following result holds.

Theorem 4.1. (Andreani et al. [1, Theorem 4.3]) If (x∗, s∗) is a CAKKT point
that satisfies CAKKT-regularity, then (x∗, s∗) is a first-order KKT point for (NIPs).

The first part of the analysis concerns the conditions under which limit points of
the sequence {(xk, sk)} are CAKKT points. As the results are tied to the different
iteration types, to facilitate referencing of the iterations during the analysis we define

O = {k : iteration k is an O-iteration},
M = {k : iteration k is an M-iteration}, and

F = {k : iteration k is an F-iteration}.

The first part of the analysis establishes that limit points of the sequence of O-
iterates are CAKKT points.

Lemma 4.1. If |O| =∞ there exists at least one limit point (x∗, s∗) of the infinite
sequence {(xk+1, sk+1)}k∈O and any such limit point is a CAKKT point.
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Proof. Assumption 3.3 implies that there must exist at least one limit point of
{xk+1}k∈O. If x∗ is such a limit point, Assumption 3.1 implies the existence of
K ⊆ O such that {xk+1}k∈K → x∗ and {c(xk+1)}k∈K → c(x∗). As |O| = ∞, the
updating strategy of Algorithm 2 gives {χmax

k } → 0. Furthermore, as χ(vk+1, µ
B
k ) ≤

χmax
k for all k ∈ K ⊆ O, and χfeas(vk+1) ≤ χ(vk+1, µ

B
k ) for all k, it follows that

{χfeas(vk+1)}k∈K → 0, i.e., {c(xk+1) − sk+1}k∈K → 0. With the definition s∗ =
c(x∗), it follows that {sk+1}k∈K → limk∈K c(xk+1) = c(x∗) = s∗, which implies that
(x∗, s∗) is feasible for the general constraints because c(x∗)− s∗ = 0. The remaining
feasibility condition s∗ ≥ 0 is proved componentwise. Let i ∈ {1, 2, . . . , m}, and
define

Q1 = {k : [q1(vk+1)]i ≤ [q2(vk+1, µ
B
k )]i} and Q2 = {k : [q2(vk+1, µ

B
k )]i < [q1(vk+1)]i},

where q1 and q2 are used in the definition of χcomp. If the set K ∩ Q1 is infinite,
then it follows from the inequalities {χcomp(vk+1, µ

B
k )}k∈K ≤ {χ(vk+1, µ

B
k )}k∈K ≤

{χmax
k }k∈K → 0 that [ s∗ ]i = limK∩Q1 [ sk+1 ]i ≥ 0. Using a similar argument, if the

set K ∩ Q2 is infinite, then [ s∗ ]i = limK∩Q2 [ sk+1 ]i = limK∩Q2 [ sk+1 + µB
k e ]i ≥ 0,

where the second equality uses the limit {µB
k}k∈K∩Q2 → 0 that follows from the

definition of Q2. Combining these two cases implies that [ s∗ ]i ≥ 0, as claimed. It
follows that the limit point (x∗, s∗) is feasible.

It remains to show that (x∗, s∗) is a CAKKT point. Consider the sequence (xk+1,
s̄k+1, yk+1, wk+1)k∈K as a candidate for the sequence used in Definition 4.1 to verify
that (x∗, s∗) is a CAKKT point, where

[ s̄k+1 ]i =

{
[ sk+1 ]i if k ∈ Q1,

[ sk+1 + µB
k e ]i if k ∈ Q2,

(4.8)

for each i ∈ {1, 2, . . . , m}. If O ∩Q2 is finite, then it follows from the definition of
s̄k+1 and the limit {sk+1}k∈K → s∗ that {[ s̄k+1 ]i}k∈K → [ s∗ ]i. On the other hand,
if O∩Q2 is infinite, then the definitions of Q2 and χcomp(vk+1, µ

B
k ), together with the

limit {χcomp(vk+1, µ
B
k )}k∈K → 0 imply that {µB

k} → 0, giving {[ s̄k+1 ]i}k∈K → [ s∗ ]i.
As the choice of i was arbitrary, these cases taken together imply that {s̄k+1}k∈K →
s∗.

The next step is to show that {(xk+1, s̄k+1, yk+1, wk+1)}k∈K satisfies the con-
ditions required by Definition 4.1. It follows from the limit {χ(vk+1, µ

B
k )}k∈K → 0

established above that {χstny(vk+1)+χcomp(vk+1, µ
B
k )}k∈K ≤ {χ(vk+1, µ

B
k )}k∈K → 0.

This implies that {gk+1 − JTk+1yk+1}k∈K → 0 and {yk+1 −wk+1}k∈K → 0, which es-
tablishes that conditions (4.7a) and (4.7b) hold. Step 9 of Algorithm 1 enforces the
nonnegativity of wk+1 for all k, which implies that (4.7c) is satisfied for {wk}k∈K.
Finally, it must be shown that (4.7d) holds, i.e., that {wk+1 ·s̄k+1}k∈K → 0. Consider
the ith components of sk, s̄k and wk. If the set K ∩Q1 is infinite, the definitions of
s̄k+1, q1(vk+1) and χcomp(vk+1, µ

B
k ), together with the limit {χcomp(vk+1, µ

B
k )}k∈K →

0 imply that {[wk+1 · s̄k+1 ]i}K∩Q1 → 0. Similarly, if the set K∩Q2 is infinite, then
the definitions of s̄k+1, q2(vk+1, µ

B
k ) and χcomp(vk+1, µ

B
k ), together with the limit

{χcomp(vk+1, µ
B
k )}k∈K → 0 imply that {[wk+1 · s̄k+1 ]i}k∈K∩Q2 → 0. These two cases
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lead to the conclusion that {wk+1 · s̄k+1}k∈K → 0, which implies that condition
(4.7d) is satisfied. This concludes the proof that (x∗, s∗) is a CAKKT point.

In the complementary case |O| < ∞, it will be shown that every limit point of
{(xk+1, sk+1)}k∈M is infeasible with respect to the constraint c(x)−s = 0 but solves
the least-infeasibility problem

minimize
x,s

1
2‖c(x)− s‖22 subject to s ≥ 0. (4.9)

The first-order KKT conditions for problem (4.9) are

J(x∗)T
(
c(x∗)− s∗

)
= 0, s∗ ≥ 0, (4.10a)

s∗ ·
(
c(x∗)− s∗

)
= 0, c(x∗)− s∗ ≤ 0. (4.10b)

These conditions define an infeasible stationary point.

Definition 4.2. (Infeasible stationary point) The pair (x∗, s∗) is an infeasible
stationary point if c(x∗) − s∗ 6= 0 and (x∗, s∗) satisfies the optimality conditions
(4.10).

The first result shows that the set of M-iterations is infinite whenever the set of
O-iterations is finite.

Lemma 4.2. If |O| <∞, then |M| =∞.

Proof. The proof is by contradiction. Suppose that |M| < ∞, in which case
|O ∪ M| < ∞. It follows from the definition of Algorithm 2 that k ∈ F for all
k sufficiently large, which implies that there must exist an iteration index kF such
that

k ∈ F , yE
k = yE , and (τk, w

E
k , µ

P
k , µ

B
k ) = (τ, wE , µP , µB) > 0 (4.11)

for all k ≥ kF . This means that the iterates computed by Algorithm 2 are the
same as those computed by Algorithm 1 for all k ≥ kF . In this case Theorem 3.1,
Lemma 3.2(i), and Lemma 3.2(ii) can be applied to show that (4.3) is satisfied for
all k sufficiently large. This would mean, in view of Step 11 of Algorithm 2, that
k ∈ M for all sufficiently large k ≥ kF , which contradicts (4.11) since F ∩M = ∅.

The next lemma justifies the use of the quantities on the right-hand side of (4.3).
In order to simplify the notation, we introduce the quantities

πY
k+1 = yE

k −
1

µP
k

(
c(xk+1)− sk+1

)
and πW

k+1 = µB
k (Sk+1 + µB

k I)−1wE
k (4.12)

with Sk+1 = diag(sk+1) associated with the gradient of the merit function in (2.3).
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Lemma 4.3. If |M| =∞ then

lim
k∈M

|πY
k+1−yk+1| = lim

k∈M
|πW
k+1−wk+1| = lim

k∈M
|πY
k+1−πW

k+1| = lim
k∈M

|yk+1−wk+1| = 0.

Proof. It follows from (2.3), (4.3c) and (4.3d) that

|πY
k+1 − yk+1| ≤ τk and |πW

k+1 − wk+1| ≤ τk. (4.13)

As |M| = ∞ by assumption, Step 12 of Algorithm 2 implies that limk→∞ τk = 0.
Combining this with (4.13) establishes the first two limits in the result. The limit
limk→∞ τk = 0 may then be combined with (2.3), (4.13) and (4.3b) to show that

lim
k∈M

|πY
k+1 − πW

k+1| = 0, (4.14)

which is the third limit in the result. Finally, as limk→∞ τk = 0, it follows from the
limit (4.14) and bounds (4.13) that

0 = lim
k∈M

|πY
k+1 − πW

k+1| = lim
k∈M

|(πY
k+1 − yk+1) + (yk+1 − wk+1) + (wk+1 − πW

k+1)|

= lim
k∈M

|yk+1 − wk+1|.

This establishes the last of the four limits.

The next lemma shows that if the set of O-iterations is finite, then any limit
point of the sequence {(xk+1, sk+1)}k∈M is infeasible with respect to c(x)− s = 0.

Lemma 4.4. If |O| <∞, then every limit point (x∗, s∗) of the iterate subsequence
{(xk+1, sk+1)}k∈M satisfies c(x∗)− s∗ 6= 0.

Proof. Let (x∗, s∗) be a limit point of (the necessarily infinite) sequence M, i.e.,
there exists a subsequence K ⊆ M such that limk∈K (xk+1, sk+1) = (x∗, s∗). For a
proof by contradiction, assume that c(x∗)− s∗ = 0, which implies that

lim
k∈K
‖c(xk+1)− sk+1‖ = 0. (4.15)

A combination of the assumption that |O| < ∞, the result of Lemma 4.2, and
the updates of Algorithm 2, establishes that limk→∞ τk = 0 and

χmax
k = χmax > 0 for all sufficiently large k ∈ K. (4.16)

Using |O| < ∞ together with Lemma 4.3, the fact that K ⊆ M, and Step 9 of the
line search of Algorithm 1 gives

lim
k∈K
‖yk+1 − wk+1‖ = 0, and wk+1 > 0 for all k ≥ 0. (4.17)

Next, it can be observed from the definitions of πY
k+1 and ∇xM that

gk+1 − JTk+1yk+1 = gk+1 − JTk+1(2π
Y
k+1 + yk+1 − 2πY

k+1)

= gk+1 − JTk+1

(
2πY

k+1 − yk+1

)
− 2JTk+1(yk+1 − πY

k+1)

= ∇xM(vk+1; y
E
k , w

E
k , µ

P
k , µ

B
k )− 2JTk+1(yk+1 − πY

k+1),
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which combined with {xk+1}k∈K → x∗, limk→∞ τk = 0, (4.3a), and Lemma 4.3 gives

lim
k∈K

(gk+1 − JTk+1yk+1) = 0. (4.18)

Next, we show that s∗ ≥ 0, which will imply that (x∗, s∗) is feasible because of
the assumption that c(x∗)− s∗ = 0. The line search (Algorithm 1, Steps 7–12) gives
sk+1+µB

k e > 0 for all k. If limk→∞ µ
B
k = 0, then s∗ = limk∈K sk+1 ≥ − limk∈K µ

B
k e =

0. On the other hand, if limk→∞ µ
B
k 6= 0, then Step 17 of Algorithm 2 is executed a

finite number of times, µB
k = µB > 0 and (4.6) holds for all k ∈M sufficiently large.

Taking limits over k ∈M in (4.6) and using limk→∞ τk = 0 gives s∗ ≥ 0.
The proof that limk∈K χcomp(vk+1, µ

B
k ) = 0 involves two cases.

Case 1: limk→∞ µ
B
k 6= 0. In this case µB

k = µB > 0 for all sufficiently large k. Com-
bining this with |M| =∞ and the update to τk in Step 17 of Algorithm 2, it must be
that (4.6) holds for all sufficiently large k ∈ K, i.e., that χcomp(vk+1, µ

B
k ) ≤ τk for all

sufficiently large k ∈ K. As limk→∞ τk = 0, we have limk∈K χcomp(vk+1, µ
B
k ) = 0.

Case 2: limk→∞ µ
B
k = 0. Lemma 4.3 implies that limk∈K (πW

k+1 − wk+1) = 0. The
sequence {Sk+1 + µB

k I}k∈K is bounded because {µB
k} is positive and monotonically

decreasing and limk∈K sk+1 = s∗, which means by the definition of πW
k+1 that

0 = lim
k∈K

(Sk+1 + µB
k I)(πW

k+1 − wk+1) = lim
k∈K

(
µB
kw

E
k − (Sk+1 + µB

k I)wk+1

)
. (4.19)

Moreover, as |O| < ∞ and wk > 0 for all k by construction, the updating strategy
for wE

k in Algorithm 2 guarantees that {wE
k } is bounded over all k (see (4.4)). It

then follows from (4.19), the uniform boundedness of {wE
k }, and limk→∞ µ

B
k = 0

that
0 = lim

k∈K

(
[ sk+1 ]i + µB

k

)
[wk+1 ]i. (4.20)

There are two subcases.

Subcase 2a: [ s∗ ]i > 0 for some i. As limk∈K[ sk+1 ]i = [ s∗ ]i > 0 and limk→∞ µ
B
k =

0, it follows from (4.20) that limk∈K[wk+1 ]i = 0. Combining these limits allows us
to conclude that limk∈K[ q1(vk+1) ]i = 0, which is the desired result for this case.

Subcase 2b: [ s∗ ]i = 0 for some i. In this case, it follows from the limits limk→∞ µ
B
k =

0 and (4.20), wk+1 > 0 (see Step 9 of Algorithm 1), and the limit limk∈K[ sk+1 ]i =
[ s∗ ]i = 0 that limk∈K[ q2(vk+1, µ

B
k ) ]i = 0, which is the desired result for this case.

As one of the two subcases above must occur for each component i, it follows that
limk∈K χcomp(vk+1, µ

B
k ) = 0, which completes the proof for Case 2.

Under the assumption c(x∗) − s∗ = 0 it has been shown that (4.15), (4.17),
(4.18), and the limit limk∈K χcomp(vk+1, µ

B
k ) = 0 hold. Collectively, these results

imply that limk∈K χ(vk+1, µ
B
k ) = 0. This limit, together with the inequality (4.16)

and the condition checked in Step 9 of Algorithm 2, gives k ∈ O for all k ∈ K ⊆M
sufficiently large. This is a contradiction because O∩M = ∅, which establishes the
desired result that c(x∗)− s∗ 6= 0.

The next result shows that if the number of O-iterations is finite then all limit
points of the set of M-iterations are infeasible stationary points.
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Lemma 4.5. If |O| < ∞, then there exists at least one limit point (x∗, s∗) of the
infinite sequence {(xk+1, sk+1)}k∈M, and any such limit point is an infeasible sta-
tionary point as given by Definition 4.2.

Proof. If |O| <∞ then Lemma 4.2 implies that |M| =∞. Moreover, the updating
strategy of Algorithm 2 forces {yE

k } and {wE
k } to be bounded (see (4.4)). The next

step is to show that {sk+1}k∈M is bounded.
For a proof by contradiction, suppose that {sk+1}k∈M is unbounded. It fol-

lows that there must be a component i and a subsequence K ⊆ M for which
{[ sk+1 ]i}k∈K →∞. This implies that {[πW

k+1 ]i}k∈K → 0 (see (4.12)) because {wE
k }

is bounded and {µB
k} is positive and monotonically decreasing. These results to-

gether with Lemma 4.3 give {[πY
k+1 ]i}k∈K → 0. However, this limit, together with

the boundedness of {yE
k } and the assumption that {[ sk+1 ]i}k∈K → ∞ implies that

{[ c(xk+1) ]i}k∈K → ∞, which is impossible when Assumption 3.3 and Assump-
tion 3.1 hold. Thus, it must be the case that {sk+1}k∈M is bounded.

The boundedness of {sk+1}k∈M and Assumption 3.3 ensure the existence of at
least one limit point of {(xk+1, sk+1)}k∈M. If (x∗, s∗) is any such limit point, there
must be a subsequence K ⊆ M such that {(xk+1, sk+1)}k∈K → (x∗, s∗). It remains
to show that (x∗, s∗) is an infeasible stationary point (i.e., that (x∗, s∗) satisfies the
optimality conditions (4.10a)–(4.10b)).

As |O| <∞, it follows from Lemma 4.4 that c(x∗)−s∗ 6= 0. Combining this with
{τk} → 0, which holds because K ⊆ M is infinite (on such iterations τk+1 ← 1

2τk),
it follows that the condition (4.5) of Step 13 of Algorithm 2 will not hold for all
sufficiently large k ∈ K ⊆ M. The subsequent updates ensure that {µP

k} → 0,
which, combined with (3.2), the boundedness of {yE

k }, and Lemma 4.3, gives{
c(xk+1)− sk+1)

}
k∈K ≤

{
µP
k (yE

k + 1
2(wk+1 − yk+1)

}
k∈K → 0.

This implies that c(x∗)− s∗ ≤ 0 and the second condition in (4.10b) holds.
The next part of the proof is to establish that s∗ ≥ 0, which is the inequality

condition of (4.10a). The test in Step 14 of Algorithm 2 (i.e., testing whether (4.6)
holds) is checked infinitely often because |M| = ∞. If (4.6) is satisfied finitely
many times, then the update µB

k+1 = 1
2µ

B
k forces {µB

k+1} → 0. Combining this with
sk+1 + µB

k e > 0, which is enforced by Step 9 of Algorithm 1, shows that s∗ ≥ 0, as
claimed. On the other hand, if (4.6) is satisfied for all sufficiently large k ∈M, then
µB
k+1 = µB > 0 for all sufficiently large k and limk∈K χcomp(vk+1, µ

B
k ) = 0 because

{τk} → 0. It follows from these two facts that s∗ ≥ 0, as claimed.
For a proof of the equality condition of (4.10a) observe that the gradients must

satisfy {∇xM(vk+1 ; yE
k , w

E
k , µ

P
k , µ

B
k )}k∈K → 0 because condition (4.3) is satisfied for

all k ∈ M (cf. Step 11 of Algorithm 2). Multiplying ∇xM(vk+1 ; yE
k , w

E
k , µ

P
k , µ

B
k ) by

µP
k , and applying the definition of πY

k+1 from (4.12) yields{
µP
kg(xk+1)− J(xk+1)

T
(
µP
kπ

Y
k+1 + µP

k (πY
k+1 − yk+1)

)}
k∈K → 0.

Combining this with {xk+1}k∈K → x∗, {µP
k} → 0, and the result of Lemma 4.3

yields{
− J(xk+1)

T (µP
kπ

Y
k+1)

}
k∈K =

{
− J(xk+1)

T (µP
ky

E
k − c(xk+1) + sk+1)

}
k∈K → 0.
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Using this limit in conjunction with the boundedness of {yE
k }, the fact that {µP

k} →
0, and {(xk+1, sk+1}k∈K → (x∗, s∗) establishes that the first condition of (4.10a)
holds.

It remains to show that the complementarity condition of (4.10b) holds. From
Lemma 4.3 it must be the case that {πW

k+1 − πY
k+1}k∈K → 0. Also, the limiting

value does not change if the sequence is multiplied (term by term) by the bounded
sequence {µP

k (Sk+1 + µB
k I)}k∈K (recall that {sk+1}k∈K → s∗). This yields{

µB
kµ

P
kw

E
k − µP

k (Sk+1 + µB
k I)yE

k + (Sk+1 + µB
k I)(c(xk+1)− sk+1)

}
k∈K → 0.

This limit, together with the limits {µP
k} → 0 and {sk+1}k∈K → s∗, and the bound-

edness of {yE
k } and {wE

k } implies that{
(Sk+1 + µB

k I)(c(xk+1)− sk+1)
}
k∈K → 0. (4.21)

As c(x∗)− s∗ 6= 0, there must exist a constraint index i such that [ c(x∗)− s∗ ]i 6= 0.
Combining this with {(xk+1, sk+1)}k∈K → (x∗, s∗) and (4.21) shows that {[ sk+1 ]i +
µB
k}k∈K → 0. As s∗ is nonnegative, it follows that {µB

k}k∈K → 0, However, as {µB
k}

is a monotonically decreasing sequence, it must hold that {µB
k} → 0. Using this

fact, (4.21), and {(xk+1, sk+1)}k∈K → (x∗, s∗) it follows that s∗ ·
(
c(x∗) − s∗

)
= 0,

and the first condition in (4.10b) holds. This completes the proof.

The overall convergence result can now be established.

Theorem 4.2. Under Assumptions 3.1–3.3, one of the following occurs.

(i) |O| = ∞, limit points of {(xk+1, sk+1)}k∈O exist, and every such limit point
(x∗, s∗) is a CAKKT point for problem (NIPs). If, in addition, CAKKT-
regularity holds at (x∗, s∗), then (x∗, s∗) is a KKT point for problem (NIPs).

(ii) |O| < ∞, |M| = ∞, limit points of {(xk+1, sk+1)}k∈M exist, and every such
limit point (x∗, s∗) is an infeasible stationary point.

Proof. Part (i) follows from Lemma 4.1 and Theorem 4.1. Part (ii) follows from
Lemma 4.5. Also, it is clear that only one of these two cases must occur.

5. The Modified-Newton Equations

This section concerns the properties of the modified-Newton equations HM
k ∆vk =

−∇M(vk) of (3.1). Subsection 5.1 focuses on the properties of the modified-Newton
matrix, while subsection 5.2 discusses an efficient method for solving the resulting
modified-Newton equations for the primal-dual search direction. Finally, subsec-
tion 5.3 establishes the relationship between the computed search direction and a
shifted variant of the conventional primal-dual path-following equations. As this
section is concerned with details of only a single iteration, the notation is simplified
by omitting the dependence on the iteration k. In particular, we write v = vk,
yE = yE

k , wE = wE
k , πY = πY

k , πW = πW
k , ∆v = ∆vk, c = c(xk), J = J(xk),

g = g(xk), DP = µP
kI, DB = (Sk + µB

k I)W−1k , and HM = HM
k .
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5.1. Definition of the modified-Newton matrix

The choice of HM in the equations HM∆v = −∇M(v) is based on making two
modifications to ∇2M . The first involves substituting y for πY and w for πW in
(2.4). (Lemma 4.3 and the discussion of subsection 5.3 below provide justification
for this choice.) The second modification is to replace the modified Hessian H(x, y)
by a symmetric Ĥ such that Ĥ ≈ H(x, y) and HM is positive definite. These
modifications give an HM in the form

HM =


Ĥ + 2JTD−1P J −2JTD−1P JT 0
−2D−1P J 2(D−1P +D−1B ) −I I

J −I DP 0
0 I 0 DB

 . (5.1)

Practical conditions for the choice of a positive-definite Ĥ are based on the next
result.

Theorem 5.1. The matrix HM in (5.1) is positive definite if and only if

In(K) = In(n,m, 0), where K =

(
Ĥ JT

J −(DB +DP)

)
, (5.2)

which holds if and only if Ĥ + JT(DP +DB)−1JT is positive definite.

Proof. Let H̄, J̄ , D̄ and Hind denote the matrices

H̄ =

(
Ĥ 0
0 0

)
, J̄ =

(
J −I
0 I

)
, D̄ =

(
DP 0
0 DB

)
, and Hind =

(
H̄ J̄T

J̄ −D̄

)
.

(5.3)
Defining the nonsingular matrices T1 and T2 such that

T1 =

(
I 0

−D̄−1J̄ I

)
and T2 =

(
0 I
I D̄−1J̄

)
,

and using Sylvester’s law of inertia, yields

In(HM ) = In(T T1 H
MT1) = In

(
H̄ + J̄T D̄−1J̄ 0

0 D̄

)
= In(H̄ + J̄T D̄−1J̄) + (2m, 0, 0)

and

In(Hind) = In(T T2 HindT2) = In

(
−D̄ 0

0 H̄ + J̄T D̄−1J̄

)
= In(H̄+J̄T D̄−1J̄)+(0, 2m, 0).

These identities imply that HM is positive definite if and only if the inertia of Hind

is (m + n, 2m, 0). The inertia of Hind may be determined from the factorization
Hind = SΩST , where

S =


0 0 I 0
I 0 0 0
−DB −I 0 I

0 I 0 0

 and Ω =


0 I 0 0
I −DB 0 0

0 0 Ĥ JT

0 0 J −(DB +DP)

 .
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The matrix S is nonsingular, and Sylvester’s law of inertia and [15, Lemma 4.1] give

In(Hind) = In

(
0 I
I −DB

)
+ In

(
Ĥ JT

J −(DP +DB)

)
= (m,m, 0) + In(K).

If In(Hind) = (m + n, 2m, 0) then it must be the case that In(K) = (n,m, 0), as

required. The condition on the inertia of Ĥ + JT(DP + DB)−1JT follows from the
identity

In(K) = In
(
Ĥ + JT(DP +DB)−1JT

)
+ (0,m, 0) (5.4)

(see Forsgren and Gill [15, Lemma 4.1, p. 1143] for details).

There are a number of alternative approaches for choosing Ĥ based on comput-
ing a factorization of the (n + m) by (n + m) matrix K (5.2) (see, e.g., Gill and
Robinson [24, Section 4], Forsgren [14], Forsgren and Gill [15]), Gould [27], Gill and
Wong [25], and Wächter and Biegler [37]). All of these methods use Ĥ = H(x, y) if
this gives a sufficiently positive-definiteHM . The next result shows that Ĥ = H(x, y)
gives a positive-definite HM in a sufficiently small neighborhood of a solution satis-
fying second-order sufficient optimality conditions and strict complementarity.

Theorem 5.2. The matrix HM in (5.1) with the choice Ĥ = H(x, y) is positive
definite for all u = (x, s, y, w, yE , wE , µP , µB) sufficiently close to u∗ = (x∗, s∗, y∗,
w∗, y∗, w∗, 0, 0), when (x∗, s∗, y∗, w∗) is a solution of problem (NIPs) that satisfies
second-order sufficient optimality conditions and strict complementarity.

Proof. Let H denote the matrix H(x, y). The aim is to show that H + JT(DP +
DB)−1J is positive definite under the assumptions made in the statement of the
theorem. Let (x∗, s∗, y∗, w∗) be a solution of problem (NIPs) that satisfies strict
complementarity and second-order sufficiency optimality condition. It follows that

max{s∗, w∗} > 0 and (5.5)

pTH(x∗, y∗)p > 0 for all p 6= 0 satisfying JA(x∗)p = 0, (5.6)

where A =
{
i : [ s∗ ]i = 0

}
=
{
i : [ c(x∗) ]i = 0

}
and JA(x∗) denotes the submatrix

of J(x∗) consisting of the rows with indices in A. If the rows of J are partitioned
according to the active and inactive constraints, then

H + JT(DP +DB)−1J = H + JTA
(
µPI + (SA + µBI)W−1A

)−1
JA

+ JTI
(
µPI + (SI + µBI)W−1I

)−1
JI , (5.7)

where I = {1, 2, . . . , m} \ A, and SA and SI are the submatrices of S consisting
of the rows and columns from the index set A and I, respectively, with a similar
meaning for WA and WI. If u and u∗ are the quantities defined in the statement of
the theorem, then the following limits hold:

lim
u→u∗

J(x) = J(x∗), lim
u→u∗

H(x, y) = H(x∗, y∗), and (5.8)

lim
u→u∗

[
µPI + (SA + µBI)W−1A

]−1
ii

=∞. (5.9)
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for all 1 ≤ i ≤ m. Using (5.8), (5.9), (5.6), and the same proof as in [23, Theorem

3.1], we can conclude that H +JTA
(
µPI + (SA + µBI)W−1A

)−1
JA is positive definite

for all u sufficiently close to u∗. Combining this with the fact that the matrix

JTI
(
µPI + (SI + µBI)W−1I

)−1
JI is positive semidefinite, the definition (5.7) implies

that H + JT(DP + DB)−1J is positive definite for all u sufficiently close to u∗.
Finally, combining this fact with (5.4) shows that the matrix Hind of (5.3) satisfies
In(Hind) = (n + m, 2m, 0) for all u sufficiently close to u∗, which, together with
Theorem 5.2, implies that HM is positive definite for all u sufficiently close to u∗.

5.2. Solving the modified-Newton system

The modified-Newton system (3.1) defined with HM from (5.1) should not be solved
directly because of the potential for numerical instability. Instead, an equivalent
transformed system should be solved based on the transformation

T =


I 0 −2JTD−1P 0
0 I 2D−1P −2D−1B

0 0 I 0
0 0 0 W

 .

As T is nonsingular, the modified-Newton direction ∆v from (3.1) satisfies

THM∆v = −T∇M(x, s, y, w; yE , wE , µP , µB),

which, upon multiplication and application of the identity WDB = S + µBI, yields
Ĥ 0 −JT 0
0 0 I −I
J −I DP 0
0 W 0 S + µBI



∆x
∆s
∆y
∆w

 = −


g − JTy
y − w

c− s+ µP(y − yE)
s · w + µB(w − wE)

 . (5.10)

The solution of this transformed system may be found by solving two sets of equa-
tions, one diagonal and the other of order n+m. To see this, first observe that the
equations (5.10) may be written in the form

Ĥ 0 −JT 0
0 0 I −I
J −I DP 0
0 I 0 DB



∆x
∆s
∆y
∆w

 = −


g − JTy
y − w

c− s+ µP(y − yE)
W−1

(
s · w + µB(w − wE)

)
 . (5.11)

The solution of (5.11) is given by

∆w = y − w +∆y and ∆s = −W−1
(
s · (y +∆y) + µB(y +∆y − wE)

)
, (5.12)

where ∆x and ∆y satisfy the equations(
Ĥ −JT
J DP +DB

)(
∆x

∆y

)
= −

(
g − JT y

c− s+ µP(y − yE) +W−1
(
s · y + µB(y − wE)

)) ,
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or, equivalently, the symmetric equations(
Ĥ JT

J −(DP +DB)

)(
∆x

−∆y

)
= −

(
g − JTy

DP(y − πY ) +DB

(
y − πW

)) . (5.13)

Solving this (n+m)×(n+m) symmetric system is the dominant cost of an iteration.
The identity w+∆w = y+∆y implies that if the initial values satisfy y0 = w0 and
yE
0 = wE

0 , and the positive safeguarding values in (4.4) satisfy ymax = wmax, then all
subsequent iterates will satisfy w = y.

5.3. Relationship to primal-dual path-following

Consider the perturbed optimality conditions (2.2) and their associated primal-dual
path-following equations

F (x, s, y, w ; yE , wE , µP , µB) =


g(x)− J(x)Ty

y − w
c(x)− s+ µP(y − yE)
s · w + µB(w − wE)

 =


0
0
0
0

 . (5.14)

A zero (x, s, y, w) of F satisfying s > 0 and w > 0 approximates a solution to
problem (NIPs), with the approximation becoming increasingly accurate as both
µP(y − yE) → 0 and µB(w − wE) → 0. If v = (x, s, y, w) is a given approximate
zero of F such that s+µBe > 0 and w > 0, the Newton equations for the change in
variables ∆v = (∆x,∆s,∆y,∆w) are given by F ′(v)∆v = −F (v), i.e.,

H(x, y) 0 −J(x)T 0
0 0 I −I

J(x) −I µPI 0
0 W 0 S + µBI



∆x
∆s
∆y
∆w

 = −


g(x)− J(x)Ty

y − w
c(x)− s+ µP(y − yE)
s · w + µB(w − wE)

 .

These equations are identical to the modified-Newton equations (5.10) for minimiz-
ing M when Ĥ = H(x, y). Theorem 5.2 shows that the choice Ĥ = H(x, y) is
allowed in the neighborhood of a solution satisfying certain second-order optimality
conditions, and it follows that the modified-Newton direction used in the proposed
method is equivalent asymptotically to the shifted primal-dual path-following direc-
tions.

5.4. Infeasible shifted constraints

In Algorithm 2 it is necessary to reduce the value of the barrier parameter µB

during an M-iteration if the slacks are not sufficiently feasible or the complementarity
condition is not sufficiently satisfied (see Step 17 of Algorithm 2). In addition, as
the initial values of µP and µB may be larger than the minimum values needed to
give a positive-definite HM

k (5.1) at a solution, it is prudent to reduce µP and µB if a
sequence of iterations occurs in which HM

k is not positive definite. However, reducing
the value of µB reduces the value of the constraint shift, which may cause a slack
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variable to become infeasible with respect to its shifted bound. In this section we
define a minor modification of the method that treats this situation. For reasons
discussed below, it is assumed that a barrier parameter µB

i is associated with every
constraint si ≥ 0, i.e., µB is an m-vector with positive components. Suppose that
µB
i and µ̄B

i denote a shift before and after it is reduced, with si + µB
i > 0 and

si + µ̄B
i ≤ 0. The variable si can be returned to feasibility by imposing a temporary

equality constraint si = 0. This constraint is enforced by the primal-dual augmented
Lagrangian term until |ci(x)| is sufficiently small that ci(x) > −µ̄B

i , at which point
si is assigned the value si = ci(x) and allowed to move. On being freed, the value
of wi is reinitialized as max{yi, ε}, where ε is a small positive constant. At a given
iteration, if mX slacks are fixed, then mF = m − mX slacks are free to move. In
those iterations for which some of the slack variables are fixed, the problem being
solved has the form

minimize
x∈Rn,s∈Rm

f(x) subject to c(x)− s = 0, LXs = 0, LFs ≥ 0, (5.15)

where LX and LF are mX×m and mF×m matrices formed from rows of the identity
matrix Im in such a way that LXs and LFs give the “fixed” and “free” components
of s. While a slack is fixed, its associated barrier term is omitted from the shifted
primal-dual merit function.

The shifted primal-dual modified-Newton equations for problem (5.15) are given
in (5.16) and (5.17) below (for details on how the equations are derived, see Gill,
Kungurtsev and Robinson [20]). In the following discussion, µB denotes a vector
of shifts with the appropriate values of µB

i or µ̄B
i . Any feasible s can be written

uniquely as s = LTF sF , where sF is the nF vector of free slacks. If wF and wX denote
Lagrange multipliers for the constraints LXs = 0 and LFs ≥ 0, given x and s such
that [ sF + µB ]i > 0, the solution of the modified-Newton equations for problem
(5.15) can be written in terms of the quantities

DP = µPI, πY = yE − 1

µP

(
c(x)− s

)
,

DB = (SF +DB
µ)W−1F , πW

F = µB · (SF +DB
µ)−1wE

F ,

where DB
µ = diag(µB), SF = diag(sF ), WF = diag(wF ), and IF is the identity matrix

of order nF . Given these definitions, the equations for ∆s, ∆wF and ∆wX analogous
to (5.12) and (5.13) are given by

ŷ = y +∆y, ∆sF = −DB

(
LF ŷ − πW

F

)
, ∆s = LTF∆sF , (5.16a)

∆wX = LX ŷ − wX , (5.16b)

ŝ = s+∆s, ∆wF = −(SF +DB
µ)−1

(
wF · (LF ŝ+ µB)− µB · wE

F

)
, (5.16c)

where ∆x and ∆y satisfy the equations(
H JT

J −(DP + D̄B)

)(
∆x
−∆y

)
= −

(
g − JTy

DP(y − πY ) + D̄B

(
y − LTF πW

F

)) , (5.17)

with D̄B = LTFDBLF . Since the matrix DP + D̄B is diagonal, the treatment of
an infeasible shifted constraint requires no significant additional computation (cf.
(5.13)).
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6. Implementation Details and Numerical Testing

Numerical results are given for a simple Matlab implementation of PDB (Algo-
rithm 2). Results were obtained for 140 problems from the CUTEst test collection
(see Bongartz et al. [3] and Gould, Orban and Toint [28]). The problems consist of
the CUTEst implementations of all but two of the 126 problems from the Hock and
Schittkowski (HS) test set [29], and 16 problems from the COPS test set [9,11]. The
two excluded problems are hs87, which is nonsmooth and hs99exp, which is poorly
scaled.

6.1. The implementation

Each CUTEst problem may be written in the form

minimize
x

f(x) subject to

(
`X

`S

)
≤
(

x
c(x)

)
≤
(
uX

uS

)
, (6.1)

where c : Rn 7→ Rm, f : Rn 7→ R, and (`X , `S) and (uX , uS) are constant vectors of
lower and upper bounds. In this format, a fixed variable or an equality constraint
has the same value for its upper and lower bound. A variable or constraint with
no upper or lower limit is indicated by a bound of ±1020. For Algorithm PDB, each
problem was converted to the equivalent form

minimize
x∈Rn,s∈Rm

f(x)

subject to c(x)− s = 0, LXs = hX , `S ≤ LLs, LUs ≤ uS ,

EXx = bX , `X ≤ ELx, EUx ≤ uX ,

(6.2)

where s is a vector of slack variables. The quantity EX denotes an nX × n matrix
formed from nX independent rows of In. Similarly, EL and EU denote matrices
formed from subsets of In such that ETXEL = 0, ETXEU = 0, i.e., a variable is either
fixed or free to move, possibly bounded by an upper or lower bound. Note that a
variable xj need not be subject to a lower or upper bound, or may be bounded below
and above, in which case ej is not a row of EX , EL or EU . Analogous definitions
hold for LX , LL and LU as subsets of rows of Im although a given sj must be either
fixed or restricted by an upper or lower bound, i.e., there are no unrestricted slacks.
The bound constraints involving EX and LX are enforced explicitly as in Section 5.4.
The modified-Newton equations for problem (6.2) are derived by Gill, Kungurtsev
and Robinson [20]. As is the case for problem (5.15) the principal work at each
iteration is the solution of a perturbed reduced KKT system analogous to (5.17).

The problem format (6.2) must be extended to allow for the possibility of a
variable or slack becoming infeasible with respect to its shifted bound. An infeasible
slack variable is treated as in the previous section by temporarily fixing it on its
bound. An infeasible variable is treated by imposing the bound indirectly using the
primal-dual augmented Lagrangian. If xj is infeasible with respect to `Xj − µB

j , the
constraint xj − `Xj = 0 is included as a temporary penalty term in M , i.e.,

−vE
j (xj − `Xj ) +

1

2µA
j

(xj − `Xj )2 +
1

2µA
j

(
xj − `Xj + µA

j (vj − vE
j )
)
2,



6. Implementation Details and Numerical Testing 28

where vE
j is an estimate of the multiplier for the constraint xj = `Xj , and µA

j is a
penalty parameter chosen so that µA

j < µ̄B
j . The initial values of vj and vE

j are vj = zj
and vE

j = zE
j , where zj > 0 is the dual variable associated with the constraint xj ≥

`Xj . (These quantities appear in the perturbed primal-dual optimality conditions
associated with problem format (6.2)). While xj is infeasible, its associated barrier
term is omitted from the shifted primal-dual merit function. Once xj returns to
feasibility for the shifted bound, the shifted barrier term replaces the temporary
penalty term in the definition of M with zj and zE

j initialized from vj and vE
j .

For the purposes of deriving the KKT equations, this scheme implies that additional
constraints Ax−b = 0 are imposed, where A is a matrix of positive and negative rows
of In and bj is either `Xj or −uX

j . The effect of imposing the constraints Ax− b = 0

is to add a diagonal matrix ATDA
µA = AT diag(µA)A to the H block of the reduced

KKT equations analogous to (5.13) (see Gill, Kungurtsev and Robinson [20] for more
details).

Two alternative methods were used to modify the H-block of a KKT matrix with
fewer than n positive eigenvalues, with the choice of method depending on the size
of the problem. For the HS problems, H was modified during the calculation of the
LDLT factorization using the inertia controlling LDLT factorization of Forsgren [14]
and Forsgren and Gill [15]. For the COPS problems the Hessian was modified using
the method of Wächter and Biegler [38, Algorithm IC, p. 36], which factors the KKT

matrix with δIn added to H. At any given iteration the δ is increased from zero if
necessary until the inertia of the KKT matrix is correct. Each (possibly perturbed)
KKT matrix was factored using the Matlab built-in command LDL, which uses the
routine MA57.

6.2. Algorithm parameters and termination conditions

The Matlab implementation was initialized with parameter values given in Ta-
ble 1, which were chosen based on the empirical performance on the entire collec-
tion of problems. The primal-dual vector (x0, y0) was the default values supplied
by CUTEst, although the code immediately projects x0 onto the feasible region to
ensure feasibility with respect to the bounds on x. The iterates were terminated at
a point satisfying the condition

‖χ(vk)‖∞ < τstop, (6.3)

where χ(v) is the optimality measure (4.1) defined in terms of problem (6.2).

Table 1: Control parameters and initial values for Algorithm PDB.

Parameter Value Parameter Value Parameter Value Parameter Value

ymax/wmax 1.0e+5 τstop 1.0e-4 µP
0 1.0 χmax

0 1.0e+3

η 1.0e-2 τ0 0.5 µB
0 1.0e-4 γ 1.0e-3
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6.3. Numerical results

Figure 1 gives the performance profiles and bar graphs that compare the number of
function evaluations needed by PDB and the interior-point solver IPOPT [36, 38, 39]
on the CUTEst HS and COPS test problems. In each case, the left figure gives per-
formance profiles for the total number of functions evaluations. (For a description
of how performance profiles should be interpreted, see Dolan and Moré [10].) The
right figure gives the “outperforming factor” bar graphs proposed by Morales [31].
On the x-axis, each bar corresponds to a particular test problem, with the problems
listed in ascending order for the HS problems and alphabetical order camshape,
catmix, chain, channel, elec, gasoil, glider, marine, methanol, minsurfo,
pinene, polygon, robotarm, rocket, steering, and torsion1 for the COPS prob-
lems. The y-axis indicates the factor (log2 scaled) by which one solver outperformed
the other. A bar in the positive region indicates that PDB outperformed IPOPT. A
negative dark gray bar means IPOPT performed better. A negative light gray bar
denotes that PDB was unable to satisfy the termination criteria in 500 iterations. The
results indicate that, overall, the simple Matlab code PDB usually requires fewer
function evaluations than IPOPT, but is slightly less robust. Algorithm PDB was able
to satisfy the optimality measure for 137 (98%) of the 140 test problems. In each of
the three COPS “failures”, glider, robotarm and rocket, the iterates were termi-
nated at a point where the KKT matrix was nearly singular. In these three cases,
respectively 100%, 99% and 98% of the iterations required the Hessian to be modi-
fied. For the 124 HS problems, a grand total of 90% of the iterations computed were
O-iterates, and 7% of the iterations computed were F-iterates. An M-iterate was
computed in only 55 of the iterations required to solve all 124 HS problems. Overall,
41 of the 124 problems required the Hessian of the Lagrangian to be modified. For
the COPS problems a grand total of 72% of the iterations computed were O-iterates,
26% computed were F-iterates, and there were 16 M-iterations. The Hessian was
modified in 73% of the iterates. The results illustrate the crucial importance of
an effective modification scheme when the KKT matrix does not have the correct
inertia.

Tables 2 and 3 give the results of running algorithm PDB on the 158 CUTEst
test problems. For each problem the table lists the number of general constraint
functions (“m”), the number of x variables (“n”), the number of function evaluations
(“fe”), and the number of outer iterations (“itns”). A run is considered to have
failed if PDB could not satisfy the optimality condition (6.3) in 500 iterations. The
function and iteration entries for these “failed” runs are marked with an “f”. The
column with the heading “H mods” gives the percentage of iterations for which
the Hessian H(x, y) was modified to ensure the positive definiteness of HM (see
5.1). The columns “O-itns” and “F-itns” give the percentages of O-iterates and
F-iterates required (see Algorithm 2). The column with heading “M-itns” gives the
total number of M-iterates required for each problem. (The M-iterates are not listed
as a percentage of the total number of iterations because they generally constitute
significantly less than 1% of the total iterations.)
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Figure 1: Performance profiles and outperforming factors for function evaluations.

Table 2: Results for Algorithm PDB on 124 Hock-Schittkowski problems

Problem m n fe itns H mods O-itns F-itns M-itns

hs1 0 2 26 23 0% 100% 0% 0

hs2 0 2 8 8 0% 100% 0% 0

hs3 0 2 4 4 0% 100% 0% 0

hs3mod 0 2 5 5 0% 100% 0% 0

hs4 0 2 5 5 0% 100% 0% 0

hs5 0 2 6 6 0% 100% 0% 0

hs6 1 2 42 12 0% 100% 0% 0

hs7 1 2 233 49 87% 28% 71% 0

hs8 2 2 4 4 0% 100% 0% 0

hs9 1 2 11 4 25% 100% 0% 0

hs10 1 2 10 10 0% 100% 0% 0

hs11 1 2 8 8 0% 100% 0% 0

hs12 1 2 44 15 0% 100% 0% 0
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Table 2: Results for 124 Hock-Schittkowski test problems (continued)

Problem m n fe itns H mods O-itns F-itns M-itns

hs13 1 2 14 14 0% 100% 0% 0

hs14 2 2 6 6 0% 100% 0% 0

hs15 2 2 34 33 27% 48% 48% 1

hs16 2 2 9 9 0% 100% 0% 0

hs17 2 2 7 7 0% 100% 0% 0

hs18 2 2 14 14 0% 100% 0% 0

hs19 2 2 23 23 0% 73% 13% 3

hs20 3 2 19 19 52% 100% 0% 0

hs21 1 2 7 7 0% 100% 0% 0

hs21mod 1 7 8 8 0% 100% 0% 0

hs22 2 2 6 6 0% 100% 0% 0

hs23 5 2 11 11 0% 100% 0% 0

hs24 3 2 9 9 22% 100% 0% 0

hs25 0 3 37 37 70% 64% 29% 2

hs26 1 3 12 12 8% 100% 0% 0

hs27 1 3 451 43 0% 34% 60% 2

hs28 1 3 1 1 0% 100% 0% 0

hs29 1 3 7 6 33% 100% 0% 0

hs30 1 3 7 7 0% 100% 0% 0

hs31 1 3 5 5 0% 100% 0% 0

hs32 2 3 10 10 0% 100% 0% 0

hs33 2 3 20 12 50% 100% 0% 0

hs34 2 3 9 9 0% 100% 0% 0

hs35 1 3 7 7 0% 100% 0% 0

hs35i 1 3 7 7 0% 100% 0% 0

hs35mod 1 3 9 9 0% 100% 0% 0

hs36 1 3 7 7 0% 100% 0% 0

hs37 2 3 7 7 0% 100% 0% 0

hs38 0 4 9 8 0% 100% 0% 0

hs39 2 4 6 6 16% 100% 0% 0

hs40 3 4 3 3 0% 100% 0% 0

hs41 1 4 7 7 0% 100% 0% 0

hs42 2 4 4 4 0% 100% 0% 0

hs43 3 4 20 13 0% 100% 0% 0

hs44 6 4 18 18 44% 94% 5% 0

hs44new 6 4 18 18 44% 94% 5% 0

hs45 0 5 7 7 28% 100% 0% 0

hs46 2 5 28 16 0% 100% 0% 0

hs47 3 5 1045 107 52% 14% 85% 0

hs48 2 5 1 1 0% 100% 0% 0

hs49 2 5 7 7 0% 100% 0% 0

hs50 3 5 8 7 0% 100% 0% 0

hs51 3 5 1 1 0% 100% 0% 0

hs52 3 5 1 1 0% 100% 0% 0
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Table 2: Results for 124 Hock-Schittkowski test problems (continued)

Problem m n fe itns H mods O-itns F-itns M-itns

hs53 3 5 6 6 0% 100% 0% 0

hs54 1 6 11 11 0% 100% 0% 0

hs55 6 6 9 9 22% 100% 0% 0

hs56 4 7 587 58 32% 24% 75% 0

hs57 1 2 96 92 22% 22% 75% 2

hs59 3 2 424 67 53% 28% 68% 2

hs60 1 3 6 6 0% 100% 0% 0

hs61 2 3 11 7 28% 100% 0% 0

hs62 1 3 10 10 0% 100% 0% 0

hs63 2 3 9 9 11% 100% 0% 0

hs64 1 3 93 34 17% 67% 8% 8

hs65 1 3 14 14 0% 100% 0% 0

hs66 2 3 7 7 0% 100% 0% 0

hs67 14 3 12 12 0% 100% 0% 0

hs68 2 4 16 16 6% 100% 0% 0

hs69 2 4 9 9 0% 100% 0% 0

hs70 1 4 15 15 13% 100% 0% 0

hs71 2 4 10 10 0% 100% 0% 0

hs72 2 4 33 33 0% 69% 0% 10

hs73 3 4 16 16 0% 100% 0% 0

hs74 5 4 28 22 0% 81% 13% 1

hs75 5 4 32 26 0% 76% 15% 2

hs76 3 4 8 8 0% 100% 0% 0

hs76i 3 4 8 8 0% 100% 0% 0

hs77 2 5 9 8 0% 100% 0% 0

hs78 3 5 3 3 0% 100% 0% 0

hs79 3 5 4 4 0% 100% 0% 0

hs80 3 5 6 6 0% 100% 0% 0

hs81 3 5 8 8 12% 100% 0% 0

hs83 3 5 15 15 0% 100% 0% 0

hs84 3 5 16 16 0% 100% 0% 0

hs85 21 5 88 82 0% 24% 75% 0

hs86 10 5 12 12 0% 100% 0% 0

hs88 1 2 16 16 0% 100% 0% 0

hs89 1 3 19 19 15% 78% 0% 4

hs90 1 4 16 16 18% 100% 0% 0

hs91 1 5 17 15 20% 100% 0% 0

hs92 1 6 16 16 18% 100% 0% 0

hs93 2 6 7 7 0% 100% 0% 0

hs95 4 6 14 14 7% 100% 0% 0

hs96 4 6 14 14 7% 100% 0% 0

hs97 4 6 9 9 11% 100% 0% 0

hs98 4 6 9 9 11% 100% 0% 0

hs99 2 7 15 10 0% 100% 0% 0
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Table 2: Results for 124 Hock-Schittkowski test problems (continued)

Problem m n fe itns H mods O-itns F-itns M-itns

hs100 4 7 14 10 0% 100% 0% 0

hs100lnp 2 7 14 10 50% 100% 0% 0

hs100mod 4 7 11 8 0% 100% 0% 0

hs101 5 7 56 53 16% 39% 56% 2

hs102 5 7 67 67 17% 31% 65% 2

hs103 5 7 47 47 6% 44% 51% 2

hs104 5 8 8 8 0% 100% 0% 0

hs105 1 8 23 23 47% 78% 4% 4

hs106 6 8 25 13 0% 100% 0% 0

hs107 6 9 15 15 0% 100% 0% 0

hs108 13 9 20 14 14% 100% 0% 0

hs109 10 9 41 12 0% 100% 0% 0

hs110 0 10 4 4 0% 100% 0% 0

hs111 3 10 18 14 14% 100% 0% 0

hs111lnp 3 10 1723 108 87% 14% 84% 1

hs112 3 10 8 8 0% 100% 0% 0

hs113 8 10 15 15 0% 100% 0% 0

hs114 11 10 15 15 0% 100% 0% 0

hs116 14 13 88 58 18% 39% 48% 7

hs117 5 15 13 13 0% 100% 0% 0

hs118 17 15 20 20 0% 100% 0% 0

hs119 8 16 17 17 0% 100% 0% 0

hs268 5 5 10 10 0% 100% 0% 0

Table 3: Results for Algorithm PDB on the COPS problems

Problem m n fe itns H mods O-itns F-itns M-itns

camshape 203 100 170 170 0% 14% 82% 5

catmix 200 303 7 7 0% 100% 0% 0

chain 51 102 92 24 4% 91% 0% 2

channel 448 450 8 3 100% 100% 0% 0

elec 100 300 123 118 100% 19% 79% 1

gasoil 1298 1303 13 13 0% 100% 0% 0

glider 608 664 779f 500f 100% 1% 98% 0

marine 1392 1415 415 204 99% 8% 90% 2

methanol 1497 1505 16 13 0% 100% 0% 0

minsurfo 0 731 10 10 10% 100% 0% 0

pinene 1095 1105 8 8 100% 100% 0% 0

polygon 324 50 1511 421 100% 5% 93% 6

robotarm 402 562 618f 500f 99% 2% 97% 2

rocket 502 607 501f 500f 98% 2% 97% 1

steering 400 506 9 9 0% 100% 0% 0

torsion1 0 484 8 8 0% 100% 0% 0
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7. Conclusions

A new primal-dual shifted penalty-barrier function has been formulated and an-
alyzed for solving inequality constrained nonlinear optimization problems. This
function is proposed as a merit function for a primal-dual algorithm for nonlinear
optimization with favorable convergence properties. In particular, it has been shown
that a limit point of the sequence of iterates may always be found that is either an
infeasible stationary point or a complementary approximate Karush-Kuhn-Tucker
point, i.e., it satisfies reasonable stopping criteria and is a Karush-Kuhn-Tucker
point under the cone continuity property, which is the weakest constraint quali-
fication associated with sequential optimality conditions. At each step of the al-
gorithm, a regularized KKT system is solved to obtain a descent direction for the
merit function. Under suitable additional assumptions the method is equivalent to
a shifted variant of the primal-dual path-following method in the neighborhood of a
solution. Preliminary numerical experiments indicate that the primal-dual shifted
penalty-barrier function provides an effective way of ensuring global convergence.
The results also illustrate the crucial importance of an effective modification scheme
when the KKT matrix does not have the correct inertia.
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