
PRIMAL-DUAL METHODS FOR
LINEAR PROGRAMMING∗

Philip E. GILL†, Walter MURRAY‡,
Dulce B. PONCELEÓN§ and Michael A. SAUNDERS‡

Technical Report SOL 91-3¶

Revised March 1994

Abstract

Many interior-point methods for linear programming are based on the prop-
erties of the logarithmic barrier function. After a preliminary discussion of the
convergence of the (primal) projected Newton barrier method, three types of
barrier method are analyzed. These methods may be categorized as primal,
dual and primal-dual, and may be derived from the application of Newton’s
method to different variants of the same system of nonlinear equations. A
fourth variant of the same equations leads to a new primal-dual method.

In each of the methods discussed, convergence is demonstrated without
the need for a nondegeneracy assumption or a transformation that makes the
provision of a feasible point trivial. In particular, convergence is established
for a primal-dual algorithm that allows a different step in the primal and dual
variables and does not require primal and dual feasibility.

Finally, a new method for treating free variables is proposed.

Key words. Linear programming, barrier methods, primal-dual interior
methods

1. Introduction

This paper is concerned with barrier-function methods for the solution of linear
programs in the standard form

minimize
x

cTx

subject to Ax = b, x ≥ 0,
(1.1)

where A is an m× n matrix with m ≤ n.
Sections 2 to 6 consider the formulation and analysis of primal and dual barrier

methods. As a preliminary, convergence is established for a primal barrier algorithm
∗Presented at the Second Asilomar Workshop on Progress in Mathematical Programming, Febru-

ary, 1990, Asilomar, California. Also published in Math. Program. 70, pp. 251–277, 1995
†Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA.
‡Systems Optimization Laboratory, Department of Operations Research, Stanford University,

Stanford, CA 94305-4022, USA.
§Apple Computer, Inc., 20525 Mariani Avenue, Cupertino, CA 95014, USA.
¶The material contained in this report is based upon research supported by the National Science

Foundation Grant DDM-8715153 and the Office of Naval Research Grant N00014-90-J-1242.

2 Primal-dual methods for linear programming

in which the iterates lie in the strict interior of the feasible region. Several methods
are then proposed that do not require the primal iterates to satisfy Ax = b.

Section 7 concerns the class of primal-dual methods, which are the main subject
of this paper. Convergence is established for methods in which the primal and
the dual iterates are not necessarily feasible. The analysis allows methods with a
general choice of the initial approximation to variables, and allows liberal control of
the barrier parameter.

A number of authors have described primal-dual algorithms that converge in
polynomial time (e.g., Kojima, Mizuno and Yoshise [7]; Monteiro and Adler [14]).
However, such algorithms are generally theoretical and differ from the relatively few
primal-dual algorithms that have been implemented for practical problems (e.g.,
McShane, Monma and Shanno [11], Lustig, Marsten and Shanno [9, 10], Mehrotra
[13], and Gill et al. [3]). Two key differences are the assumption that the step
taken in the primal and dual spaces are the same and that the initial estimate of the
solution is primal and dual feasible. It may be argued that the feasibility assumption
is not overly restrictive because the linear program can be transformed into another
problem with an identical solution, but a known feasible point. However, this ignores
the possibility that the transformed problem may be more difficult to solve than the
original. Recently, Zhang [18] has proved global convergence and polynomiality
(under additional assumptions) for a primal-dual algorithm that does not require a
feasible point.

Kojima, Megiddo and Mizuno [6] have analyzed a primal-dual algorithm that is
more similar to implemented algorithms. They define a steplength rule that allows
(but does not guarantee) the possibility of different steps in the primal and dual
spaces. They assume that the initial point is feasible

The principal algorithms considered here do not require feasible iterates, and
different steps may always be taken in the primal and dual spaces. These algorithms
may be loosely categorized as primal, dual or primal-dual in order to distinguish
between the different approaches. However, all of them are primal-dual in the sense
that this term has been used for interior-point methods.

It is not within the scope of this paper to provide a numerical comparison be-
tween methods. Our intention is to give the methods a common setting and thereby
highlight their similarities and differences. The principal aim is to define and an-
alyze implementable algorithms, but for the purposes of analysis, it is necessary
to include procedures that are not present in standard implementations—the most
notable being the definition of the steplength as the result of a linesearch instead of
as a fixed fraction of the largest feasible step. However, the proposed linesearches
are simple to implement and do not add significantly to the cost of an iteration.
Moreover, the traditional “fixed” steplength usually satisfies the linesearch criteria.
The proofs of convergence demonstrate that almost any step can be taken in the
dual space. The existence of a wide range of steps for which convergence occurs
may explain the robustness of algorithms that do not incorporate a linesearch.

The analysis applies directly to methods for the more general problem in which
some variables have upper bounds or are free. In Section 9 a new technique is
described that avoids some numerical difficulties that arise when free variables are

2. Primal Barrier Methods 3

treated using certain Schur complements.
The analysis presented here is easily generalized to indefinite quadratic programs

(see Ponceleón [16]).

1.1. Notation and Assumptions

Let x∗ denote a solution to (1.1) and let X∗ be the set of all solutions. Let S0 denote
the feasible region S0 = {x : Ax = b, x ≥ 0} and let int(S0) denote its strict interior
int(S0) = {x : Ax = b, x > 0}. Initially we make the following assumptions:

(i) the constraint matrix A has full row rank;

(ii) the feasible region S0 is compact;

(iii) int(S0) is nonempty.

We shall use N to denote the matrix whose columns form a basis for the null space
of A (thus AN = 0). Occasionally it will be necessary to refer to the i-th element of
a sequence of vectors {xi} and the j-th component yj of a vector y. To distinguish
between xi and yj we shall use i to denote the i-th member of a sequence of vectors,
and j to denote the j-th component of a vector. Unless otherwise stated, ‖ · ‖ refers
to the vector two-norm or its induced matrix norm. The vector e denotes the vector
(1, 1, . . . , 1)T whose dimension is determined by the context.

Assumption (iii) is only required by the first algorithm discussed, which is a
feasible-point algorithm. In Section 8 we describe some alternatives to Assumptions
(ii) and (iii).

2. Primal Barrier Methods

Barrier methods for linear programming generate approximations to both the primal
and dual variables at each iteration. We shall use the term primal method to refer
to a method that generates positive values of the primal variables x, but does not
restrict the values of the dual slack variables z. In the first algorithm we assume
that the primal variables are feasible, i.e., that Ax = b. This assumption is relaxed
for the remaining algorithms.

2.1. The Primal Barrier Subproblem

Barrier methods involve major and minor iterations. Each major iteration is asso-
ciated with an element of a decreasing positive sequence of barrier parameters {µk}
such that limk→∞ µk = 0. The minor iterations correspond to an iterative process
for the solution of the subproblem

minimize
x∈Rn

B(x, µ) ≡ cTx− µ
n∑

j=1

lnxj

subject to Ax = b,

(2.1)

4 Primal-dual methods for linear programming

which is solved approximately at every major iteration, i.e., for each value of µ = µk.
Since B(x, µ) is a strictly convex function, the compactness of S0 implies that there
exists a unique minimizer x∗(µ) such that Ax∗(µ) = b and x∗(µ) > 0.

Barrier methods are based on the fundamental result that limµ→0 x∗(µ) ∈ X∗.
For a proof of this result and a general discussion of barrier methods, see Fiacco
and McCormick [2] and Wright [17].

The special form of the derivatives of the barrier function makes Newton’s
method a natural choice for solving problem (2.1). At any given point x, New-
ton’s method defines a search direction ∆x such that x+∆x continues to satisfy the
linear constraints and minimizes a quadratic approximation to the barrier function.
The vector ∆x is the solution of the quadratic program

minimize
∆x

1
2∆xTH∆x + gT∆x

subject to A∆x = 0,

where g(x, µ) = c − µX−1e and H(x, µ) = µX−2 are ∇B(x, µ) and ∇2B(x, µ), the
gradient and Hessian of the barrier function, with X = diag(xj). If y denotes an
approximation to the Lagrange multiplier vector of (2.1) at x associated with the
constraints Ax = b, the updated multipliers approximations y+∆y at x+∆x satisfy

K

(
∆x

−∆y

)
=

(
−g + ATy

0

)
, where K ≡

(
H AT

A

)
. (2.2)

We shall refer to this system of equations as the KKT system and to the matrix K
as the KKT matrix.

2.2. The Projected Newton Barrier Method

The formulation of the barrier subproblem (2.1) and the calculation of x∗(µ) by
Newton’s method was first embodied in the projected Newton barrier method of
Gill et al. [4]. The method requires the specification of two positive sequences: a
bounded sequence {δk} that determines the accuracy of the solutions of (2.1) and a
decreasing sequence of barrier parameters {µk} such that limk→∞ µk = 0.

Algorithm PFP (Model Primal Feasible-Point Algorithm)

Compute x0 such that Ax0 = b, x0 > 0;
Set k = 0, i = 0 and ik = 0;
while not converged do

Set µ = µk;
while ‖NTg(xi, µ)‖ > δkµ do

Find xi+1 such that
B(xi+1, µ) < B(xi, µ), xi+1 > 0 and Axi+1 = b;
Set i = i + 1;

end do;
Set k = k + 1, ik = i;

end do

2. Primal Barrier Methods 5

Each member of the subsequence {xik} corresponds to an approximate minimizer
of the subproblem (2.1) defined by µk. We shall refer to the consecutive indices of
the sequence of minor iterations ik−1, ik−1 + 1, . . . , ik as Ik.

Since limk→∞ µk = 0, it follows that limk→∞ ‖xik − x∗k‖ = 0, where x∗k is the
nearest point to xik in X∗. The main difficulty lies in generating the sequence of
minor iterates {xi, i ∈ Ik} so that the condition ‖NTg(xi, µ)‖ ≤ δkµk is eventually
satisfied. This issue is addressed in the next section.

The precise form of the termination condition for the minor iterations is not
crucial. The only requirement is that the condition be satisfied in a neighborhood
of x∗(µk) that shrinks to the point x∗(µk) as k →∞.

The form of Algorithm PFP is general enough to allow almost all primal barrier
methods defined in the literature. For example, if the elements of the sequence
{δk} are suitably large and Newton’s method is used to define the minor iterates,
‖NTg(xi, µk)‖ is reduced at each step and only a single iteration need be performed
before µ is adjusted. (For more discussion of this type of strategy see Gonzaga
[5].) In practice, the sequence {δk} need only be defined implicitly. For example, if
‖NTg(xi, µk)‖/µk increases above some threshold, either the reduction in µ may be
moderated or δk may be chosen so that additional minor iterations are performed.

Similarly, the choice of the next µ can be influenced by either an explicit δk or
the amount of progress made on the final minor iteration. We emphasize that in
practice it is unnecessary to reduce µk below some prescribed small value related to
the required final accuracy of the approximate solution.

The form of the projected Newton barrier method and its associated convergence
proof are easily extended to the case of a nonlinear nonconvex objective function.
In the case of nonconvex quadratic programming, Ponceleón [16] has shown that it
may be preferable not to reduce µ at every iteration.

2.3. Convergence for the Primal Subproblem

In this section we show that the sequence {xi, i = ik−1, . . .} generated by Newton’s
method with δk = 0 converges to x∗(µk). It follows that for δk > 0 the number of
minor iterations required to satisfy the termination condition ‖NTg(xi, µ)‖ < δkµ is
finite.

Throughout this section we shall use the notation

µ = µk, B(x) = B(x, µ), g(x) = g(x, µ), H(x) = H(x, µ),

to refer to quantities associated with the k-th subproblem.
The feasible set S0 is compact by assumption. Given a positive constant θ and

a feasible vector w such that w ≥ θe, let Ω(w, µ) denote the level set

Ω(w, µ) = {x : B(x) ≤ B(w)} .

We have in mind w being the first minor iterate xik−1
associated with µ, and θ being

the smallest component of w. Every subsequent minor iterate will lie in S0∩Ω(w, µ).
The essential element of the proof is the demonstration that the KKT matrix is

bounded and has a bounded condition number at every point in S0 ∩ Ω(w, µ). By

6 Primal-dual methods for linear programming

assumption, A is bounded and has a bounded condition number. It follows that K
will also have this property if H is bounded and has a bounded condition number.
The latter properties in H follow from the next lemma, which shows that {(xi)j} is
bounded above and bounded away from zero.

Lemma 2.1. Let θ be a positive constant and w a given vector such that w ≥ θe
and Aw = b. There exist positive constants σX and τX, independent of x, such that
σXe ≤ x ≤ τXe for all x ∈ S0 ∩Ω(w, µ).

Proof. Let Ŝ denote the set S0 ∩Ω(w, µ). Ŝ is compact since it is the intersection
of the two closed sets S0 and Ω, and it is a subset of the bounded set S0. Since Ŝ
is compact, there exists a constant τX such that xj ≤ τX for x ∈ Ŝ. The definition
of Ŝ implies that every x ∈ Ŝ gives B(x) ≤ B(w). It follows that for all x ∈ Ŝ,

cTx− µ

n∑
j=1

lnxj ≤ cTw − µ

n∑
j=1

lnwj .

Therefore for each j,

−µ lnxj ≤ cTw − µ

n∑
j=1

lnwj − cTx + µ
∑
r 6=j

lnxr.

Since Ŝ is compact, the quantities ω = max{|cTx| : x ∈ Ŝ} and β̂ = max{lnxj :
x ∈ Ŝ} are bounded. Similarly, if θ > 0, the quantity β = max{β̂,− ln θ} is also
bounded and −µ lnxj ≤ 2ω + 2nµβ, or equivalently,

xj ≥ e−2(nβ+ω/µ) > 0,

as required.

Corollary 2.1. Let x be any element of S0 ∩ Ω(w, µ). Let H(x) = µX−2 where
X = diag(xj). Then there exist positive constants σH and τH, independent of x,
such that for all vectors u,

σH‖u‖2 ≤ uT H(x)u ≤ τH‖u‖2.

Lemma 2.2. At every element of the sequence {xi, i ∈ Ik} generated by Algo-
rithm PFP, the matrix K is bounded and has a bounded condition number.

We now show that the sequence {xi} generated by Newton’s method converges
to x∗(µ), which implies that the condition ‖NTg(xi)‖ ≤ δkµ will be satisfied in a
finite number of iterations.

The iterates of the projected Newton barrier method satisfy xi+1 = xi + αi∆xi,
where ∆xi is a search direction defined by (2.2) and αi is a scalar steplength that
produces a sufficient decrease in B(x) along ∆xi. Here we use the Goldstein-
Armijo algorithm (sometimes known as the backtracking algorithm) to determine

2. Primal Barrier Methods 7

the steplength, although any of the standard steplength algorithms would be suitable
(see, e.g., Ortega and Rheinboldt [15]).

The Goldstein-Armijo algorithm defines a steplength of the form αi = ᾱi/2ji−1,
where ᾱi is an initial step and ji (ji ≥ 1) specifies the largest fraction of ᾱi such
that

B(xi + αi∆xi) ≤ B(xi) + ηαi∆xT
i g(xi), (2.3)

for some preassigned constant η (0 < η ≤ 1
2). The initial step ᾱi is the smaller

of the unit step and a fixed fraction of βi, the distance to the boundary. Thus,
βi = minr {−(xi)r/(∆xi)r : (∆xi)r < 0} and the initial step ᾱi is

ᾱi = min {1, ωβi} ,

where the constant ω (0 < ω < 1) is typically 0.9 or 0.99.

Theorem 2.1. If {xi} is the infinite sequence generated by Newton’s method with
a Goldstein-Armijo linesearch, then limi→∞ ‖xi − x∗(µ)‖ = 0.

Proof. Without loss of generality we assume that k = 0. Let Ŝ = S0 ∩Ω(x0, µ).
The following inductive argument shows that every xi lies in Ŝ. Assume that

xi ∈ Ŝ. The corollary to Lemma 2.1 states that there exists a positive constant σH

such that
∆xT

i H(xi)∆xi ≥ σH‖∆xi‖2. (2.4)

From (2.2) and (2.4) we have

∆xT
i g(xi) = −∆xT

i H(xi)∆xi ≤ −σH‖∆xi‖2. (2.5)

Since B(x) is convex and B(xi + α∆xi) → +∞ as α → βi, there exists a unique
positive α∗ such that

B(xi + α∗∆xi) = B(xi) + ηα∗∆xT
i g(xi). (2.6)

This implies that there exists at least one strictly feasible point xi + αi∆xi that
satisfies the sufficient decrease condition (2.3). From (2.3) and (2.5) we obtain

B(xi)−B(xi+1) ≥ −ηαi∆xT
i g(xi) ≥ ησHαi‖∆xi‖2, (2.7)

so that B(xi+1) < B(xi) and xi+1 lies in Ŝ. By induction, xi ∈ Ŝ for all i.
Since Ŝ is compact and B(xi+1) < B(xi), the sequence {B(xi)} is monotone

decreasing and bounded below. Thus {B(xi)} converges, and

lim
i→∞

{B(xi)−B(xi+1)} = 0. (2.8)

This result and the inequality (2.7) imply that limi→∞ αi‖∆xi‖2 = 0.

Let I1 denote the subsequence of iterations for which the initial step ᾱi produces
a sufficient decrease in B. In this case, (2.7) yields

B(xi)−B(xi+1) ≥ ησHᾱi‖∆xi‖2 for all i ∈ I1,

8 Primal-dual methods for linear programming

and it follows that limi→∞∆xi = 0 for all i ∈ I1 if ᾱi is always greater than a
positive constant αmin. Consider the Taylor-series expansion of B(xi + α∗i ∆xi) in
(2.6). Then

B(xi + α∗i ∆xi) = B(xi) + α∗i ∆xT
i g(xi) + 1

2α∗i
2
∆xT

i H(x̂i)∆xi, (2.9)

where x̂i = xi + θα∗i ∆xi for some 0 ≤ θ ≤ 1. Combining (2.6) and (2.9) gives

α∗ = 2(η − 1)
∆xT

i g(xi)
∆xT

i H(x̂i)∆xi

= 2(1− η)
∆xT

i H(xi)∆xi

∆xT
i H(x̂i)∆xi

. (2.10)

Since xi, x̂i ∈ Ŝ, the corollary of Lemma 2.1 implies that α∗ ≥ 2(1 − η)σH/τH .
Finally, since βi > α∗ and ᾱi = min {1, ωβi}, we have

ᾱi ≥ αmin > 0, where αmin = min
{

1, 2ω(1− η)
σH

τH

}
. (2.11)

Since ᾱi is bounded away from zero by αmin, (2.7) gives

B(xi)−B(xi+1) ≥ ηαminσH‖∆xi‖2, for all i ∈ I1.

and limi→∞∆xi = 0 for all i ∈ I1.
Now consider the subsequence I2 such that αi < ᾱi and xi + 2αi∆xi 6∈ Ŝ (i.e.,

the penultimate step of the linesearch gives a point lying outside Ŝ). Then

2αi ≥ α∗ ≥ 2(1− η)
σH

τH

,

and similar arguments to those above give limi→∞∆xi = 0 for i ∈ I2.
Finally, consider the subsequence I3 such that αi < ᾱi and xi + 2αi∆xi ∈ Ŝ.

Then
B(xi + 2αi∆xi) > B(xi) + η2αi∆xT

i g(xi). (2.12)

The Taylor-series expansion of B(xi + 2αi∆xi) gives

B(xi + 2αi∆xi) = B(xi) + 2αi∆xT
i g(xi) + 2α2

i ∆xT
i H(x̄i)∆xi,

where x̄i = xi + ξ2αi∆xi for some 0 ≤ ξ ≤ 1. Substituting this expression for
B(xi + 2αi∆xi) in (2.12) gives

|∆xT
i g(xi)| ≤

αi

1− η
∆xT

i H(x̄i)∆xi. (2.13)

Since Ŝ is convex, x̄i ∈ Ŝ and it follows from the corollary to Lemma 2.1 that there
exists a constant τH such that

∆xT
i H(x̄i)∆xi ≤ τH‖∆xi‖2.

Combining this inequality with (2.13) gives

|∆xT
i g(xi)| ≤

αi

1− η
∆xT

i H(x̄i)∆xi ≤
τH

1− η
αi‖∆xi‖2.

3. Getting Feasible 9

Since limi→∞ αi‖∆xi‖2 = 0, we obtain

lim
i→∞

∆xT
i g(xi) = 0 for all i ∈ I3.

It follows from (2.5) that limi→∞∆xi = 0 for i ∈ I3.
From (2.2) we have

NTH(xi)N∆xNi
= −NTg(xi),

where ∆xi = N∆xNi
. Since NTH(xi)N is bounded and has a bounded condition

number, it follows from limi→∞∆xi = 0 that limi→∞NTg(xi) = 0. Since x∗(µ) is
the unique feasible point for which NTg(x∗(µ)) = 0, we have limi→∞ ‖xi−x∗(µ)‖ = 0
as required.

3. Getting Feasible

There are various ways to eliminate the requirement that x0 is a strictly feasible
point.

3.1. An Artificial Variable

A common approach is to introduce an additional variable, or set of variables, and
minimize a composite objective function. For example, given x0 > 0, consider the
transformed problem

minimize
x∈Rn, ξ∈R

cTx + ρξ

subject to Ax + ξu = b, x ≥ 0, ξ ≥ −1,

where u = (b − Ax0)/‖b − Ax0‖ and ρ is a positive scalar. The initial value of ξ
is ‖b − Ax0‖, so a strictly feasible point for the transformed problem is known. If
a step would make ξ negative during an iteration, a shorter step is taken to make
ξ = 0. Once ξ is zero, it is eliminated from the problem.

This type of approach has a number of associated difficulties, including the intro-
duction of a dense column in the matrix of constraints. The principal difficulty lies
in the choice of the parameter ρ. The value of ρ must be chosen large enough that
the original and transformed problems have the same solution, yet small enough that
the infeasibilities do not dominate the objective and make the method behave like
a two-phase algorithm. It is particularly difficult to choose a suitable value for ρ for
large problems that are poorly scaled. Although automatic scaling procedures exist,
they cannot always be assured of success. In practice, ρ is altered dynamically—for
example, the value chosen to reduce the initial infeasibilities can be increased when-
ever the infeasibilities are not being reduced sufficiently rapidly. If the constraints
are feasible but have no strict interior, ρ is present at all iterations and is likely to
become large, whatever adjustment strategy is used.

10 Primal-dual methods for linear programming

3.2. A Merit Function

The method of Section 2.1 may be generalized so that ∆x is the solution of the
quadratic program

minimize
∆x

1
2∆xTH∆x + gT∆x

subject to A∆x = b−Ax

and satisfies

K

(
∆x

−∆y

)
=

(
−g + ATy

b−Ax

)
. (3.1)

Progress may now be measured by means of a merit function that balances the aims
of minimizing B(x, µ) and reducing some norm of Ax−b. For example, one possible
merit function is

M(x, ρ) = B(x, µ) + ρ‖Ax− b‖1,

where ρ is chosen suitably large. It can be shown that the direction ∆x defined
by (3.1) is a descent direction for M(x, ρ). (For a proof in the context of a related
method, see Section 7.) Convergence follows from arguments similar to those used
in the discussion of the feasible-point algorithm.

It would appear that this approach also depends on choosing a good value for the
parameter ρ. However, ∆x is independent of ρ, and so ρ affects only the magnitude
of the steplength. Moreover, it is relatively easy to adjust ρ dynamically. For
example, given a steplength that provides a sufficient decrease in the pure barrier
function, ρ can be increased a posteriori if necessary to give sufficient decrease in
M(x, ρ).

Primal-infeasible methods will not be discussed further as we prefer the primal-
dual approach discussed in the next section. However, the merit function M(x, ρ)
will be reconsidered in Section 7 in conjunction with a primal-dual method.

3.3. Newton’s Method Applied to the Optimality Conditions

Since B(x, µ) is strictly convex, x∗(µ) is the only strictly feasible constrained sta-
tionary point for problem (2.1). This suggests an alternative method for finding
x∗(µ) based on using Newton’s method for nonlinear equations to find the station-
ary point of the Lagrangian L(x, y) = B(x, µ) − yT (Ax − b). Since the gradient of
L(x, y) is zero at x∗(µ), we obtain the n + m nonlinear equations

∇L(x, y) =
(

c− µX−1e−ATy
Ax− b

)
= 0, (3.2)

whose Jacobian is closely related to the KKT matrix K. The KKT system (3.1)
defines a descent direction for ‖∇L‖, and a steplength may be chosen to achieve a
sufficient reduction in ‖∇L‖. As in Algorithm PFP, this merit function ensures that
xj cannot be arbitrarily close to its bound.

This approach is now extended to obtain the algorithms of principal interest in
this paper.

4. A Primal Primal-Dual Method 11

4. A Primal Primal-Dual Method

Following common practice, we introduce a third vector of variables z = c − ATy
and solve the nonlinear equations fP (z, x, y) = 0, where

fP (z, x, y) ≡

f̄

f̂
r

 =

 z − µX−1e
c−ATy − z

Ax− b

 . (4.1)

When it is necessary to consider the full vector of variables z, x and y, the vector v
will denote the (2n + m)-vector (z, x, −y). The symbols fP (z, x, y) and fP (v) will
be used interchangeably for fP , depending on the point of emphasis. The Newton
direction ∆v = (∆z, ∆x, −∆y) satisfies the linear system

JP ∆v = −fP , where JP =

 I µX−2 0
−I 0 AT

0 A 0

 . (4.2)

Apart from the last block of columns being multiplied by −1, JP is the Jacobian of
the nonlinear equations (4.1). We shall refer to JP as the Jacobian.

The directions ∆x and ∆y from (4.2) are identical to those defined by the KKT
system (3.1), and to those associated with (3.2). However, for the nonlinear equa-
tions∇L(x, y) = 0 and fP (z, x, y) = 0, the steplength is chosen to produce a sufficient
decrease in ‖∇L‖ and ‖fP‖ respectively. In the latter case, the sufficient decrease
condition for the Goldstein-Armijo linesearch is

‖fP (vi + αi∆v)‖ ≤ (1− ηαi)‖fP (vi)‖, (4.3)

which is easily tested.
Since the residuals f̂ and r are linear in x, y and z, they are simply related to

their values in the previous iteration. Suppose that r and f̂ are nonzero at iteration
i. After a step of Newton’s method with steplength αi, we have

ri+1 = (1− αi)ri and f̂i+1 = (1− αi)f̂i. (4.4)

At the first iteration, ‖z0‖ and ‖y0‖ are bounded and x0 is bounded away from zero,
which implies that the Jacobian is bounded and has a bounded condition number.
It follows that α0 > 0. Hence the relations (4.4) imply that ri = γir0 for some scalar
γi such that 0 ≤ γi < γ̄ < 1. If a unit step is taken at any iteration, f̂ and r will be
zero in all subsequent iterations.

The complete algorithm is as follows.

12 Primal-dual methods for linear programming

Algorithm PPD (Model Primal Primal-Dual Algorithm)

Set v0, with x0 > 0 and z0 > 0;
Set k = 0, i = 0 and ik = 0;
while not converged do

Set µ = µk;
while ‖fP (vi, µ)‖ > δkµ do

Find vi+1 such that
‖fP (vi+1, µ)‖ < ‖fP (vi, µ)‖ and xi+1 > 0;
Set i = i + 1;

end do;
Set k = k + 1, ik = i;

end do

4.1. Convergence

Convergence is established by showing that JP is bounded and has a bounded con-
dition number for every barrier subproblem. In contrast to Algorithm PFP, whose
iterates lie in S0, it is not obvious that the primal iterates of Algorithm PPD are
bounded. This property is verified in the next lemma and then used to show that
the primal-dual iterates {vi} also lie in a compact set.

Lemma 4.1. Let τr denote a positive constant. If the feasible region S0 is compact,
then so is the set

SA = {x : x ≥ 0, ‖Ax− b‖ ≤ τr} .

Proof. Since SA is closed, it only remains to be shown that SA is bounded. If SA is
not bounded there must exist an x̄ ∈ SA and a unit vector u such that x̄ + γu ∈ SA

for all γ > 0. If Au 6= 0, then ‖A(x̄ + γu)‖ > τr for some γ sufficiently large.
Similarly, if some element of u is negative, then x̄ + γu 6≥ 0 for some γ sufficiently
large. It follows that if SA is unbounded there must exist u such that Au = 0, u ≥ 0
and ‖u‖ = 1. The existence of such a vector contradicts the assumption that S0 is
compact.

Lemma 4.2. Let r0 denote the residual r0 = Ax0 − b, with x0 > 0. Define the set

Sγ̄ = {(z, x, y) : x ≥ 0, Ax− b = γr0 for some 0 ≤ γ ≤ γ̄} ,

where γ̄ is given and satisfies 0 ≤ γ̄ < 1. Also define the level set

Γ (τf , µ) = {(z, x, y) : ‖fP (z, x, y)‖ ≤ τf} .

Then Ŝ = Sγ̄ ∩ Γ (τf , µ) is compact.

Proof. Throughout this proof we shall assume that (z, x, y) is a vector in Ŝ. From
the definition of Sγ̄ we have ‖Ax−b‖ ≤ ‖r0‖ and it follows from Lemma 4.1 that the
x is bounded. It remains to be shown that the y and z components are bounded.

4. A Primal Primal-Dual Method 13

Note that the components of both f̄ and f̂ are bounded since they are components
of the bounded vector fP .

Consider the equations f̄ = z − µX−1e of (4.1). Premultiplying f̄ by xT and
using the fact that both x and f̄ are bounded, it follows that a constant τ1 exists
such that

xTz = xTf̄ + µn < τ1. (4.5)

Also, since x ≥ 0 it follows from (4.1) that

zj > f̄j > −τ2 (4.6)

for some positive constant τ2.
If xT is now applied to the second equation of (4.1), f̂ = c−ATy− z, we obtain

xTf̂ = xTc− xTATy − xTz = xTc− (bT + rT)y − xTz.

Simple rearrangement and the definition of r from (4.1) gives

−(bT + rT)y = xTf̂ + xTz − xTc. (4.7)

It follows from (4.5) and the bounds on f̂ and x that

−(bT + rT)y < τ3. (4.8)

Similarly, using x = x0 in (4.7) gives

(bT + rT
0)y = −xT

0f̂ − xT
0z + xT

0c ≤ −xT
0f̂ −

∑
J−

(x0)jzj + xT
0c,

where J− is the set of indices of the negative components of z. (Recall that the
components of x0 are positive.) It follows from (4.6) that

(bT + rT
0)y < τ4. (4.9)

Using (4.8) and the assumption that r = γr0 gives

−(bT + γrT
0)y < τ3. (4.10)

Combining (4.9) and (4.10) and using the inequality 0 ≤ γ < γ̄ < 1 gives

−bTy ≤ τ3 + γτ4

1− γ
< τ5.

Using (4.7) with x = x∗(µ) gives

x∗(µ)T z = x∗(µ)T c− x∗(µ)T f̂ − bTy. (4.11)

Since x∗j (µ) > 0 and ‖x∗(µ)‖ is bounded (see Lemma 2.1), all the terms on the
right-hand side of this expression are bounded, with x∗(µ)T z < τ6 for some positive
constant τ6. Lemma 2.1 also implies the existence of positive constants σX and τX

14 Primal-dual methods for linear programming

such that σX ≤ x∗j (µ) ≤ τX . It follows from the lower bound on x∗j (µ) and (4.11)
that ‖z‖ is bounded, with

zj < (τ6 + nτXτ2)/σX .

Since A has full row rank, the bounds on ‖f̂‖ and ‖z‖ in the equation f̂ = c−ATy−z
imply that ‖y‖ is bounded, as required.

Lemma 4.3. If v ∈ Ŝ then JP is bounded and has a bounded condition number.

Proof. It is enough to show that xj is bounded away from zero if v ∈ Ŝ. We have
from (4.1) that zj − f̄j = µ/xj . Hence

|zj |+ ‖f̄‖ ≥ µ/xj or equivalently xj ≥
µ

|zj |+ ‖f̄‖
.

It follows from Lemma 4.2 that there exists a positive constant τZ such that |zj | < τZ

for all v ∈ Ŝ, and by assumption, ‖f̄‖ ≤ τf . Hence, xj ≥ µ/(τZ + τf) > 0.
From Lemma 4.1, x is uniformly bounded above. Since xj is bounded away from

zero, JP is bounded and the condition number of JP is bounded.

The proof of the next theorem is similar to that for Theorem 2.1.

Theorem 4.1. If {vi} is the infinite sequence generated by Newton’s method applied
to fP (v) = 0, with steplength satisfying the Goldstein-Armijo condition (4.3), then
limi→∞ ‖vi − v∗(µ)‖ = 0.

It follows that Newton’s method generates a point that satisfies the condition
‖fP (vi, µ)‖ ≤ δkµ in a finite number of iterations.

5. Summary of Primal Methods

In all the algorithms considered so far (excluding the artificial-variable method of
Section 3.1), the search directions for x and y are the same as those given by (4.2).
The steplength α may be chosen to reduce one of the following functions:

(i) M(x, ρ) = B(x, µ) + ρ‖Ax− b‖1 (search in x space).

(ii) ‖c− µX−1e−ATy‖2 + ‖Ax− b‖2 (search in x and y space).

(iii) ‖c− z −ATy‖2 + ‖z − µX−1e‖2 + ‖Ax− b‖2 (search in x, y and z space).

The only additional restriction on α is the requirement that x + α∆x > 0. In all
cases, approximations in the x, y and z space may be generated even though they
are necessary only in (iii). Thus, all three methods may be viewed as primal-dual
algorithms.

If some steplength other than α is taken along ∆z and ∆y, a sequence of auxiliary
y and z values can be generated that approximate y∗ and z∗. For this sequence, a
different step αZ in the y and z space is needed to maintain z > 0. Since αZ is not

6. Dual Methods 15

usually equal to α, a dual feasible point may be found before a primal feasible point
(or vice versa). Provided that the step taken in the y space is also αZ, once a dual
feasible point is found, all subsequent approximations will be dual feasible.

One advantage of (ii) and (iii) is that it is not necessary to compute logarithms.
Moreover, it is not necessary to define a parameter ρ that balances feasibility and
optimality, although it may be advantageous to weight the norms occurring in (ii)
and (iii).

6. Dual Methods

The dual of the linear program (1.1) may be written as

minimize
y, z

− bTy

subject to c−ATy − z = 0, z ≥ 0.
(6.1)

The dual barrier subproblem is

minimize
y∈Rm, z∈Rn

− bTy − µ
n∑

j=1

ln zj

subject to c−ATy − z = 0.

(6.2)

If Newton’s method is applied to this problem the direction ∆y is defined from a
system similar to (2.2). (The right-hand side is different and H = (1/µ)Z2, where
Z = diag(zj).) Given an initial point (y0, z0) in the strict interior of the dual
constraints, an algorithm DFP analogous to PFP may be defined.

Similarly, an algorithm may be formulated based upon the optimality conditions
for (6.2):

x− µZ−1e = 0,

c−ATy − z = 0, (6.3)
Ax− b = 0.

As noted by Megiddo [12], the solution of these equations is identical to the solution
of (4.1). Newton’s method applied to (6.3) solves the linear system JD∆v = −fD,
where

fD(z, x, y) ≡

f̄

f̂
r

 =

 x− µZ−1e
c−ATy − z

Ax− b

 (6.4)

and

JD =

µZ−2 I 0
−I 0 AT

0 A 0

 .

The resulting algorithm, DPD, is identical to PPD except that JP and fP are re-
placed by JD and fD, and the z variables are restricted during the linesearch instead
of the x variables.

16 Primal-dual methods for linear programming

Instead of assuming the primal feasible region is bounded we now assume the
dual feasible region is bounded. Bounding the feasible region may be done by adding
to the original problem upper bounds on the variables of the form xi ≤ M , where M
is large. Such bounds have a negligible affect on Algorithm PPD, but would have a
catastrophic affect on Algorithm DPD, since M would now appear in the objective.
Fortunately, adding simialr bounds on z to the dual problem has a negligible affect
on Algorithm DPD. Hence it makes more sense to assume the dual feasible region is
bounded. We now need to show that ‖x‖ generated by Algorithm DPD is bounded.
Note that a bound on ‖z‖ implies a bound on ‖y‖ when f̂ is bounded and A is full
rank.

Lemma 6.1. Let f̂0 denote f̂0 = c−ATy0 − z0. Define the set

Sγ̄ =
{

(z, x, y) : z > 0, f̂ = γf̂0 for some 0 ≤ γ ≤ γ̄
}

,

where γ̄ is given and satisfies 0 ≤ γ̄ < 1. Also define the level set

Γ (τf , µ) = {(z, x, y) : ‖fD(z, x, y)‖ ≤ τf} .

Then Ŝ = Sγ̄ ∩ Γ (τf , µ) is compact.

Proof. Throughout the proof we assume (z, x, y) ∈ Ŝ. The required result follows
if ‖x‖ is bounded. We now have f̂ , f̄ and r defined as in (6.4). From (6.4) we get

xizi − µ = zif̄i,

which implies
xTz < τ1 < ∞. (6.5)

It also follows from (6.4) and zi > 0 that

xi > −τ2 > −∞. (6.6)

Premultiplying f̂ in (6.4) by xT and rearranging gives

cTx− f̂Tx = xTz + (b + r)Ty < τ3 < ∞, (6.7)

with the inequality following from (6.5). Using z = z0 and y = y0 in the above
equation gives

−cTx + f̂T
0 x = −xTz0 − (b + r)Ty0 < τ4, (6.8)

with the inequality following from z > 0 and (6.6). Since f̂ = γf̂0 it follows from
(6.7) that

cTx− γf̂T
0 x < τ3. (6.9)

Combining (6.8) and (6.7) gives

cTx <
τ3 + γτ4

1− γ
< τ5. (6.10)

7. Primal-Dual Methods 17

We have that c = ATy∗(µ) + z∗(µ). Premultiplying this equation by xT gives

xTz∗(µ) = cTx− bTy∗(µ).

Since z∗i (µ) is bounded away from zero it follows from the bound on cTx given in
(6.10) that xi < ∞, which when combined with the previous lower bound derived
on xi implies ‖x‖ is bounded as required.

Lemma 6.2. If v ∈ Ŝ then JD is bounded and has a bounded condition number.

Proof. It is enough to show that zj is bounded away from zero if v ∈ Ŝ. We have
from (6.4) that xj − f̄j = µ/zj . Hence

|xj |+ ‖f̄‖ ≥ µ/zj or equivalently zj ≥
µ

|xj |+ ‖f̄‖
.

It follows from Lemma 6.1 that there exists a positive constant τX such that |xj | < τX

for all v ∈ Ŝ, and by assumption, ‖f̄‖ ≤ τf . Hence, zj ≥ µ/(τX + τf) > 0.
Since zj is bounded and bounded away from zero, JD is bounded and has a

bounded condition number.

The proof of the next theorem is similar to that for Theorem 2.1.

Theorem 6.1. If {vi} is the infinite sequence generated by Newton’s method applied
to fD(v) = 0, with steplength satisfying the Goldstein-Armijo condition (4.3), then
limi→∞ ‖vi − v∗(µ)‖ = 0.

As with Algorithm PPD, an auxiliary positive approximation to x∗ may be
generated by allowing the primal and dual steplengths to be different.

7. Primal-Dual Methods

7.1. A Primal-Dual Method

Algorithms PPD and DPD both generate a sequence of approximations to v∗(µ).
However, v∗(µ) also solves the nonlinear system fPD(z, x, y) = 0, where

fPD(z, x, y) ≡

f̄

f̂
r

 =

 Xz − µe
c−ATy − z

Ax− b

 . (7.1)

Newton’s method for these equations leads to the linear system

JPD∆v = −fPD, where JPD =

 X Z 0
−I 0 AT

0 A 0

 , (7.2)

18 Primal-dual methods for linear programming

which has been used by Lustig, Marsten and Shanno [9, 10], Mehrotra [13], and Gill
et al. [3] (see also Lustig [8]). Methods based on the solution of (7.2) are usually
referred to as primal-dual algorithms because both x and z are maintained to be
positive. It must be stressed that this terminology does not imply any direct connec-
tion between (7.2) and the primal-dual form of LP. If the latter is transformed using
a barrier function, the resulting optimality conditions involve six sets of variables
and two independent systems of equations that are identical to (4.1) and (6.3).

Unlike JP and JD, JPD is independent of µ. If α is chosen to maintain sufficient
positivity in both x and z, JPD will be a bounded matrix with a bounded condition
number. A key feature of these equations is that it is no longer obvious that the
Goldstein-Armijo steplength maintaining both z > 0 and x > 0 is bounded away
from zero.

We therefore propose an algorithm that takes a different step in the x and (y, z)
spaces and uses M(x, ρ) as a merit function instead of ‖fP‖. If σZ , τY and τZ are
preassigned positive constants, let SY and SZ be the sets

SY = {y : ‖y‖ ≤ τY } and SZ = {z : 0 < σZe ≤ z ≤ τZe}.

Algorithm PD (Model Primal-Dual Algorithm)

Set v0, with x0 > 0, z0 ∈ SZ and y0 ∈ SY ;
Set k = 0, i = 0 and ik = 0;
while not converged do

Set µ = µk;
while ‖NTg(xi, µ)‖+ ‖r‖ > δkµ do

Select any zi+1 ∈ SZ and yi+1 ∈ SY ;
Solve JPD∆vi = −fPD for ∆xi;
Find xi+1 = xi + αi∆xi such that
M(xi+1, ρ) < M(xi, ρ) and xi+1 > 0;
Set i = i + 1;

end do;
Set k = k + 1, ik = i;

end do

The convergence of Algorithm PD follows directly if it can be shown that (7.2)
generates a sequence {xi} converging to x∗(µ).

Given positive constants τr and τM , define the level set

S̄ = {x : ‖Ax− b‖ ≤ τr, M(x, ρ) ≤ τM}.

Similar arguments to those proving Lemma 4.1 show that S̄ is compact.
It will be shown that the search direction in the x variables is a descent direction

for M(x, ρ). This function is not differentiable at any point at which a component
of the residual r = Ax − b is zero. However, the function M(x, ρ) is infinitely
differentiable along each search direction ∆x generated by Algorithm PD, as the
following argument shows. At any iterate only nonzero components of r are included
in the definition of M(x, ρ). It follows from (4.4) that if a step causes a nonzero

7. Primal-Dual Methods 19

component of r to become zero then every other component of r will become zero
simultaneously. Thus, within any given iteration, every nonzero component of r will
remain nonzero and constant in sign. When every component of r becomes zero,
B(x, µ) replaces M(x, ρ) as the merit function.

Lemma 7.1. If x ∈ S̄ then there exists a positive σX, independent of x, such that
x ≥ σXe.

Proof. Similar to that of Lemma 2.1.

Lemma 7.2. Given positive constants τr, τY , τX, τZ, σX and σZ assume that x, y
and z satisfy ‖r‖ = ‖Ax − b‖ ≤ τr, ‖y‖ < τY , σXe < x < τXe and σZe < z < τZe.
Then there exist constants ρ, γ (γ > 0) and β (β ≥ 1) such that

∆xT∇M(x, ρ) ≤ −γ‖NTg‖2 − β‖r‖1,

where ∆x is defined by (7.2).

Proof. Elimination of ∆z from (7.2) yields the KKT system(
ZX−1 AT

A

) (
∆x

−∆y

)
= −

(
c− µX−1e−ATy

Ax− b

)
. (7.3)

It follows from the assumptions that ‖∆x‖ is bounded. Observe that the right-hand
side of (7.3) is identical to that of (3.1). It follows from (7.3) that

HN∆xN = −NT (g + ZX−1AT∆xA), (7.4)

where g = ∇B(x, µ), HN = NT ZX−1N , ∆x = N∆xN + AT∆xA, and

AAT∆xA = −r. (7.5)

From the definition of the merit function M(x, ρ) of Section 3, we have

∆xT∇M(x, ρ) = ∆xT
NNT (g + ρATē) + ∆xT

AA(g + ρATē),

where ē is a vector with components of magnitude one and sign(ēi) = sign(ri).
Define u ≡ (AAT)−1A(I −X−1ZNH−1

N NT)g. Substituting for ∆xN from (7.4) and
∆xA from (7.5) gives

∆xT∇M(x, ρ) = −gTNH−1
N NTg − rTu− ρrTē,

≤ −γ‖NTg‖2 − β‖r‖1,

where γ > 0 is the reciprocal of the largest eigenvalue of HN , β ≥ 1, and ρ is chosen
such that

ρ = max
{

1− rTuM

rTē
, 0

}
,

with uM the vector u evaluated at the point x ∈ S̄ for which rTu has its minimum
value.

20 Primal-dual methods for linear programming

Lemma 7.3. Let σZ, τY and τZ be preassigned positive constants. Consider se-
quences {zi} and {yi} such that σZe ≤ zi ≤ τZe and ‖yi‖ ≤ τY . Let {xi} denote
the sequence x0 > 0 and xi+1 = xi + αi∆xi, where ∆xi is defined by (7.2) and αi is
computed using a Goldstein-Armijo linesearch on M(x, ρ) with the requirement that
xi+1 > 0. If ρ is sufficiently large (but bounded) then ∆xi → 0 and xi → x∗(µ).

Proof. Since {xi} lies in a compact set, it follows that xi is bounded for all i.
Moreover, since xi lies in S̄, there exists a positive σX such that xi ≥ σXe for all i.
Every element of the sequence {xi} satisfies the assumptions of Lemma 7.2 and we
have

∆xT
i ∇M(xi, ρ) ≤ −γ‖NTg(xi)‖2 − β‖r(xi)‖1,

where γ > 0 and β ≥ 1. It follows from Lemma 7.2 that {M(xi, ρ)} is a monotone
decreasing sequence. Since {xi} ∈ S̄, it follows that {M(xi, ρ)} must converge and
the sufficient decrease condition from the linesearch gives

lim
i→∞

αi∆xT
i ∇M(xi, ρ) = lim

i→∞
αi(γ‖NTg(xi)‖2 + β‖r(xi)‖1) = 0.

If βi is the largest feasible step along ∆x, then M(x+α∆x, ρ) → +∞ as α → βi

and it follows that there exists a unique positive α∗ such that

M(xi + α∗∆xi, ρ) = M(xi, ρ) + µα∗∆xT
i∇M(xi, ρ).

Using similar arguments to those of Theorem 2.1, it follows that the steplengths
{αi} are bounded away from zero by a positive constant independent of xi and

‖NTg(xi)‖ → 0 and ‖r(xi)‖1 → 0.

The required results now follow from the uniqueness of x∗.

Lemma 7.4. If the assumptions and definitions of Lemma 7.3 hold then

lim
i→∞

yi + ∆yi = y∗(µ) and lim
i→∞

zi + ∆zi = z∗(µ).

Proof. It follows from (7.3), Lemma 7.3 and the optimality conditions of (2.1) that

lim
i→∞

yi + ∆yi = y∗(µ).

From (7.2) we have Zi(xi + ∆xi) = −Xi∆zi + µe. Since xi → x∗(µ) and ∆xi → 0,
we have

lim
i→∞

zi + ∆zi = µX∗i (µ)
−1

e = z∗(µ),

where X∗i (µ) = diag((x∗i (µ))j).

This result shows that even for arbitrary choices of {zi} and {yi}, approximations
to y∗(µ) and z∗(µ) may be obtained. It is not necessary for either y∗(µ) to lie in SY

or z∗(µ) to lie in SZ; for example, σZ and τZ may be fixed at one.

7. Primal-Dual Methods 21

Specific choices of zi and yi may define more efficient algorithms. The primal
algorithm of Section 3.2 that uses the merit function M(x, ρ) may be viewed as
being equivalent to Algorithm PD with zi = µX−1

i e and yi+1 = yi + αi∆yi. Since
‖Ax − b‖1 is implicitly bounded by the linesearch, Lemma 4.1 implies that xi is
bounded. It follows that each (zi)j is bounded away from zero, and zi ∈ SZ for
suitably small σZ .

Alternatively, y and z may be determined from a linesearch. A steplength θi in
the z and y space can be taken as an approximate solution of the univariate problem

minimize
θ

‖fPD(zi + θ∆zi, xi+1, yi + θ∆yi)‖

subject to zi + θ∆zi ≥ ηµX−1
i+1e, 0 ≤ θ ≤ 1,

where η is some preassigned constant in (0, 1].

7.2. Another Primal-Dual Algorithm

A second primal-dual algorithm can be derived by observing that v∗(µ) solves the
system of equations fPDD(z, x, y) = 0, where

fPDD(z, x, y) ≡

f̄

f̂
r

 =

µX−1Z−1e− e
c−ATy − z

Ax− b

 . (7.6)

Newton’s method for these equations gives the linear system JPDD∆v = −fPDD,
where

JPDD =

−µZ−2X−1 −µX−2Z−1 0
−I 0 AT

0 A 0

 .

Unlike the primal-dual method of Section 7.1 there are no problems with computing
a suitable steplength that maintains x and z positive. Although the Jacobian JPDD

appears to be more complicated than JPD, the system for ∆x and ∆y may be written
as (

ZX−1 AT

A

) (
∆x

−∆y

)
= −

c− 2z +
1
µ

Z2x−ATy

Ax− b

 , (7.7)

which has a KKT matrix identical to that of the primal-dual method of Section 7.1.
Since the direction for Algorithm PD can be computed with little additional effort,
another strategy would be to use a linear combination of the two directions. The
precise linear combination could be adjusted dynamically and need be specified only
after both directions are known.

The right-hand side of (7.7) is identical to that of the KKT system for the dual
algorithm. Hence, this algorithm is related to the dual barrier algorithm in the
same way that the primal-dual algorithm of Section 7.1 is related to the primal. For
example, a merit function based on the dual barrier function and dual constraint
violations would allow the calculation of different steps in the primal and dual
variables, and it is the step in the primal variables that could be chosen arbitrarily.

22 Primal-dual methods for linear programming

Note that any linear combination of the systems (4.1), (6.3), (7.1) and (7.6) can
be used to define directions for x, z and y. In particular, any linear combination
that includes the primal-dual equations (7.6) (no matter how tiny a proportion) has
the property that a suitable steplength exists for which x and z are positive.

8. Alternative Assumptions

The compactness of the feasible region required by assumption (ii) is used to es-
tablish that the (generally infeasible) iterates in the x space lie in a compact set.
In turn, this result is used to show that the y and z iterates also lie in a compact
set. (This result is not obvious since the primal-dual feasible space is generally not
compact.) Compactness is crucial for the proof that the various KKT systems are
bounded and have bounded condition numbers. In this section we weaken the as-
sumptions for Algorithm PFP and Algorithm PD. More specifically the assumption
of compactness of the feasible region is replaced by the assumption that the set
of solutions X∗ is nonempty and bounded. First we show that, under this weaker
assumption and the existence of a strictly feasible point, the strictly feasible iterates
of Algorithm PFP lie in a compact region. Existence of a nonempty interior of the
feasible region will not be required for the convergence of the primal-dual method.

The next lemma states that if the set of solutions to the LP (1.1) is nonempty
and bounded, then the iterates generated by a descent algorithm applied to the (2.1)
lie in a compact set.

Lemma 8.1. Let S0 denote the set of feasible points for problem (1.1) and assume
that int(S0) is nonempty. Let x̄ be any point in int(S0) and let Ω(x̄, µ) denote the
level set

Ω(x̄, µ) = {x : B(x, µ) ≤ B(x̄, µ)}.

If X∗ the set of solutions of (1.1) is nonempty and bounded, then S0 ∩ Ω(x̄, µ) is
compact.

Proof. If x̄ is a minimizer of (2.1) then it is unique and the level set is trivially
compact. If x̄ is not a minimizer, assume that S0∩Ω(x̄, µ) is not compact. Consider
the set U of all unit feasible directions of non-ascent for the barrier function B(x̄, µ):

U = {u : Au = 0, uTg(x̄) ≤ 0 and ‖u‖ = 1},

where g(x̄) ≡ g(x̄, µ). Since S0 ∩Ω(x̄, µ) is not compact by assumption, there must
exist u ∈ U such that

x̄ + γu ∈ S0, uT g(x̄ + γu) ≤ 0 for all γ > 0.

Any such u must be nonnegative since otherwise there must exist a finite γ̄ such
that uT g(x̄ + γu) → +∞ as γ → γ̄. Moreover, since

uT g(x̄ + γu) = cT u− µ
n∑

j=1

uj

x̄j + γuj

8. Alternative Assumptions 23

and the barrier term of this expression tends to zero as γ → +∞, we must have
cT u ≤ 0. The existence of a vector such that Au = 0, u ≥ 0 and cT u ≤ 0 contradicts
the assumption that X∗ is bounded.

The strict convexity of B(x, µ) on the compact set S0 ∩ Ω(x̄, µ) implies the
following corollary.

Corollary 8.1. The minimizer x∗(µ) of (2.1) is unique.

Lemma 8.2. Let S0 denote the set of feasible points for problem (1.1) and assume
that int(S0) is nonempty. Let x̄ be any point such that x̄ > 0, and let Ω(x̄, µ) denote
its associated level set

Ω(x̄, µ) = {x : M(x, ρ) ≤ M(x̄, ρ)} .

If X∗ is nonempty and bounded, and ρ is sufficiently large, then Ω(x̄, µ) is compact.

Proof. If ρ is sufficiently large, x∗(µ) is a minimizer of M(x, ρ). The uniqueness of
x∗(µ) stated by Corollary 8.1 implies that Ω(x∗(µ), µ) is nonempty and bounded.
Since M(x, ρ) is convex, it follows from standard convex analysis that every level
set of M(x, ρ) is bounded.

This result proves the minor iterates of Algorithm PD lie in a compact set. The
assumption that int(S0) is nonempty is not required for the following lemma.

Lemma 8.3. Let x̄ be any point such that x̄ > 0 and let Ω(x̄, µ) denote the level
set

Ω(x̄, µ, ρ) = {x : M(x, ρ) ≤ M(x̄, ρ)},
where

M(x, ρ) = B(x, µ) + ρ
m∑

i=1

|aT
i x− bi|.

If X∗ is nonempty and bounded, and the parameter ρ is sufficiently large, then
Ω(x̄, µ, ρ) is compact.

Proof. Let u denote a vector such that ‖u‖ = 1. There must exist a scalar γ̄ ≥ 0
such that the sign of aT

i (x̄ + γu) − bi is fixed for all γ ≥ γ̄. It follows that the
directional derivative of M(x̄ + γu) exists for all γ ≥ γ̄ and x + γu ∈ Ω(x̄, µ, ρ).
Also note that if X∗ is bounded it implies there exists positive constants τ , τ1 and
τ2 such that cTu > τ , if ‖Au‖1 ≤ τ1 and u ≥ −τ2e.

If Ω(x̄, µ.ρ) is not compact, there must exist a vector u and γ̂ such that

θ(γ) ≡ uT∇M(x̄ + γu) ≤ 0 for all γ ≥ γ̂ ≥ γ̄

and x + γu ∈ Ω(x̄, µ, ρ). We must have u ≥ −τ2e, otherwise there exist a finite β
such that M(x̄+ γu) → +∞ as γ → β. Define U ≡ {u : u ≥ −τ2e, ‖u‖ = 1}. There
must exist u ∈ U such that

θ(γ) = cTu− µ
n∑

j=1

uj

x̄j + γuj
+ ρ

m∑
i=1

|aT
i u| ≤ 0 for all γ ≥ γ̂ ≥ γ̄. (8.1)

24 Primal-dual methods for linear programming

If ‖Au‖1 ≥ τ1 then since cTu is bounded below for u ∈ U there exists ρ such that
θ(γ) > 0 for all γ ≥ γ̄. If ‖Au‖1 ≤ τ1 then cTu > τ and since for γ sufficiently
large −µ

∑
uj/(x̄j + γuj) ≥ −τ/2 it follows from (8.1) that there exists γ̃ such that

θ(γ) > 0 for all γ > γ̃. The required result follows.

Let S denote the set {x : x ≥ 0, ‖Ax − b‖ ≤ ‖Ax̄ − b‖}. The points generated
by algorithm PD for a fixed value of µ lie in S ∩Ω(x0, µ, ρ). Moreover, ‖Axk − b‖ is
strictly montonically decreasing and if ever a unit step is taken then ‖Axk − b‖ = 0
for all subsequent k, which makes ρ redundant.

9. The Treatment of Free Variables

If a variable has no upper or lower bounds, the leading diagonal block of the KKT
matrix is singular. Since the full KKT matrix remains nonsingular, this has no effect
on methods that solve KKT system directly. However, difficulties arise with a Schur
complement approach in which the KKT system is solved by forming two smaller
systems that involve the inverse of the leading diagonal block.

Here a new method for treating free variables is proposed that can be used
in conjunction with the Schur complement approach. To illustrate, consider the
calculation of ∆v in the primal-dual algorithm of Section 7. For simplicity, assume
that xr is the only free variable. In place of (f̄PD)r = zrxr − µ we have (f̄PD)r = zr,
with z∗r (µ) = 0. If the KKT system (7.2) is solved directly, this equation has no
effect, but in the partially eliminated system (7.3) ZX−1 must be replaced by H,
where H = diag(hj) with hr = 0 and hj = zjx

−1
j for j 6= r. Clearly, H is singular

and the Schur complement AH−1AT does not exist.
The singularity of H may be circumvented by replacing the equation zr = 0 by

another that ensures zr → 0 as µ → 0. Consider the two alternatives

exrzr = µ or zr + µxr = 0,

which give hr = zr and hr = µ respectively. In the first case, z∗r (µ) = µe−x∗r (µ) and
we may keep zr ≥ σZ > 0. It follows that H is nonsingular and AH−1AT exists.
In the second case, zr does not appear in the Jacobian and neither its sign nor its
magnitude are important. Similarly, the nonsingularity of JP is no longer dependent
on xr and xr can be excluded from the calculation of the step to the boundary.

10. Further Comments

A common practice in interior-point implementations is to define the steplength as
some fixed percentage of the maximum feasible step. By contrast, all the algorithms
described in this paper require some form of linesearch for the steplength. In practice
this requirement has little effect upon the computation time, given the work needed
to compute the search direction. Moreover, if η ≈ 0, almost any step is likely to
satisfy the Goldstein-Armijo backtracking condition because the linesearch functions
are convex and increase rapidly near the boundary of the feasible region. In practice

References 25

we have observed that the need to perform a linesearch arises only when there is
significant numerical error in the search direction.

Currently the most efficient implementations use a predictor-corrector method
to define the search direction (see, e.g., [9, 13]). Such a strategy may be incorporated
in the algorithms discussed here. The important point is to be able to fall back on
a guaranteed method should the predictor-corrector direction fail to be a suitable
descent direction for the merit function. A similar view was adopted by Mehrotra
[13].

It has not been our intent to compare the performance of the algorithms con-
sidered. All the primal-dual algorithms have very similar theoretical properties,
but only the primal-dual algorithm of Section 7.1 has been used in the principal
known implementations [9, 10, 13, 3]. The key system of equations appears to be
“less nonlinear” than the other three variations. Even so, in the neighborhood of
the solution, the Jacobian behaves almost identically to the Jacobians of the other
systems (as does the KKT matrix). It is not immediately apparent that this method
is inherently superior to the others.

It is likely that the best method will be determined by the method used to solve
the linear systems. For example, all the methods may be implemented by solving
systems of the form ADAT∆y = u, where D is either X2, Z−2 or XZ−1. Sup-
pose that these systems are solved using a conjugate-gradient method in which a
preconditioner is based on periodically forming the Cholesky factors of ADAT . As
the iterates converge, the systems using D = X2 should yield better precondition-
ers because the ratio of consecutive values of any significant diagonal element of D
converges to one. When D = XZ−1 or D = Z−2, the significant diagonal elements
correspond to the small components of z. It is not obvious that the ratio of con-
secutive values of any such diagonal will behave as smoothly. El-Bakery et al. [1]
report that when D = Z−2 in the predictor-corrector method the elements of D do
not behave smoothly.

Our analysis is directed at the linear programming problem. However, the ex-
tension of the results to convex programs is relatively straightforward. The more
challenging problem is to extend the results to nonconvex problems.

Acknowledgement

The authors are grateful to Joe Shinnerl for his careful reading of the manuscript
and to the referees for a number of helpful suggestions.

References

[1] A. S. El-Bakry, R. A. Tapia, and Y. Zhang. A study of indicators for identifying zero variables
in interior-point methods. Technical Report TR-91-15, Dept of Mathematical Sciences, Rice
University, Houston, TX, 1991.

[2] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Min-
imization Techniques. John Wiley and Sons, Inc., New York-London-Sydney, 1968.

[3] P. E. Gill, W. Murray, D. B. Ponceleón, and M. A. Saunders. Solving reduced KKT systems
in barrier methods for linear and quadratic programming. Report SOL 91-7, Department of
Operations Research, Stanford University, Stanford, CA, 1991.

26 References

[4] P. E. Gill, W. Murray, M. A. Saunders, J. Tomlin, and M. H. Wright. On projected Newton
methods for linear programming and an equivalence to Karmarkar’s projective method. Math.
Program., 36:183–209, 1986.

[5] C. C. Gonzaga. Path-following methods for linear programming. SIAM Rev., 34(2):167–224,
1992.

[6] M. Kojima, N. Megiddo, and S. Mizuno. Theoretical convergence of large-step primal-dual
interior-point algorithms for linear programming. Report RJ 7872, IBM T. J. Watson Research
Center, San Jose, CA, 1990.

[7] M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for linear
programming. In N. Megiddo, editor, Progress in Mathematical Programming: Interior Point
and Related Methods, pages 29–47. Springer Verlag, New York, NY, 1989.

[8] I. J. Lustig. Feasibility issues in an interior-point method for linear programming. Report
SOR-88-9, Department of Civil Engineering and Operations Research, Princeton University,
1988.

[9] I. J. Lustig, R. E. Marsten, and D. F. Shanno. Computational experience with a primal–dual
interior point method for linear programming. Linear Algebra Appl., 152:191–222, 1991.

[10] I. J. Lustig, R. E. Marsten, and D. F. Shanno. On implementing Mehrotra’s predictor-corrector
interior point method for linear programming. SIAM J. Optim., 2:435–449, 1992.

[11] K. A. McShane, C. L. Monma, and D. F. Shanno. An implementation of a primal-dual interior
point method for linear programming. ORSA Journal on Computing, 1:70–83, 1989.

[12] N. Megiddo. Pathways to the optimal set in linear programming. In N. Megiddo, editor,
Progress in Mathematical Programming: Interior Point and Related Methods, pages 131–158.
Springer Verlag, NY, 1989.

[13] S. Mehrotra. On the implementation of a primal-dual method. SIAM J. Optim., 2:575–601,
1992.

[14] R. D. C. Monteiro and I. Adler. Interior path-following primal-dual algorithms. Part II: Convex
quadratic programming. Math. Program., 44:43–66, 1989.

[15] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several vari-
ables. Academic Press, New York, 1970.

[16] D. B. Ponceleón. Barrier methods for large-scale quadratic programming. PhD thesis, Depart-
ment of Computer Science, Stanford University, Stanford, CA, 1990.

[17] M. H. Wright. Interior methods for constrained optimization. In Acta Numerica, 1992, pages
341–407. Cambridge University Press, New York, USA, 1992.

[18] Y. Zhang. On the convergence of an infeasible interior-point method for linear programming
and other problems. Report 92-07, Dept of Mathematics and Statistics, University of Maryland,
Baltimore County, MD, 1992.

	Introduction
	Notation and Assumptions

	Primal Barrier Methods
	The Primal Barrier Subproblem
	The Projected Newton Barrier Method
	Convergence for the Primal Subproblem

	Getting Feasible
	An Artificial Variable
	A Merit Function
	Newton's Method Applied to the Optimality Conditions

	A Primal Primal-Dual Method
	Convergence

	Summary of Primal Methods
	Dual Methods
	Primal-Dual Methods
	A Primal-Dual Method
	Another Primal-Dual Algorithm

	Alternative Assumptions
	The Treatment of Free Variables
	Further Comments

