
A Projected-Search Interior-Point Method

for Nonlinearly Constrained Optimization

Philip E. Gill and Minxin Zhang*

Department of Mathematics, University of California San Diego,
La Jolla, 92093-0112, CA, USA.

*Corresponding author(s). E-mail(s): miz151@ucsd.edu;
Contributing author(s): pgill@ucsd.edu;

Abstract

This paper concerns the formulation and analysis of a new interior-point method
for constrained optimization that combines a shifted primal-dual interior-point
method with a projected-search method for bound-constrained optimization. The
method involves the computation of an approximate Newton direction for a
primal-dual penalty-barrier function that incorporates shifts on both the primal
and dual variables. Shifts on the dual variables allow the method to be safely
“warm started” from a good approximate solution and avoids the possibility of
very large solutions of the associated path-following equations. The approximate
Newton direction is used in conjunction with a new projected-search line-search
algorithm that employs a flexible non-monotone quasi-Armijo line search for the
minimization of each penalty-barrier function. Numerical results are presented
for a large set of constrained optimization problems. For comparison purposes,
results are also given for two primal-dual interior-point methods that do not use
projection. The first is a method that shifts both the primal and dual variables.
The second is a method that involves shifts on the primal variables only. The
results show that the use of both primal and dual shifts in conjunction with
projection gives a method that is more robust and requires significantly fewer
iterations. In particular, the number of times that the search direction must
be computed is substantially reduced. Results from a set of quadratic program-
ming test problems indicate that the method is particularly well-suited to solving
the quadratic programming subproblem in a sequential quadratic programming
method for nonlinear optimization.

Keywords: Nonlinearly constrained optimization, interior-point methods,
primal-dual methods, shifted penalty and barrier methods, projected-search methods,
Armijo line search, augmented Lagrangian methods.

1

1 Introduction

This paper concerns the formulation and analysis of a new primal-dual interior-point
method for the solution of the nonlinear optimization problem

minimize
x∈Rn

f(x) subject to

(
ℓX

ℓS

)
≤

(
x
c(x)

)
≤

(
uX

uS

)
, (NIP)

where c : Rn 7→ Rm, f : Rn 7→ R, and (ℓX , ℓS) and (uX , uS) are constant vectors of
lower and upper bounds. Problem (NIP) may be reformulated as

minimize
x∈Rn, s∈Rm

f(x) subject to c(x)− s = 0,

(
ℓX

ℓS

)
≤

(
x
s

)
≤

(
uX

uS

)
, (NPs)

where x and the “slack variables” s are treated as independent variables. For simplicity,
in our discussion of the theoretical aspects of the method we consider the problem

minimize
x∈Rn, s∈Rm

f(x) subject to c(x)− s = 0, s ≥ 0, (NIPs)

which is equivalent to minimizing f(x) subject to the inequality constraints c(x) ≥ 0.
The methods designed to solve (NIPs) may be easily applied to solve the more general
problem (NPs) by treating the bound constraints on x in the same way as treating
the bounds on s.

The proposed method is based on combining a new primal-dual interior-point
method with a projected-search method for bound-constrained optimization that uses
a flexible non-monotone quasi-Armijo line search. Unlike conventional interior-point
methods, which impose an upper bound on the step size to prevent the variables from
becoming infeasible, the proposed projected-search interior-point method projects the
underlying search direction onto a superset of the feasible region defined by perturbing
the constraint bounds. With this approach the direction of the search path may change
multiple times along the boundary of the perturbed feasible region at the cost of com-
puting a single direction. Projected-search interior-point methods have the potential
of requiring fewer iterations than a conventional interior-point method, thereby reduc-
ing the number of times that a search direction must be computed. The direction for
the projected search is an approximate Newton direction associated with minimizing
a shifted primal-dual penalty-barrier function. This function involves a primal-dual
shifted penalty term for the equality constraints c(x)−s = 0 and an analogous primal-
dual shifted barrier term for enforcing the nonnegativity constraints on the variables
s and their associated multipliers. For problems with a mixture of upper and lower
bounds on x and s, the method may be regarded as shifting both the primal and dual
variables, see Gill and Zhang [1]. This extends the shifted primal-dual penalty-barrier
function of Gill, Kungurtsev and Robinson [2], which only involves shifts on the primal
variables. It is shown that a specific approximate Newton method for the unconstrained
minimization of the penalty-barrier function generates directions that are identical
to those associated with a variant of the conventional path-following method. In this

2

context the penalty-barrier function is used as a merit function for assessing points
generated by Newton’s method for a zero of the path-following equations.

The projected-search method is specifically designed for the all-shifted penalty-
barrier function and generates a sequence of feasible iterates {vk}∞k=0 such that vk+1 =
projΩk

(vk+αk∆vk), where projΩk
(v) is the projection of the vector v of primal-dual

variables onto a set Ωk that is a perturbation of the feasible region. The perturbation
is chosen to ensure that every optimal solution of (NIPs) lies in Ωk (see equation (15)).
Under mild assumptions, it is shown that there exists a limit point of the computed
iterates that is either an infeasible stationary point, or a complementary approximate
Karush-Kuhn-Tucker (CAKKT) point, i.e., it satisfies reasonable stopping criteria and
is a Karush-Kuhn-Tucker (KKT) point under a complementary approximate KKT

regularity condition (see Andreani, Mart́ınez and Svaiter [3]).
Constraint shifts provide a number of important benefits. First, analogous to the

definition of the original shifted penalty method of Powell [4] (equivalent to the aug-
mented Lagrangian method) the penalty-barrier terms need not go to infinity (see,
e.g., Powell [4], Hestenes [5]). In addition, if the optimal dual variables are known,
then the problem may be solved in a single unconstrained minimization. Second, it is
not necessary for the initial values of the variables to lie in the strict interior of the
feasible region, i.e., the initial point can lie on the boundary. Similarly, dual shifts
allow a dual variable to be initialized with any non-negative value. This implies that
if the method is started at a primal-dual solution, the method will terminate imme-
diately with the optimal point. Finally, shifts introduce a regularization term in the
linear equations that are solved at each iteration. This mitigates the ill-conditioning of
the associated linear equations that may occur when strict complementarity does not
hold or the active constraints are not linearly independent at a solution (see Section 3,
equation (13)).

The focus of this paper is on the formulation and analysis of an interior-point
method for the solution of problems with a nonlinear objective function and nonlin-
ear constraints. However, a significant benefit of the proposed method is that it can
be used as part of an efficient second-derivative sequential quadratic programming
(SQP) method. In general, interior-point methods and sequential quadratic program-
ming methods are two alternative approaches to handling inequality constraints. Both
interior methods and SQP methods have an inner/outer iteration structure, with the
work for an inner iteration being dominated by the cost of solving a large sparse system
of symmetric indefinite linear equations. In the case of SQP methods, these equations
involve a subset of the variables and constraints and are related to the equations that
were solved in the preceding iteration. This implies that matrix factorization methods
can be used to update the QP solution as the inner iterations proceed. In the case of
interior-point methods, the equations involve all the constraints and variables, and the
equations must be solved from scratch at each inner iteration. Broadly speaking, the
advantages and disadvantages of SQP methods and interior methods complement each
other. Interior-point methods are most efficient when implemented with exact second
derivatives (see Gill, Saunders and Wong [6]). Moreover, they can converge in few inner
iterations—even for very large problems. As the dimension and zero/nonzero struc-
ture of the Newton equations remains fixed, these Newton equations may be solved

3

efficiently using either iterative or direct methods available in the form of advanced
“off-the-shelf” linear algebra software. On the negative side, although interior methods
are very effective for solving “one-off” problems, they are more difficult to adapt to
solving a sequence of related problems. In contrast, SQP methods have the potential of
being able to capitalize on a good initial starting point, but are difficult to implement
when exact second derivatives are available, and require customized matrix updating
techniques. Over the years, algorithm developers have avoided the difficulty of using
second derivatives by solving a QP subproblem defined with a positive semidefinite
quasi-Newton approximate Hessian (see, e.g., Gill, Murray and Saunders [7]). Many
of the difficulties associated with using second derivatives in an SQP method would
be resolved if an interior-point method could be used to solve the QP subproblem.
However, QP solvers based on conventional interior methods have had limited success
within SQP methods because they are difficult to “warm start” from a near-optimal
point. This makes it difficult to capitalize on the property that, as the outer iterates
converge, the solution of one QP subproblem is a very good estimate of the solution
of the next. In addition, the need to solve many QP subproblems using a method that
must solve equations involving all of the constraints from scratch can be prohibitively
expensive.

The interior-point method proposed in this paper is particularly well-suited to
solving the quadratic programming subproblem in an SQP method. The shifts on
the primal and dual variables allow the method to be safely “warm started” from a
good approximate solution. In addition, the numerical results of Section 6 show that
the method requires significantly fewer iterations than an unprojected interior-point
method when applied to large set of quadratic programming problems.

The paper is organized in six sections. In Section 2 we review the method of
Gill, Kungurtsev and Robinson. Section 3 concerns the extension of this method to
include shifts on the dual variables as well as the variables s. In Section 4 a projected-
search algorithm is proposed for minimizing the all-shifted primal-dual penalty-barrier
function for fixed penalty and barrier parameters. The convergence of this algorithm
is established under certain assumptions. Section 5 presents an algorithm for solving
problem (NIPs) that builds upon the work from Section 4. Global convergence results
are also established. Some numerical results are presented in Section 6.

4

1.1 Notation and terminology

Given vectors x and y, the vector consisting of x augmented by y is denoted by
(x, y). The subscript i is appended to vectors to denote the ith component of that
vector, whereas the subscript k is appended to a vector to denote its value during
the kth iteration of an algorithm, e.g., xk represents the value for x during the kth
iteration, whereas [xk]i denotes the ith component of the vector xk. Given vectors
a and b with the same dimension, the vector with ith component aibi is denoted by
a · b. Similarly, min(a, b) denotes a vector with components min(ai, bi). The vector e
denotes the column vector of ones, and I denotes the identity matrix. The dimensions
of e and I are defined by the context. The vector two-norm or its induced matrix
norm are denoted by ∥ · ∥. The inertia of a real symmetric matrix A, denoted by
In(A), is the integer triple (a+, a−, a0) giving the number of positive, negative and zero
eigenvalues of A. The n-vector ∇f(x) denotes gradient of f(x), and the m× n matrix
J(x) denotes the constraint Jacobian, which has ith row ∇ci(x)T. The Hessian with
respect to x of the Lagrangian function associated with problem (NIPs) is denoted
by H(x, y) = ∇2f(x) −

∑m
i=1 yi∇2ci(x), where y is the m-vector of dual variables

associated with the constraints c(x)− s = 0.

2 Background

Given an appropriate constraint qualification, the first-order optimality conditions for
problem (NIPs) are given by

∇f(x)− J(x)Ty = 0, y − w = 0,

c(x)− s = 0, s ≥ 0,

s · w = 0, w ≥ 0,

 (1)

where the vectors y and w constitute the Lagrange multipliers for the equality con-
straints c(x) − s = 0 and nonnegativity constraints s ≥ 0 respectively. Following
standard practice, any point satisfying the conditions (1) will be referred to as a
first-order KKT point.

Primal-dual path-following methods generate a sequence of iterates that approxi-
mate a continuous primal-dual path that passes through a solution of (NIPs). Points
on this path satisfy a system of nonlinear equations that represent the deviations from
a perturbation of the first-order optimality conditions (1). In a conventional path-
following approach, the perturbed optimality conditions correspond to replacing the
equality constraints and complementarity conditions of (1) by c(x) − s = µy and
s · w = µe, where µ is a small positive parameter such that µ → 0. This method
is closely related to penalty-barrier methods for solving (NIPs). Penalty and barrier
methods involve the minimization of a sequence of unconstrained functions param-
eterized by a sequence of penalty-barrier parameters

{
µk

}
such that µk → 0 (see,

e.g., Fiacco and McCormick [8], Frisch [9] and Fiacco [10]). Under certain conditions
on f and c the continuous trajectory of penalty-barrier minimizers associated with a
continuous penalty-barrier parameter µ coincides with the primal-dual path.

5

In the neighborhood of a first-order KKT point, computing the search direction as
the solution of the Newton equations for a zero of the perturbed optimality conditions
provides the favorable local convergence rate associated with Newton’s method. Given
the close connection with penalty-barrier methods, solving for a zero of the perturbed
optimality conditions provides an alternative to solving the ill-conditioned equations
associated with a conventional barrier method. In this context, the penalty-barrier
function may be regarded as a merit function for forcing convergence of the sequence
of Newton iterates of the path-following method. For examples of this approach, see
Byrd, Hribar and Nocedal [11], Wächter and Biegler [12], Forsgren and Gill [13], and
Gertz and Gill [14].

In a conventional path-following interior-point method, it is necessary to force
µ→ 0 to ensure that points near the path eventually satisfy the optimality conditions
(1). However, if an augmented Lagrangian method defined with multiplier estimate
yE and penalty parameter µP is used to minimize f(x) subject to c(x) = 0, then
perturbed conditions of the form c(x) = µP(yE−y) hold at a minimizer. It follows that
µP need not go to zero if yE is chosen to converge to the optimal multipliers. Based
on this observation, the method of Gill, Kungurtsev and Robinson [2] is based on the
perturbed optimality conditions

∇f(x)− J(x)Ty = 0, y − w = 0,

c(x)− s = µP(yE − y), s ≥ 0,

s · w = µB(wE − w), w ≥ 0,

 (2)

where µP and µB are positive scalars and yE and wE denote estimates of the Lagrange
multipliers for the constraints c(x) − s = 0 and s ≥ 0, respectively. The perturbed
complementarity condition in (2) may be written in the form (s + µBe) · w = µBwE ,
which implies that if wE > 0 then s + µBe > 0 and w > 0. Gill, Kungurtsev and
Robinson show that an appropriate merit function for a path-following interior-point
method based on the conditions (2) is the shifted primal-dual penalty-barrier function

M(x, s, y, w ; yE , wE , µP , µB) = f(x)− (c(x)− s)TyE

+
1

2µP
∥c(x)− s∥2 + 1

2µP
∥c(x)− s+ µP(y − yE)∥2

−
m∑
i=1

µBwE

i ln
(
si + µB

)
−

m∑
i=1

µBwE

i ln
(
wi(si + µB)

)
+

m∑
i=1

wi(si + µB).

In the neighborhood of a minimizer of (NIPs) satisfying certain second-order optimal-
ity conditions, the Newton equations for a zero of the conditions (2) are equivalent
to the Newton equations for a minimizer of M . Under certain assumptions, a limit
point of the iterates generated by the algorithm may always be found that is either an
infeasible stationary point or a complementary approximate KKT point (see Andreani,
Mart́ınez and Svaiter [3]). The reader is referred to Gill, Kungurtsev and Robinson [2]
for more details. This reference provides some numerical examples that illustrate the
performance of the method compared to the widely-used interior-point method IPOPT.

6

In the following section, the Gill-Kungurtsev-Robinson algorithm is extended to
include shifts on the dual variables w in addition to the shifts on the slack variables s.

3 An All-Shifted Primal-Dual Penalty-Barrier
Function

In order to use shifts for the dual variables, we consider the perturbed optimality
conditions

∇f(x)− J(x)Ty = 0, y − w = 0,

c(x)− s = µP(yE − y), s ≥ 0,

s · w = µB(wE − w) + µB(sE − s), w ≥ 0,

 (3)

where yE ∈ Rm is an estimate of a Lagrange multiplier vector for the constraints
c(x)−s = 0, wE ∈ Rm is an estimate of a Lagrange multiplier for the constraints s ≥ 0,
sE ∈ Rm is an estimate of the optimal slacks, and µP and µB are positive scalars. The
last equation of (3) may be written in the form (s+µBe) · (w+µBe) = µB(sE+wE+µBe),
which implies that if sE +wE + µBe > 0 then s+ µBe > 0 and w+ µBe > 0. If F (x, s,
y, w; sE , yE , wE , µP , µB) denotes the vector-valued function

F (x, s, y, w ; sE , yE , wE , µP , µB) =


∇f(x)− J(x)Ty

y − w
c(x)− s+ µP(y − yE)

s · w − µB(wE − w + sE − s)

 , (4)

then any point (x, s, y, w) that satisfies the perturbed optimality conditions (3) must
satisfy F (x, s, y, w ; sE , yE , wE , µP , µB) = 0. Let F (v) denote the function at a given
point v = (x, s, y, w). The Newton equations for the change in variables ∆v are given
by F ′(v)∆v = −F (v), i.e.,


H(x, y) 0 −J(x)T 0

0 0 Im −Im
J(x) −Im µPIm 0
0 W + µBIm 0 S + µBIm



∆x
∆s
∆y
∆w

 = −


∇f(x)− J(x)Ty

y − w
c(x)− s+ µP(y − yE)

s · w − µB(wE − w + sE − s)

 ,

(5)
where S and W denote diagonal matrices with diagonal entries si and wi such that
si + µB > 0 and wi + µB > 0.

The next step is to formulate a penalty-barrier function M such that in a neigh-
borhood of a minimizer of M , the Newton equations for minimizing M approximate

7

the Newton equations (5). Consider the shifted primal-dual penalty-barrier function

M(x, s, y, w ; sE , yE , wE , µP , µB) = f(x)︸︷︷︸
(A)

− (c(x)− s)TyE︸ ︷︷ ︸
(B)

+
1

2µP
∥c(x)− s∥2︸ ︷︷ ︸

(C)

+
1

2µP
∥c(x)− s+ µP(y − yE)∥2︸ ︷︷ ︸

(D)

− 2

m∑
i=1

µB(wE

i + sEi + µB) ln(si + µB)︸ ︷︷ ︸
(E)

−
m∑
i=1

µB(wE

i + sEi + µB) ln(wi + µB)︸ ︷︷ ︸
(F)

+

m∑
i=1

wi(si + µB)︸ ︷︷ ︸
(G)

+2µB

m∑
i=1

si︸ ︷︷ ︸
(H)

.



(6)

Let SE denote the diagonal matrix with diagonal entries sEi and define

SB = S + µBIm, SE

B = SE + µBIm and WB =W + µBIm.

Given the positive-definite matrices

DP = µPIm and DB = SBW
−1
B ,

and auxiliary vectors

πY (x) = yE − 1

µP
(c(x)− s) and πW (s) = µB(S + µBI)−1(wE − s+ sE),

the gradient of M may be written as

∇M =


∇f(x)− J(x)T

(
πY + (πY − y)

)
(πY − y) + (πY − πW) + (w − πW)

−DP(π
Y − y)

−DB(π
W − w)

 , (7)

8

and the Hessian ∇2M may be written in the form


H + 2J(x)TD−1

P J(x) −2J(x)TD−1
P J(x)T 0

−2D−1
P J(x) 2(D−1

P +D−1
B W−1

B ΠW + µBS−1
B) −Im Im

J(x) −Im DP 0
0 Im 0 DBW

−1
B ΠW + µBW−2

B SB

 ,

(8)
where H = H

(
x, πY + (πY − y)

)
and ΠW = diag(πW).

Given the kth primal-dual iterate vk = (xk, sk, yk, wk), the search direction
∆vk = (∆xk, ∆sk, ∆yk, ∆wk) is computed by solving the linear equations

HM

k ∆vk = −∇M(vk), (9)

where HM

k is a positive-definite approximation of ∇2M(vk). For the remainder of this
section we focus on the computation of the search direction for a single iteration and
omit the subscript k. The matrix HM in the equations HM∆v = −∇M(v) is defined

by substituting y for πY , w for πW , s for sE and a symmetric matrix Ĥ for H in (8).
This gives

HM =


Ĥ + 2J(x)TD−1

P J(x) −2J(x)TD−1
P J(x)T 0

−2D−1
P J(x) 2(D−1

P +D−1
B) −Im Im

J(x) −Im DP 0
0 Im 0 DB

 , (10)

where Ĥ is chosen such that Ĥ ≈ H(x, y) and HM is positive definite. A generalization
of Theorem 5.1 of Gill, Kungurtsev and Robinson [2] may be used to show that the

choice Ĥ = H(x, y) is allowed in the neighborhood of a solution satisfying certain
second-order optimality conditions.

The distinctive property of the approximate Newton equations (9) is that under
certain conditions onH, their solution is also a solution of the perturbed path-following
equations (5). Consider the upper-triangular matrix

U =


Im 0 −2J(x)TD−1

P 0
0 Im 2D−1

P −2D−1
B

0 0 Im 0
0 0 0 W + µBIm

 . (11)

The matrix U is nonsingular and it follows that the solution ∆v of (9) must satisfy

UHM∆v = −U∇M(v). (12)

9

Upon multiplication by U and the application of the identity WBDB = SB , the
equations (12) may be rewritten as


Ĥ 0 −J(x)T 0
0 0 Im −Im

J(x) −Im DP 0
0 W + µBIm 0 S + µBIm



∆x
∆s
∆y
∆w

 = −


∇f(x)− J(x)Ty

y − w
c(x)− s+ µP(y − yE)

s · w − µB(wE − w + sE − s)

 .

(13)

These equations are identical to the shifted path-following equations (5) when Ĥ =
H(x, y). The solution of (13) is given by

∆w = y − w +∆y and ∆s = −DB(y +∆y) + µBW−1
B (wE + sE − s),

where ∆x and ∆y satisfy the equations

(
Ĥ J(x)T

J(x) −(DP +DB)

)(
∆x
−∆y

)
= −

(
∇f(x)− J(x)Ty

DP(y − πY) +DB(y − πW)

)
. (14)

The matrix HM in (10) is positive definite if Ĥ + J(x)T(DP +DB)
−1J(x) is positive

definite or, equivalently, if the (n + m) × (n + m) matrix associated with (14) has

inertia (n,m, 0). If this condition does not hold for Ĥ = H(x, y), a common choice of

Ĥ is the matrix H(x, y) + δIn for some positive scalar δ (see Section 6.1).
It should be noted that in the neighborhood of a solution, both the approximate

Newton equationsHM

k ∆vk = −∇M(vk) and the KKT equations (14) are ill-conditioned
for small values of µP and µB . However, the sensitivity of the solution of (14) is
independent of the magnitudes of µP and µB (see Forsgren, Gill and Shinnerl [15],
Ponceleón [16] and Wright [17, 18]).

4 Minimizing the Merit Function using Projected
Search

In this section, we propose a projected-search algorithm that utilizes a non-monotone
flexible quasi-Armijo line search for minimizing the merit function M(x, s, y, w ; sE ,
yE , wE , µP , µB) of (6) with fixed parameters sE , yE , wE , µP and µB . The flexible
quasi-Armijo line search is a generalization of the quasi-Armijo search (see Ferry et
al [19] and Zhang [20]) that allows the acceptance of a step under a wider range
of conditions. The generalization uses the idea of a flexible line search proposed by
Curtis and Nocedal [21], and also exploits the connection between minimizing the
merit function and finding a zero of the shifted path-following function F (x, s, y,
w ; sE , yE , wE , µP , µB) of (4). In our description, we simplify the notation by writing
M(x, s, y, w ; sE , yE , wE , µP , µB) and F (x, s, y, w ; sE , yE , wE , µP , µB) as M(v ;µP) and
F (v ;µP), respectively.

10

4.1 The algorithm

For the merit function M(v ;µP) to be well-defined, the variables must satisfy the
implicit bounds s > −µBe, and w > −µBe. Thus, minimizing the merit function
M(v ;µP) is equivalent to solving the bound-constrained problem

minimize
v

M(v ;µP) subject to v > ℓ, (IPBC)

with ℓ =
(
−∞,−µBe,−∞,−µBe

)
, where an entry of “−∞” is used to indicate that

the associated variable has no lower bound. Let projΩk
(v) be the projection of v onto

the perturbed feasible region

Ωk =
{
v : v ≥ min

{
vk − σ(vk − ℓ), 0

}}
, (15)

with σ a fixed positive scalar such that 0 < σ < 1. The quantity σ may be interpreted
as the “fraction to the boundary” parameter used in many conventional interior-
point methods. The proposed projected-search method for problem (IPBC) is given
in Algorithm 1. It generates a sequence of feasible iterates {vk}∞k=0 such that vk+1 =
projΩk

(vk+αk∆vk), where ∆vk is the search direction computed as in Section 3, and
αk is a step computed using a flexible quasi-Armijo search.

To perform the flexible quasi-Armijo search, we choose a line-search Armijo param-
eter µL such that µL ≥ µP . At an iteration k, let ψk(α ;µ) and ϕk(α ;µ) denote the
functions M

(
projΩk

(vk + α∆vk) ;µ
)
and

∥∥F (projΩk
(vk + α∆vk) ;µ

)∥∥. A step αk is
acceptable if all of the three conditions

ψk(αk ;µ
P) < max

{
ψk(0 ;µ

P),Mmax

}
, (16a)

ψk(αk ;µ
L) < max

{
ψk(0 ;µ

L),Mmax

}
, and (16b)

ϕk(αk ;µ
P) ≤ ηF min

{
ϕk(0 ;µ

P), η
mk
F Fmax

}
(16c)

are satisfied, or

ψk(αk ;µ
F

k) ≤ ψk(0 ;µ
F

k) + αkηA∇M(vk ;µ
P)T∆vk, (16d)

for some value µF

k ∈ [µP , µL] and some positive ηF < 1. In these conditions, Mmax

and Fmax are large preassigned parameters and mk is the number of iterations prior
to iteration k at which (16a)–(16c) were satisfied. The use of the sufficient decrease
parameter of the form µF

k is characteristic of a flexible line search (see Curtis and
Nocedal [21]). In practice the step may be found by reducing αk by a constant factor
until (16a)–(16c) holds, or (16d) is satisfied with either µF

k = µL or µF

k = µP . The
approximate Newton direction is a descent direction for µF

k = µP , but the idea is to
choose the larger value µF

k = µL when possible because the associated penalty-barrier
function is less nonlinear. It is shown in Lemma 5.2 that µF

k = µL for all k sufficiently
large. Any αk satisfying the conditions (16a)–(16c) or the condition (16d) is classified
as a flexible quasi-Armijo step. Alternatively, an αk that satisfies (16d) for µF

k = µP

is simply known as a quasi-Armijo step (see Ferry et al. [19]). The conditions (16a)–
(16d) allow a step to be accepted if either (16a)–(16c) holds, which implies that αk

gives a sufficient decrease in the norm of the shifted path-following function F (4),

11

or (16d) holds, which implies that αk satisfies a flexible variant of the quasi-Armijo
condition for the minimization of M .

The convergence analysis in subsection 4.2 below establishes the convergence of
Algorithm 1 under typical assumptions. However, the ultimate purpose is to develop a
practical algorithm for the solution of problem (NIPs) that uses Algorithm 1 as a basis
for minimizing the underlying merit function. The slack-variable reset in Step 18 of
Algorithm 1 plays a crucial role in this more general algorithm for handling (locally)
infeasible problems (see Lemma 5.5). Analogous slack-variable resets are used in Gill,
Murray and Saunders [22], and Gill, Kungurtsev and Robinson [2]. As defined in
Step 17 of Algorithm 1, ŝk+1 is the unique minimizer, with respect to s, of the sum of
the terms (B), (C), (D), (G) and (H) in the definition of the functionM . In particular,
it follows from Step 17 and Step 18 of Algorithm 1 that the value of sk+1 computed
in Step 18 satisfies

sk+1 ≥ ŝk+1 = c(xk+1)− µF

k

(
yE + 1

2 (wk+1 − yk+1) + µB
)
,

which implies, after rearrangement, that

c(xk+1)− sk+1 ≤ µF

k

(
yE + 1

2 (wk+1 − yk+1) + µB
)
. (17)

Algorithm 1 Minimizing M for fixed parameters sE , yE , wE , µP , µB and µL.

1: procedure merit-proj(x0, s0, y0, w0, s
E , wE , µP , µB , µL)

2: Restrictions: s0 + µBe > 0, w0 + µBe > 0, sE + wE + µBe > 0, µL ≥ µP > 0,
µB > 0;

3: Constants:
{
ηA, γA, ηF

}
∈ (0, 1);

4: Set v0 ← (x0, s0, y0, w0);
5: while ∥∇M(vk)∥ > 0 do
6: Choose HM

k ≻ 0, and then compute the search direction ∆vk from (9);
7: Set αk ← 1;
8: loop
9: if (16a)–(16c) hold or (16d) holds for µF

k = µL then
10: break;
11: else if (16d) holds for µF

k = µP then
12: break;
13: end if
14: Set αk ← γAαk;
15: end loop
16: Set vk+1 ← projΩk

(vk + αk∆vk);
17: Set ŝk+1 ← c(xk+1)− µF

k

(
yE + 1

2 (wk+1 − yk+1) + µB
)
;

18: Perform a slack reset sk+1 ← max{sk+1, ŝk+1};
19: Set vk+1 ← (xk+1, sk+1, yk+1, wk+1);
20: end while
21: end procedure

12

4.2 Convergence analysis

The following assumptions are made for the convergence analysis:
Assumption 4.1. The functions f and c are twice differentiable.
Assumption 4.2. The sequence of matrices {HM

k }k≥0 used in (9) are chosen to be
uniformly positive definite and bounded in norm.
Assumption 4.3. The sequence of iterates {xk} is contained in a bounded set.

Assumption 4.3 is not a restrictive assumption. If the problem has the form (NIP),
the iterates are bounded if the upper and lower bounds are finite.

It will be shown in Section 5 (proof of Lemma 5.2) that µF

k is fixed for all k
sufficiently large if µL is chosen appropriately. In this section, without loss of generality,
we assume that the parameter µF

k in Algorithm 1 is fixed at a value µF , with either
µF = µP or µF = µL. In order to simplify the notation, letM(v ;µF) denote the function
M(x, s, y, w ; sE , yE , wE , zE , µF , µB).

Lemma 4.1. The sequence of iterates {vk} computed by Algorithm 1 is such that{
M(vk ;µ

F)
}

is bounded. In particular, if αk is a step that satisfies (16d), then
M(vk+1 ;µ

F) < M(vk ;µ
F).

Proof. As HM

k is positive definite by Assumption 4.2 and ∇M(vk ;µ
P) is assumed to be

nonzero for all k ≥ 0, the vector ∆vk is a descent direction forM at vk. This property,
together with equations (16a) and (16b), imply that the line search performed in
Algorithm 1 produces an αk such that the new point vk+1 = projΩk

(vk + αk∆vk)
satisfies M(vk+1 ;µ

F) < max{M(vk ;µ
F),Mmax}. In particular, if (16d) holds, then

M(vk+1 ;µ
F) < M(vk ;µ

F). It follows that the only way that the desired result cannot
hold is if the slack-reset procedure of Step 18 of Algorithm 1 causes M to increase.
The proof is complete if it can be shown that this cannot happen.

The vector ŝk+1 used in the slack reset is the unique minimizer of the sum of the
terms (B), (C), (D), (G) and (H) defining the function M(v ;µF), so that the sum of
these terms cannot increase. Also, the (A) term is independent of s, so that its value
does not change. The slack-reset procedure has the effect of possibly increasing the
value of some of the components of sk+1, which means that the (E) and (F) terms in
the definition of M can only decrease. In total, this implies that the slack reset can
never increase the value of M , which completes the proof.

Lemma 4.2. The sequence of iterates {vk} = {(xk, sk, yk, wk)} computed by
Algorithm 1 satisfies the following properties.
(i) The sequences {sk}, {c(xk)− sk}, {yk}, and {wk} are bounded.
(ii) For every i it holds that

lim inf
k≥0

[sk + µBe]i > 0 and lim inf
k≥0

[wk + µBe]i > 0.

(iii) The sequences
{
πY (xk, sk)

}
,
{
πW (sk)

}
, and

{
∇M(vk ;µ

P)
}
are bounded.

(iv) There exists a scalar Mlow such that M(vk ;µ
F) ≥Mlow > −∞ for all k.

Proof. First, we consider the case where (16c) holds only finitely many times. For
a proof by contradiction, assume that {sk} is unbounded. As sk + µBe > 0 by

13

construction, there exists a subsequence of iterations S and component i such that

lim
k∈S

[sk]i =∞ and [sk]i ≥ [sk]j for every j and all k ∈ S. (18)

Next it will be shown thatM must go to infinity on S. It follows from Assumption 4.3
and the continuity of f that the term (A) in the definition of M is bounded below for
all k. Similarly, Assumption 4.3, the continuity of c and (18) implies that (B) cannot
go to −∞ any faster than ∥sk∥ on S, and that (C) converges to ∞ on S at the same
rate as ∥sk∥2. It is also clear that (D) is bounded below by zero. On the other hand,
(E) goes to −∞ on S at the rate − ln

(
[sk]i + µB

)
. Next, note that (H) is bounded

below. Now, if (F) is bounded below on S, then the preceding arguments imply that
M converges to infinity on S, which contradicts boundedness of M established in
Lemma 4.1. Otherwise, if (F) goes to −∞ on S, then (G) converges to ∞ faster
than (F) converges to −∞. Thus, M converges to ∞ on S, which again contradicts
Lemma 4.1. These arguments imply that {sk} is bounded, which establishes the first
part of result (i). The second part of (i), i.e., the uniform boundedness of {c(xk)−sk},
follows from the first result, the continuity of c, and Assumption 4.3.

The next step is to establish the third bound in part (i), i.e., that {yk} is bounded.
For a proof by contradiction, assume that there exists some subsequence S and
component i such that

lim
k∈S

∣∣[yk]i∣∣ =∞ and
∣∣[yk]i∣∣ ≥ ∣∣[yk]j∣∣ for every j and all k ∈ S.

Using arguments similar to those of the preceding paragraph, together with the result
established above that {sk} is bounded, it follows that (A), (B) and (C) are bounded
below over all k, and that (D) converges to ∞ on S at the rate of [yk]

2
i because {sk}

is bounded, as has been shown above. Using the uniform boundedness of
{
sk

}
and

the assumption that sE +wE +µB > 0, it may be deduced that (E) is bounded below.
If (F) is bounded below on S, then (G) is also bounded, and as (H) is bounded below
by zero we would conclude, in totality, that limk∈S M(vk) = ∞, which contradicts
Lemma 4.1. Thus, (F) must converge to −∞, which implies that (G) converges to
∞ faster than (F) converges to −∞, so that limk∈S M(vk ;µ

F) = ∞ on S, which
contradicts Lemma 4.1. Thus,

{
yk

}
is bounded.

We now establish the final bound in part (i), i.e., we show that
{
wk

}
is bounded.

The boundedness of
{
xk

}
,
{
sk

}
and

{
yk

}
imply that (A), (B), (C), (D) and (H) are

bounded and that (E) is bounded below. For a proof by contradiction, assume that the
set is unbounded, which implies the existence of a subsequence S and a component i
such that

lim
k∈S

[wk]i =∞.

Then (F) converges to −∞, while (G) converges to ∞ faster than (F) converges to
−∞, so that limk∈S1 M(vk ;µ

F) = ∞ on S, which contradicts Lemma 4.1. It follows
that

{
wk

}
is bounded.

Part (ii) is also proved by contradiction. Suppose that
{
[sk + µBe]i

}
→ 0 on

some subsequence S and for some component i. As before, (A), (B), (C), (D), (G)

14

and (H) are all bounded from below over all k. We may also use wE + sE + µB > 0
and the fact that

{
sk

}
and

{
wk

}
were proved to be bounded in part (i) to conclude

that (E) and (F) converge to ∞ on S. It follows that limk∈S M(vk ;µ
F) = ∞, which

contradicts Lemma 4.1, and therefore establishes that lim inf [sk+µ
Be]i > 0 for every

1 ≤ i ≤ m. A similar argument may be used to prove that lim inf [wk + µBe]i > 0 for
every 1 ≤ i ≤ m, which completes the proof.

Part (iii) and Part (iv) can be proved similarly as in the proof of Lemma 3.2(iii)
and (iv) in [2].

Certain results hold when the gradient of M(v ;µP) is bounded away from zero.
Lemma 4.3. If there exists a positive scalar ϵ and a subsequence of iterates S
satisfying

∥∇M(vk ;µ
P)∥ ≥ ϵ for all k ∈ S,

then the following results must hold.
(i) The set

{
∥∆vk∥

}
k∈S is bounded above and bounded away from zero.

(ii) There exists a positive scalar δ such that ∇M(vk ;µ
P)T∆vk ≤ −δ for all k ∈ S.

Proof. See the proof of Lemma 3.3 in [2].

Next we establish the main convergence result for Algorithm 1.
Theorem 4.1 (Flexible quasi-Armijo search). Under Assumptions 4.1–4.3, there
exists an iteration subsequence S such that

lim
k∈S
∇M(vk ;µ

P) = 0.

Proof. First, consider the case where there exists an infinite subsequence of iter-
ates S such that the line-search conditions (16a)–(16c) hold for all k ∈ S. Then
the line-search condition (16c) implies that limk∈S ∥F (vk ;µP)∥ = 0. By (12),
F (vk ;µ

P) = Uk∇M(vk ;µ
P), where Uk is a matrix of the form (11). Lemma 4.2(ii)

implies that
{
∥Uk∥

}
is uniformly bounded away from zero, which ensures that

limk∈S ∇M(vk ;µ
P) = 0.

Now assume the complementary case where the subsequence of iterates such that
the line-search conditions (16a)–(16c) hold is finite. This implies that there exists k0
such that for all k > k0, the line-search condition (16d) must hold. Thus, all the
subsequent iterates

{
vk

}
k>k0

lies within the level set

L
(
M(vk0

;µF)
)

△
=
{
v ∈ Ω :M(v ;µF) ≤M(vk0

;µF)
}
,

where Ω represents the open set in which the merit function M(v ;µF) is well defined,
i.e.,

Ω =
{
v = (x, s, y, w) : v > ℓ

}
, with ℓ =

(
−∞,−µBe,−∞,−µBe

)
.

Notice that the value of M(v ;µF) is +∞ on the boundary of Ω. Then by the conti-
nuity of the function M(v ;µF), the level set L

(
M(vk0 ;µ

F)
)
is a closed subset of Ω.

Moreover, Assumption 4.3 and Lemma 4.2(i) imply that the set of iterates
{
vk

}
k>k0

15

is a bounded subset of L
(
M(vk0 ;µ

F)
)
. Hence, there exists a compact subset of Ω such

that
{
vk

}
k>k0

lies within the compact subset. It follows that

κ △
= min

k>k0,1≤i≤n

{
[vk]i − [ℓ]i

}
> 0.

We show by contradiction that limk→∞∇M(vk ;µ
P) = 0. Suppose there exists a con-

stant ϵ > 0 and a subsequence G such that ∥∇M(vk ;µ
P)∥ ≥ ϵ for all k ∈ G. It follows

from Lemma 4.1 and Lemma 4.2(iv) that limk→∞M(vk ;µ
F) = Mmin > −∞. Using

this result and the assumption that the line-search condition (16d) is satisfied for all
k sufficiently large, it must follow that

lim
k→∞

αk∇M(vk ;µ
P)T∆vk = 0,

which, together with Lemma 4.3(ii), implies that limk∈G αk = 0. For each k, define
βk

△
= αk/γA. Then limk∈G βk = 0 and the backtracking procedure in Algorithm 1

implies that the condition (16d) does not hold for the step βk for all k sufficiently
large. This means that the more stringent quasi-Armijo condition does not hold, i.e.,

M
(
projΩk

(vk + βk∆vk) ;µ
P
)
> M

(
vk ;µ

P
)
+ αkηA∇M(vk ;µ

P)T∆vk (19)

for all k sufficiently large. By Lemma 4.3(i), we also have limk∈G ∥βk∆vk∥ = 0. Thus,
there exists k̄ such that every component of βk∆vk satisfies |[βk∆vk]i| < σγ for all
k > k̄ in G. It follows that vk + βk∆vk ∈ Ωk, which implies projΩk

(vk + βk∆vk) =
vk + βk∆vk. Now let G′ denote the indices k > max

{
k0, k̄

}
of iterations at which a

reduction in the initial step length was necessary, i.e., G′ =
{
k : αk < 1, k ∈ G, k >

max
{
k0, k̄

}}
. As αk converges to zero, G′ must be an infinite set. The inequality

(19) implies that

M(vk + βk∆vk ;µ
P) > M(vk ;µ

P) + βkηA∇M(vk ;µ
P)T∆vk

for all k in G′. Adding −βk∇M(vk ;µ
P)T∆vk to both sides and rearranging gives

M(vk + βk∆vk ;µ
P)−M(vk ;µ

P)− βk∇M(vk ;µ
P)T∆vk > −βk(1− ηA)∇M(vk ;µ

P)T∆vk

> βk(1− ηA)δ, for all k ∈ G′.
(20)

The Taylor expansion of M(vk + βk∆vk ;µ
P) gives

M(vk + βk∆vk ;µ
P)−M(vk ;µ

P)− βk∇M(vk ;µ
P)T∆vk

= βk

∫ 1

0

(
∇M(vk + τβk∆vk ;µ

P)−∇M(vk ;µ
P)
)
T∆vk dτ. (21)

If ∥ · ∥D denotes the norm dual to ∥ · ∥, i.e., ∥v∥D = maxu̸=0 |vTu|/∥u∥, then

16

∣∣(∇M(vk + τβk∆vk ;µ
P)−∇M(vk ;µ

P)
)
T∆vk

∣∣
≤ ∥∇M(vk + τβk∆vk ;µ

P)−∇M(vk ;µ
P)∥D∥∆vk∥.

If this inequality is substituted in (21), it then follows from (20) that

(1− ηA)δ <

∫ 1

0

(
∇M(vk + τβk∆vk ;µ

P)−∇M(vk ;µ
P)
)
T∆vk dτ

≤ max
0≤τ≤1

∥∇M(vk + τβk∆vk ;µ
P)−∇M(vk ;µ

P)∥D∥∆vk∥, for all k ∈ G′.

The continuity of ∇M implies that there exists some τk ∈ [0, βk] such that

max
0≤τ≤1

∥∇M(vk+τβk∆vk ;µ
P)−∇M(vk ;µ

P)∥D = ∥∇M(vk+τk∆vk ;µ
P)−∇M(vk ;µ

P)∥D.

Then

(1− ηA)δ < ∥∇M(vk + τk∆vk ;µ
P)−∇M(vk ;µ

P)∥D∥∆vk∥. (22)

However, αk∆vk → 0 implies τk∆vk → 0 for k ∈ G, and the continuity of ∇M gives

∥∇M(vk + τk∆vk ;µ
P)−∇M(vk ;µ

P)∥D → 0.

Lemma 4.3(i) implies that the right-hand side of (22) converges to zero, which gives
the required contradiction.

5 Solving the Nonlinear Optimization Problem

In this section, a projected-search interior-point method for solving the nonlinear
optimization problem (NIPs) is formulated and analyzed. The method incorporates
the projected-search algorithm presented in Section 4 with strategies for adjusting the
parameters in the definition of the merit function. These parameters were fixed in
Algorithm 1.

5.1 The algorithm

The proposed method is given in Algorithm 2. The method uses the distinction among
O-iterations, M-iterations and F-iterations, which are described below.

The definition of an O-iteration is based on the optimality conditions for prob-
lem (NIPs). Progress towards optimality of the iterate vk+1 = (xk+1, sk+1, yk+1,
wk+1) is defined in terms of the following feasibility, stationarity, and complementarity
measures:

χfeas(vk+1) = ∥c(xk+1)− sk+1∥,
χstny(vk+1) = max

(
∥∇f(xk+1)− J(xk+1)

Tyk+1∥, ∥yk+1 − wk+1∥
)
, and

χcomp(vk+1, µ
B

k) =
∥∥min

(
q1(vk+1), q2(vk+1, µ

B

k)
)∥∥ ,

17

where

q1(vk+1) = max
(
|min(sk+1, wk+1, 0)|, |sk+1 · wk+1|

)
, and

q2(vk+1, µ
B

k) = max
(
µB

ke, |min(sk+1 + µB

ke, wk+1 + µB

ke, 0)|, |(sk+1 + µB

ke) · (wk+1 + µB

ke)|)
)
.

A first-order KKT point vk+1 for problem (NIPs) satisfies χ(vk+1, µ
B

k) = 0, where

χ(v, µ) = χfeas(v) + χstny(v) + χcomp(v, µ). (23)

Given these definitions, the kth iteration is designated as an O-iteration if
χ(vk+1, µ

B

k) ≤ χmax
k , where

{
χmax
k

}
is a monotonically decreasing positive sequence.

At an O-iteration the parameters are updated as yE

k+1 = yk+1, w
E

k+1 = wk+1 and

χmax
k+1 = 1

2χ
max
k (see Step 11 of Algorithm 2). These updates ensure that

{
χmax
k

}
converges to zero if infinitely many O-iterations occur. The point vk+1 is called an
O-iterate.

If the condition for an O-iteration does not hold, a test is made to determine if
vk+1 = (xk+1, sk+1, yk+1, wk+1) is an approximate first-order solution of the problem

minimize
v=(x,s,y,w)

M(v ; sEk, y
E

k , w
E

k , µ
P

k, µ
B

k). (24)

In particular, the kth iteration is called an M-iteration if vk+1 satisfies

∥∇xM(vk+1 ; s
E

k, y
E

k , w
E

k , µ
P

k, µ
B

k)∥∞ ≤ τk, (25a)

∥∇sM(vk+1 ; s
E

k, y
E

k , w
E

k , µ
P

k, µ
B

k)∥∞ ≤ τk, (25b)

∥∇yM(vk+1 ; s
E

k, y
E

k , w
E

k , µ
P

k, µ
B

k)∥∞ ≤ τk∥DP

k+1∥∞, and (25c)

∥∇wM(vk+1 ; s
E

k, y
E

k , w
E

k , µ
P

k, µ
B

k)∥∞ ≤ τk∥DB

k+1∥∞, (25d)

where τk is a positive tolerance,DP

k+1 = µP

kI, andD
B

k+1 = (Sk+1+µ
B

kI)(Wk+1+µ
B

kI)
−1.

In this case vk+1 is called an M-iterate because it is an approximate first-order solution
of (24). The estimates sEk+1, y

E

k+1 and wE

k+1 are defined by the safeguarded values

sEk+1 = min
(
max(0, sk+1), smaxe

)
,

yE

k+1 = max
(
− ymaxe,min(yk+1, ymaxe)

)
,

wE

k+1 = min
(
wk+1, wmaxe

)
 (26)

for some large positive constants smax, ymax and wmax. Next, Step 15 checks if the
condition

χfeas(vk+1) ≤ τk (27)

holds. If the condition holds, then µP

k+1 ← µP

k; otherwise, µ
P

k+1 ← 1
2µ

P

k to place more
emphasis on satisfying the constraints c(x)− s = 0 in subsequent iterations. Similarly,
Step 16 checks the inequalities

χcomp(vk+1, µ
B

k) ≤ τk, sk+1 ≥ −τke, and wk+1 ≥ −τke. (28)

18

If these conditions hold, then µB

k+1 ← µB

k ; otherwise, µ
B

k+1 ← 1
2µ

B

k to place more
emphasis on achieving complementarity in subsequent iterations.

An iteration that is not an O- or M-iteration is called an F-iteration. In an F-
iteration none of the parameters in the merit function are changed, so that progress
is measured solely in terms of the reduction in the merit function.

Algorithm 2 An all-shifted projected-search interior-point method.

1: procedure pdProj(x0, s0, y0, w0)
2: Restrictions: s0 ≥ 0 and w0 ≥ 0;
3: Constants:

{
ηA, γA

}
⊂ (0, 1) and

{
ymax, wmax, smax

}
⊂ (0,∞);

4: Choose yE
0 ; χmax

0 > 0;
{
µP
0 , µ

B
0

}
⊂ (0,∞); and µL

0 ≥ µP
0 ;

5: Choose wE
0 and sE0 such that wE

0 + sE0 + µB
0e > 0;

6: Set v0 = (x0, s0, y0, w0); k ← 0;
7: while ∥∇M(vk)∥ > 0 do
8: (sE , yE , wE , µP , µB)← (sEk, y

E

k , w
E

k , µ
P

k, µ
B

k);
9: Compute vk+1 in Steps 6–19 of Algorithm 1;

10: if χ(vk+1, µ
B

k) ≤ χmax
k then [O-iterate]

11: (χmax
k+1, y

E

k+1, w
E

k+1, µ
P

k+1, µ
B

k+1, τk+1)← (12χ
max
k , yk+1, wk+1, µ

P

k, µ
B

k , τk);

12: sEk+1 ← max
{
0, sk+1

}
;

13: else if vk+1 satisfies (25a)–(25d) then [M-iterate]
14: Set (χmax

k+1, τk+1) = (χmax
k , 12τk); Set sEk+1, y

E

k+1 and wE

k+1 using (26);

15: if χfeas(vk+1) ≤ τk then µP

k+1 ← µP

k else µP

k+1 ← 1
2µ

P

k end if
16: if χcomp(vk+1, µ

B

k) ≤ τk, sk+1 ≥ −τke and wk+1 ≥ −τke then
17: µB

k+1 ← µB

k ;
18: else
19: µB

k+1 ← 1
2µ

B

k ;
20: Reset sk+1 and wk+1 so that sk+1+µ

B

k+1e > 0 and wk+1+µ
B

k+1e > 0;
21: end if
22: else [F-iterate]
23: (χmax

k+1, s
E

k+1, y
E

k+1, w
E

k+1, µ
P

k+1, µ
B

k+1, τk+1)← (χmax
k , sEk, y

E

k , w
E

k , µ
P

k, µ
B

k , τk);
24: end if
25: Update µL

k+1 as in (29);
26: end while
27: end procedure

Reducing the barrier parameter µB in Step 19 of Algorithm 2 may cause a slack
variable si or a dual variable wi to become infeasible with respect to its shifted bounds.
In Step 20, if a multiplier wi becomes infeasible after µB is reduced, it is reinitialized as
max

{
yi,

1
2wi

}
. To remedy the infeasibility of a slack variable si, suppose µ

B and µ̄B

denote a shift before and after it is reduced, with si+µ
B > 0 and si+µ̄

B ≤ 0, a strategy
is proposed in Section 5.4 of [2], which temporarily imposes an equality constraint
si = 0. This constraint is enforced by the primal-dual augmented Lagrangian term
until the nonlinear constraint value ci(x) becomes larger than µ̄B , at which point si is

19

assigned the value si = ci(x) and allowed to move. On being freed, the corresponding
Lagrange multiplier wi is reinitialized as max

{
yi, ϵ

}
, where ϵ is a small positive

constant.
Given an initial value µL

0 ≥ µP
0 , in Step 25 of Algorithm 2, the line-search parameter

µL

k is updated as

µL

k+1 =

{
µL

k if ψk(αk ;µ
L

k) ≤ ψk(0 ;µ
L

k) + αkηAδk and µP

k+1 = µP

k;

max
{

1
2µ

L

k, µ
P

k+1

}
otherwise,

(29)
where δk = ∇M(vk ;µ

P)T∆vk. This updating rule guarantees that µL

k ≥ µP

k for all k.

5.2 Convergence analysis

Convergence analysis for Algorithm 2 follows a similar procedure as in Section 4.2
of [2], which uses the properties of the complementary approximate KKT (CAKKT)
condition proposed by Andreani, Mart́ınez and Svaiter [3], as described below.
Definition 5.1 (CAKKT condition). A feasible point (x∗, s∗) (i.e., a point such that
s∗ ≥ 0 and c(x∗) − s∗ = 0) is said to satisfy the CAKKT condition if there exists a
sequence

{
(xj , sj , uj , zj)

}
with

{
xj

}
→ x∗ and

{
sj

}
→ s∗ such that{

∇f(xj)− J(xj)Tuj
}
→ 0, (30){

uj − zj
}
→ 0, (31){

zj
}
≥ 0, and (32){

zj · sj
}
→ 0. (33)

Any (x∗, s∗) satisfying these conditions is called a CAKKT point.
Theorem 5.1 (Andreani et al. [23, Theorem 4.3]). If (x∗, s∗) is a CAKKT point that
satisfies CAKKT-regularity, then (x∗, s∗) is a first-order KKT point for (NIPs).

The first part of the analysis concerns the conditions under which limit points of
the sequence

{
(xk, sk)

}
are CAKKT points. As the results are tied to the different

iteration types, to facilitate referencing of the iterations during the analysis we define

O =
{
k : iteration k is an O-iteration

}
,

M =
{
k : iteration k is an M-iteration

}
, and

F =
{
k : iteration k is an F-iteration

}
.

Lemma 5.1. If |O| = ∞ there exists at least one limit point (x∗, s∗) of the infinite
sequence

{
(xk+1, sk+1)

}
k∈O and any such limit point is a CAKKT point.

Proof. Assumption 4.3 implies that there must exist at least one limit point of{
xk+1

}
k∈O. If x

∗ is such a limit point, Assumption 4.1 implies the existence of K ⊆ O
such that

{
xk+1

}
k∈K → x∗ and

{
c(xk+1)

}
k∈K → c(x∗). As |O| = ∞, the updat-

ing strategy of Algorithm 2 gives
{
χmax
k

}
→ 0. Furthermore, as χ(vk+1, µ

B

k) ≤ χmax
k

for all k ∈ K ⊆ O, and χfeas(vk+1) ≤ χ(vk+1, µ
B

k) for all k, it follows that

20

{
χfeas(vk+1)

}
k∈K → 0, i.e.,

{
c(xk+1)−sk+1

}
k∈K → 0. With the definition s∗ = c(x∗),

it follows that
{
sk+1

}
k∈K → limk∈K c(xk+1) = c(x∗) = s∗, which implies that (x∗, s∗)

is feasible for the general constraints because c(x∗)−s∗ = 0. The remaining feasibility
condition s∗ ≥ 0 is proved componentwise. For any 1 ≤ i ≤ m, define

Q1 =
{
k : [q1(vk+1)]i ≤ [q2(vk+1, µ

B

k)]i
}

and Q2 =
{
k : [q2(vk+1, µ

B

k)]i < [q1(vk+1)]i
}
,

where q1 and q2 are used in the definition of χcomp. If the set K ∩ Q1 is infinite,
then it follows from the inequalities

{
χcomp(vk+1, µ

B

k)
}
k∈K ≤

{
χ(vk+1, µ

B

k)
}
k∈K ≤{

χmax
k

}
k∈K → 0 that s∗i = limK∩Q1

[sk+1]i ≥ 0. Using a similar argument, if the set
K ∩ Q2 is infinite, then s∗i = limK∩Q2

[sk+1]i = limK∩Q2
[sk+1 + µB

ke]i ≥ 0, where

the second equality uses the limit
{
µB

k

}
k∈K∩Q2

→ 0 that follows from the definition
of Q2. Combining these two cases implies that s∗i ≥ 0, as claimed. It follows that the
limit point (x∗, s∗) is feasible.

It remains to show that (x∗, s∗) is a CAKKT point. Let

[s̄k+1]i =

{
[sk+1]i if k ∈ Q1;

[sk+1 + µB

ke]i if k ∈ Q2,

and

[w̄k+1]i =

{
max

{
[wk+1]i, 0

}
if k ∈ Q1;

[wk+1 + µB

ke]i if k ∈ Q2,

for every 1 ≤ i ≤ m, and consider the sequence (xk+1, s̄k+1, yk+1, w̄k+1)k∈K as a
candidate for the sequence used in Definition 5.1 to verify that (x∗, s∗) is a CAKKT

point. If O ∩ Q2 is finite, then it follows from the definition of s̄k+1 and the limit{
sk+1

}
k∈K → s∗ that

{
[s̄k+1]i

}
k∈K → s∗i ; also,

{
χcomp(vk+1, µ

B

k)
}
k∈K → 0 implies

that lim infk∈K[wk+1]i ≥ 0, therefore
{
[w̄k+1−wk+1]i

}
k∈K → 0. On the other hand,

if O∩Q2 is infinite, then the definitions of Q2 and χcomp(vk+1, µ
B

k), together with the

limit
{
χcomp(vk+1, µ

B

k)
}
k∈K → 0 imply that

{
µB

k

}
→ 0, giving

{
[s̄k+1]i

}
k∈K → s∗i

and
{
[w̄k+1 − wk+1]i

}
k∈K → 0. As the choice of i was arbitrary, these cases taken

together imply that
{
s̄k+1

}
k∈K → s∗ and

{
w̄k+1 − wk+1

}
k∈K → 0.

The next step is to show that
{
(xk+1, s̄k+1, yk+1, w̄k+1)

}
k∈K satisfies the con-

ditions required by Definition 5.1. It follows from the limit
{
χ(vk+1, µ

B

k)
}
k∈K → 0

established above that
{
χstny(vk+1) + χcomp(vk+1, µ

B

k)
}
k∈K ≤

{
χ(vk+1, µ

B

k)
}
k∈K →

0. This, together with the limit
{
w̄k+1 − wk+1

}
k∈K → 0, implies that

{
∇f(xk+1) −

J(xk+1)
Tyk+1

}
k∈K → 0 and

{
yk+1 − wk+1

}
k∈K → 0, which establishes that con-

ditions (30) and (31) hold. The nonnegativity of w̄k+1 for all k is obvious from

its definition, which implies that (32) is satisfied for
{
w̄k

}
k∈K. Finally, it must be

shown that (33) holds, i.e., that
{
w̄k+1 · s̄k+1

}
k∈K → 0. Consider the ith com-

ponents of s̄k and w̄k. If the set K ∩ Q1 is infinite, then the definitions of s̄k+1,
q1(vk+1) and χcomp(vk+1, µ

B

k), together with the limit
{
χcomp(vk+1, µ

B

k)
}
k∈K →

0, imply that
{
[w̄k+1 · s̄k+1]i

}
K∩Q1 → 0. Similarly, if the set K ∩ Q2 is infi-

nite, then the definitions of s̄k+1, q2(vk+1, µ
B

k) and χcomp(vk+1, µ
B

k), together with

21

the limits
{
χcomp(vk+1, µ

B

k)
}
k∈K → 0 and

{
w̄k+1 − wk+1

}
k∈K → 0, imply that{

[w̄k+1 · s̄k+1]i
}
k∈K∩Q2 → 0. Thus, these two cases lead to the conclusion that{

w̄k+1 · s̄k+1

}
k∈K → 0, which implies that condition (33) is satisfied. This completes

the proof that (x∗, s∗) is a CAKKT point.

In the complementary case where |O| < ∞, it will be shown that every limit
point of the iteration subsequence

{
(xk+1, sk+1)

}
k∈M is infeasible with respect to

the constraints c(x)− s = 0 but solves the least-infeasibility problem

minimize
x,s

1
2∥c(x)− s∥

2
2 subject to s ≥ 0. (34)

The first-order KKT conditions for problem (34) are

J(x∗)T
(
c(x∗)− s∗

)
= 0, s∗ ≥ 0, (35a)

s∗ ·
(
c(x∗)− s∗

)
= 0, c(x∗)− s∗ ≤ 0. (35b)

These conditions define an infeasible stationary point.
Definition 5.2 (Infeasible stationary point). The pair (x∗, s∗) is an infeasible sta-
tionary point if c(x∗) − s∗ ̸= 0 and (x∗, s∗) satisfies the optimality conditions
(35).
Lemma 5.2. If |O| <∞, then |M| =∞.

Proof. The proof is by contradiction. Suppose that |M| <∞, in which case |O∪M| <
∞. It follows from the definition of Algorithm 2 that k ∈ F for all k sufficiently large,
i.e., there must exist an iteration index kF such that

k ∈ F , yE

k = yE , and (τk, w
E

k , µ
P

k, µ
B

k) = (τ, wE , µP , µB) > 0 (36)

for all k ≥ kF . The updating rule for
{
µL

k

}
implies that µL

k will be fixed at some
µL ≥ µP , and µF

k is then fixed at the value µL for all k sufficiently large. It follows from
Theorem 4.1 that there exists a subsequence of iterates S such that

lim
k→S
∥∇M(vk)∥ = 0.

Then Lemma 4.2(i) and Lemma 4.2(ii) can be applied to show that (25) is satisfied
for all k ∈ S. This would mean, in view of Step 13 of Algorithm 2, that S ∈ M with
|S| =∞, which contradicts (36) because F ∩M = ∅.

For the next lemma, we introduce the quantities

πY

k+1 = yE

k −
1

µP

k

(
c(xk+1)− sk+1

)
and πW

k+1 = µB

k(Sk+1 + µB

kI)
−1(wE

k − sk+1 + sEk),

with Sk+1 = diag(sk+1) associated with the gradient of the merit function in (7).

22

Lemma 5.3. If |M| =∞ then

lim
k∈M

∥πY

k+1 − yk+1∥ = 0.

Moreover, if there exists a subsequence of iterates K ⊆M such that limk∈K sk = s∗ ≥
0, then

lim
k∈K

∥πW

k+1 − wk+1∥ = lim
k∈K

∥πY

k+1 − πW

k+1∥ = lim
k∈K

∥yk+1 − wk+1∥ = 0.

Proof. It follows from (7) and (25c) that

∥πY

k+1 − yk+1∥ ≤ τk. (37)

As |M| = ∞ by assumption, Step 14 of Algorithm 2 implies that limk→∞ τk = 0.
Combining this with (37) establishes the first limit in the result.

Furthermore, if there exists a subsequence K ⊆M such that limk∈K sk = s∗ ≥ 0,
then the updating rule of Algorithm 2 for sEk implies that limk∈K (sEk − sk) = 0. The
limit limk→∞ τk = 0 may then be combined with (7), (25b) and (25c) to show that

lim
k∈K

∥πW

k+1 − wk+1∥ = 0 and lim
k∈K

∥πY

k+1 − πW

k+1∥ = 0. (38)

Finally, as limk→∞ τk = 0, it follows from the bound (37) and limits (38) that

lim
k∈K

∥yk+1 − wk+1∥ = lim
k∈K

∥(yk+1 − πY

k+1) + (πY

k+1 − πW

k+1) + (πW

k+1 − wk+1)∥ = 0.

This establishes the last of the four limits.

Lemma 5.4. If |O| < ∞, then every limit point (x∗, s∗) of the iterate subsequence{
(xk+1, sk+1)

}
k∈M satisfies c(x∗)− s∗ ̸= 0.

Proof. The proof is similar to the proof of Lemma 4.7 in [2] but with some modified
technical details.

Let (x∗, s∗) be a limit point of (the necessarily infinite) sequence M, i.e., there
exists a subsequence K ⊆M such that limk∈K (xk+1, sk+1) = (x∗, s∗). For a proof by
contradiction, assume that c(x∗)− s∗ = 0, which implies that

lim
k∈K

∥c(xk+1)− sk+1∥ = 0. (39)

First, we show that s∗ ≥ 0, which will imply that (x∗, s∗) is feasible because of the
assumption that c(x∗)− s∗ = 0. The line search in Algorithm 1 gives sk+1 + µB

ke > 0
for all k. If limk→∞ µB

k = 0, then s∗ = limk∈K sk+1 ≥ − limk∈K µ
B

ke = 0. On the other
hand, if limk→∞ µB

k ̸= 0, then Step 19 of Algorithm 2 is executed a finite number of
times, µB

k = µB > 0 and (28) holds for all k ∈M sufficiently large. A combination of the

23

assumption that |O| <∞, the result of Lemma 5.2, and the updates of Algorithm 2,
establishes that limk→∞ τk = 0 and

χmax
k = χmax > 0 for all sufficiently large k ∈ K. (40)

Taking limits over k ∈M in (28) and using limk→∞ τk = 0 gives s∗ ≥ 0.
Using |O| < ∞ together with Lemma 5.3, the fact that limk∈K sk = s∗ ≥ 0 with

K ⊆M, and Step 16 of the line search of Algorithm 1 gives

lim
k∈K

∥yk+1 − wk+1∥ = 0, and wk+1 + µB

k+1 > 0 for all k ≥ 0. (41)

Next, it can be observed from the definitions of πY

k+1 and ∇xM that

∇f(xk+1)− J(xk+1)
Tyk+1 = ∇f(xk+1)− J(xk+1)

T(2πY

k+1 + yk+1 − 2πY

k+1)

= ∇f(xk+1)− J(xk+1)
T
(
2πY

k+1 − yk+1

)
− 2J(xk+1)

T(yk+1 − πY

k+1)

= ∇xM(vk+1 ; y
E

k , w
E

k , µ
P

k, µ
B

k)− 2J(xk+1)
T(yk+1 − πY

k+1),

which combined with
{
xk+1

}
k∈K → x∗, limk→∞ τk = 0, (25a), and Lemma 5.3 gives

lim
k∈K

{
∇f(xk+1)− J(xk+1)

Tyk+1

}
= 0. (42)

The proof that limk∈K χcomp(vk+1, µ
B

k) = 0 involves two cases.

Case 1: limk→∞ µB

k ̸= 0. In this case µB

k = µB > 0 for all sufficiently large k. Combining
this with |M| =∞ and the update to µB

k in Step 19 of Algorithm 2, it must be that (28)
holds for all sufficiently large k ∈ K, i.e., that χcomp(vk+1, µ

B

k) ≤ τk for all sufficiently
large k ∈ K. As limk→∞ τk = 0, it must hold that limk∈K χcomp(vk+1, µ

B

k) = 0.

Case 2: limk→∞ µB

k = 0. Lemma 5.3 implies that limk∈K (πW

k+1 − wk+1) = 0. The

sequence
{
Sk+1 + µB

kI
}
k∈K is bounded because

{
µB

k

}
is positive and monotonically

decreasing and limk∈K sk+1 = s∗, which means by the definition of πW

k+1 and the
updating rule for sEk+1 in (26),

0 = lim
k∈K

(Sk+1 + µB

kI)(π
W

k+1 − wk+1) = lim
k∈K

(
µB

kw
E

k − (Sk+1 + µB

kI)wk+1

)
. (43)

Moreover, as |O| < ∞ and wk > 0 for all k by construction, the updating strategy
for wE

k in Algorithm 2 guarantees that
{
wE

k

}
is bounded over all k (see (26)). It then

follows from (43), the uniform boundedness of
{
wE

k

}
, and limk→∞ µB

k = 0 that

0 = lim
k∈K

(
[sk+1]i + µB

k

)
[wk+1]i = lim

k∈K

(
[sk+1]i + µB

k

)
([wk+1]i + µB

k). (44)

There are two subcases.

Subcase 2a: s∗i > 0 for some i. As limk∈K[sk+1]i = s∗i > 0 and limk→∞ µB

k = 0,
it follows from (44) that limk∈K[wk+1]i = 0. Combining these limits allows us to
conclude that limk∈K[q1(vk+1)]i = 0, which is the desired result for this case.

24

Subcase 2b: s∗i = 0 for some i. In this case, it follows from the limits limk→∞ µB

k =
0 and (44), wk+1 + µB

k > 0 and the limit limk∈K[sk+1]i = s∗i = 0 that
limk∈K[q2(vk+1, µ

B

k)]i = 0, which is the desired result for this case.

As one of the two subcases above must occur for each component i, it follows that

lim
k∈K

χcomp(vk+1, µ
B

k) = 0,

which completes the proof for Case 2.

Under the assumption c(x∗) − s∗ = 0 it has been shown that (39), (41), (42),
and the limit limk∈K χcomp(vk+1, µ

B

k) = 0 hold. Collectively, these results imply that
limk∈K χ(vk+1, µ

B

k) = 0. This limit, together with the inequality (40) and the condition
checked in Step 10 of Algorithm 2, gives k ∈ O for all k ∈ K ⊆ M sufficiently large.
This is a contradiction because O ∩M = ∅, which establishes the desired result that
c(x∗)− s∗ ̸= 0.

Lemma 5.5. If |O| <∞, then there exists at least one limit point (x∗, s∗) of the infi-
nite sequence

{
(xk+1, sk+1)

}
k∈M, and any such limit point is an infeasible stationary

point as given by Definition 5.2.

Proof. The proof is similar to the proof of Lemma 4.8 in [2] but with some modified
technical details.

If |O| < ∞ then Lemma 5.2 implies that |M| = ∞. Moreover, the updating
strategy of Algorithm 2 forces

{
yE

k

}
and

{
wE

k

}
to be bounded (see (26)). The next

step is to show that
{
sk+1

}
k∈M is bounded.

For a proof by contradiction, suppose that
{
sk+1

}
k∈M is unbounded. It

follows that there must be a component i and a subsequence K ⊆ M for
which

{
[sk+1]i

}
k∈K → ∞. When Assumption 4.3 and Assumption 4.1 hold,{

c(xk+1)
}
k∈K,

{
∇f(xk+1)

}
k∈K and

{
J(xk+1)

}
k∈K must be bounded. This implies

that
{
[πY

k+1]i
}
k∈K is unbounded. On the other hand, by (7), (25a), together with

the limit limk→∞ τk = 0 and Lemma 5.3,

0 = lim
k∈M

∥∇xM(vk+1 ; y
E

k , w
E

k , µ
P

k, µ
B

k)∥

= lim
k∈M

∥∇f(xk+1)− J(xk+1)
TπY

k+1 − J(xk+1)
T(πY

k+1 − yk+1)∥

= lim
k∈M

∥∇f(xk+1)− J(xk+1)
TπY

k+1∥ = 0,

which contradicts the unboundedness of
{
[πY

k+1]i
}
k∈K . Thus, it must be the case

that
{
sk+1

}
k∈M is bounded.

The next part of the proof is to establish that s∗ ≥ 0, which is the inequality
condition of (35a). The test in Step 16 of Algorithm 2 (i.e., testing whether (28)
holds) is checked infinitely often because |M| = ∞. If (28) is satisfied finitely many
times, then the update µB

k+1 = 1
2µ

B

k forces
{
µB

k+1

}
→ 0. Combining this with sk+1 +

µB

ke > 0 shows that s∗ ≥ 0, as claimed. On the other hand, if (28) is satisfied for
all sufficiently large k ∈ M, then µB

k+1 = µB > 0 for all sufficiently large k and

25

limk∈K χcomp(vk+1, µ
B

k) = 0 because
{
τk

}
→ 0. It follows from these two facts that

s∗ ≥ 0, as claimed.
The boundedness of

{
sk+1

}
k∈M and Assumption 4.3 ensure the existence of at

least one limit point of
{
(xk+1, sk+1)

}
k∈M. If (x∗, s∗) is any such limit point, there

must be a subsequence K ⊆ M such that
{
(xk+1, sk+1)

}
k∈K → (x∗, s∗). It remains

to show that (x∗, s∗) is an infeasible stationary point (i.e., that (x∗, s∗) satisfies the
optimality conditions (35a)–(35b)).

As |O| <∞, it follows from Lemma 5.4 that c(x∗)− s∗ ̸= 0. Combining this with{
τk

}
→ 0, which holds because K ⊆M is infinite (on such iterations τk+1 ← 1

2τk), it
follows that the condition (27) of Step 15 of Algorithm 2 will not hold for all sufficiently
large k ∈ K ⊆M. The subsequent updates ensure that

{
µP

k

}
→ 0, hence

{
µF

k

}
→ 0

by the updating rule for
{
µL

k

}
, which, combined with (17), the boundedness of

{
yE

k

}
,

and Lemma 5.3, gives

{c(xk+1)− sk+1}k∈K ≤
{
µF

k

(
yE

k + 1
2 (wk+1 − yk+1) + µB

k

)}
k∈K → 0.

This implies that c(x∗)− s∗ ≤ 0 and the second condition in (35b) holds.
The rest of the proof is the same as in the proof of Lemma 4.8 in [2].

Theorem 5.2. Under Assumptions 4.1–4.3, one of the following occurs:
(i) |O| = ∞, limit points of

{
(xk+1, sk+1)

}
k∈O exist, and every such limit point

(x∗, s∗) is a CAKKT point for problem (NIPs). If, in addition, CAKKT-regularity
holds at (x∗, s∗), then (x∗, s∗) is a KKT point for problem (NIPs).

(ii) |O| < ∞, |M| = ∞, limit points of
{
(xk+1, sk+1)

}
k∈M exist, and every such

limit point (x∗, s∗) is an infeasible stationary point.

Proof. Part (i) follows from Lemma 5.1 and Theorem 5.1. Part (ii) follows from
Lemma 5.5. Also, the exclusive conditions on |O| imply that only one of these two
cases must occur.

6 Numerical Experiments

Numerical results were obtained for Algorithm pdProj, which is a Matlab imple-
mentation of the projected-search primal-dual interior-point method proposed in
Sections 3–5. For comparison purposes, results are also given for two primal-dual
interior-point methods that do not use projection. The first is Algorithm pdbAll,
which is a method that shifts both the primal and dual variables. The second is Algo-
rithm pdb, which is an extension of the primal-shifted method of Gill, Kungurtsev and
Robinson [2].

Algorithms pdb and pdbAll are implemented with a flexible Armijo line search in
which the step length is chosen to satisfy the conditions (16a)–(16d) with ψk(α ;µ) and
ϕk(α ;µ) given byM

(
vk+α∆vk ;µ

)
and ∥F

(
vk+α∆vk ;µ

)
∥. Exact second derivatives

were used for all the runs.

26

6.1 Implementation details

The iterates were terminated at the first point that satisfied the conditions eP (x, s) <
τP and eD(x, s, y, w) < τD, where eP and eD are the primal and dual infeasibilities

eP (x, s) =

∥∥∥∥(min
{
0, s

}
∥c(x)− s∥∞/max

{
1, ∥s∥∞

})∥∥∥∥
∞
, (45a)

and

eD(x, s, y, w) =

∥∥∥∥∥∥
∥∇f(x)− J(x)Ty∥∞/σ∥w − y∥∞

w · min
{
1, s

}
∥∥∥∥∥∥

∞

, (45b)

with σ = max
{
1, ∥∇f(x)∥, max

{
1, ∥y∥

}
∥J(x)∥∞

}
. These quantities provide a mea-

sure of the scaled distance to the primal and dual optimality conditions (1). Similarly,
the iterates were terminated at an infeasible stationary point (x, s) if eP (x, s) > τP ,
min

{
0, s} ≤ τP and eI(x, s) ≤ τinf , where

eI(x, s) =
∥∥J(x)T(c(x)− s) · min

{
1, s

}∥∥
∞ /σ. (46)

All three Matlab implementations were initialized with identical control param-
eters that were chosen based on the empirical performance on the entire collection of
problems. A summary of the values is given in Table 6.1.

Table 1 Control parameters for Algorithms pdb, pdbAll and pdProj.

Parameter Description Value

smax, ymax, wmax Maximum allowed yE , wE , sE 1.0e+6

µP
0 Initial penalty parameter 1.0e-4

µB
0 Initial barrier parameter 1.0e-4

µL
0 Initial flexible line-search penalty parameter 1.0

τ0 Initial termination tolerance for specifying an M-iterate 0.5
τP Primal feasibility tolerance (45a) 1.0e-4
τD Dual feasibility tolerance (45b) 1.0e-4
τinf Infeasible stationary point tolerance (46) 1.0e-4
χmax
0 Initial target for an O-iteration 1.0e+3

ηA Line-search Armijo sufficient reduction 1.0e-2
ηF Line-search sufficient reduction for ∥F∥ 0.9
γA Line-search factor for reducing an Armijo step 0.5
funb Unbounded objective -1.0e+12
Mmax Constants in line-search tolerance (16a) and (16b) 1.0e+12
Fmax Constant in the line-search tolerance (16c) 1.0e+8
σ Bound perturbation in the definition of Ωk (15) 0.8
kmax Iteration limit 500

The results were obtained for optimization problems from the CUTEst test collec-
tion (see Bongartz et al. [24] and Gould, Orban and Toint [25]). Results were obtained
for five subsets of problems from the CUTEst test collection. The subsets consisted
of all 126 problems formulated by Hock and Schittkowski ([26]) (problems HS); 139
problems with a general nonlinear objective and upper and lower bounds on the vari-
ables (problems BC); 212 problems with a general nonlinear objective, general linear

27

constraints and bounds on the variables (problems LC); 648 problems with a gen-
eral nonlinear objective, general linear and nonlinear constraints and bounds on the
variables (problems NC); and 141 problems with a quadratic objective, general linear
constraints and bounds on the variables (problems QP). The NC problems include 264
feasibility problems, i.e., problems with nonlinear constraints but a constant objective
function. In an attempt to create a unique solution for comparison purposes, all the
feasibility problems were modified to find the feasible point of least Euclidean length.
For example, in terms of the problem format (NIPs) the constant objective function
was replaced by 1

2∥x∥
2.

The BC, LC, NC and QP subsets were selected based on the number of variables and
general constraints. In particular, a problem was chosen if the associated KKT system
was of the order of 2000 or less. The same criterion was used to set the dimension of
those problems for which the problem size can be specified. The only eligible problem
omitted from the test-set was lhaifam, which generated a floating-point exception
when computed at the initial point. A complete list of the problems tested, together
with additional details of the number of function evaluations and iterations needed
for each problem is given by Gill and Zhang [27].

Each CUTEst problem may be written in the general form (NIP). In this format,
a fixed variable or an equality constraint has the same value for its upper and lower
bounds. A variable or constraint with no upper or lower limit is indicated by a bound
of ±1020. The approximate Newton equations for problem (NIP) are derived by Gill
and Zhang [1]. As is the case for problem (NIPs) the principal work at each iteration is
the solution of a reduced (n+m)× (n+m) KKT system analogous to (14). Each KKT

matrix was factored using the Matlab built-in command LDL, which uses the routine
MA57 [28]. If the inertia of this matrix was incorrect, i.e., the matrix was singular or
had more than m negative eigenvalues, the Hessian of the Lagrangian H was modified
using the method of Wächter and Biegler [29, Algorithm IC, p. 36], which factors the
KKT matrix with δIn added to H. At any given iteration the value of δ is increased
from zero if necessary until the inertia of the KKT matrix is correct.

The initial primal-dual estimate (x0, y0) was based on the default initial values
supplied by CUTEst. If necessary, x0 was projected onto the set

{
x : ℓX ≤ x ≤ uX

}
to ensure feasibility with respect to the bounds on x. An algorithm was considered to
have converged if the iterates were terminated at a point that satisfied the conditions
(45a)–(45b) and (46) defined in terms of the constraints associated with problem
(NIP).

We note that an interior-point method that does not use shifts would require
a strictly interior starting point, which implies that the choice of default CUTEst
starting point would not be possible in this situation. Moreover, this choice of starting
point illustrates the potential benefits of using shifts for performing a warm-start.
The CUTEst QP problems ferrisdc and linspanh both have a solution at the initial
point. All three algorithms pdb, pdbAll and pdProj recognize the initial point as being
optimal and terminate immediately.

28

6.2 Performance profiles

The runs were done using Matlab version R2022b on an iMac Pro with a 3.0 GHz
Intel Xeon W processor and 128 GB of 800 MHz DDR4 RAM running macOS, version
12.6.8 (64 bit). The overall cpu-time required by a constrained optimization method is
dominated by the time needed to solve the KKT equations and the time to evaluate the
problem functions (i.e., the objective and constraint functions and their derivatives).
Given the difficulty of accurately measuring cpu time in a multiprocessor and multiuser
computing environment, function and iteration performance profiles provide a clear,
accurate and concise way to display the relative efficiencies of methods. Performance
profiles are particularly effective when comparing methods on problems for which the
cpu time is negligible.

Performance profiles were proposed by Dolan and Moré [30]. Let P denote a set
of problems used for a given numerical experiment. For each method s we define the
function πs : [0, rM] 7→ R+ such that

πs(τ) =
1

np

∣∣{ p ∈ P : log2(rp,s) ≤ τ
}∣∣ ,

where np is the number of problems in the test set and rp,s denotes the ratio of
the number of function evaluations needed to solve problem p with method s and
the least number of function evaluations needed to solve problem p. If method s
failed for problem p, then rp,s is set to be twice the maximal ratio. The parameter
rM is the maximum value of log2(rp,s). Figures 1–5 give the function-evaluation and
iteration performance profiles for the HS, BC, LC, NC and QP test-sets respectively.
The profiles show the benefits of shifting both primal and dual variables, as well
as using a projected-search method based on the primal-dual search direction. The
proposed method pdProj outperforms the other two solvers in terms of both efficiency
and robustness. In particular, the number of times that the search direction must
be computed is substantially reduced. This reduction is most pronounced when the
problem is a quadratic program.

7 Conclusions

A new projected-search primal-dual interior-point method has been formulated and
analyzed for constrained optimization problems. The method is based on combining
a new primal-dual interior-point method with a projected-search method for bound-
constrained optimization that uses a flexible non-monotone quasi-Armijo line search.
The projected-search method projects the underlying search direction onto a superset
of the feasible region defined by perturbing the constraint bounds. With this approach
the direction of the search path may change multiple times along the boundary of
the perturbed feasible region at the cost of computing a single direction. The direc-
tion for the projected search is an approximate Newton direction associated with
minimizing a shifted primal-dual penalty-barrier function. This function involves a
primal-dual shifted penalty term for the equality constraints in conjunction with an
analogous primal-dual shifted barrier term for enforcing the inequality constraints

29

0 0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t

Performance Profiles (funs)

pdb

pdbAll

pdProj

τ
0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t

Performance Profiles (itns)

pdb

pdbAll

pdProj

τ

Fig. 1 Performance profiles for the primal-dual interior-point algorithms pdb, pdbAll and pdProj applied
to all 126 Hock-Schittkowski (HS) problems from the CUTEst test set. The left figure gives the profiles for
the number of function evaluations. The right figure gives the profiles for the number of iterations.

and the nonnegativity constraints on their associated multipliers. It is shown that
a specific approximate Newton method for the unconstrained minimization of the
penalty-barrier function generates directions that are identical to those associated
with a variant of the conventional path-following method. In this context the penalty-
barrier function is used as a merit function for assessing points generated by Newton’s
method for a zero of the path-following equations. Numerical results from a large
number of test problems from the CUTEst test collection indicate that the use of a
projected search can significantly reduce the number of iterations, thereby reducing
the number of times that a search direction must be computed. In particular, the
numerical results indicates that the method is particularly well-suited to solving the
quadratic programming subproblem in an SQP method. In this context the work per
iteration is dominated by the cost of solving a large symmetric indefinite system of
equations for the search direction. Moreover, the shifts on the primal and dual vari-
ables allow the method to be safely “warm started” from the solution of the preceding
QP subproblem.

Future work will consider the implementation of the method within an SQP solver,
the integration of the method with iterative KKT solvers and the extension of the
method to a stochastic setting.

Acknowledgments

The authors would like to thank the referees for constructive comments that
significantly improved the presentation.

30

0 0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
%

p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t

Performance Profiles (funs)

pdb

pdbAll

pdProj

τ
0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t

Performance Profiles (itns)

pdb

pdbAll

pdProj

τ

Fig. 2 Performance profiles for the primal-dual interior-point algorithms pdb, pdbAll and pdProj applied
to 139 bound-constrained (BC) problems from the CUTEst test set. The left figure gives the profiles for
the number of function evaluations. The right figure gives the profiles for the number of iterations.

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t

Performance Profiles (funs)

pdb

pdbAll

pdProj

τ
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t

Performance Profiles (itns)

pdb

pdbAll

pdProj

τ

Fig. 3 Performance profiles for the primal-dual interior-point algorithms pdb, pdbAll and pdProj applied
to 212 linearly constrained (LC) problems from the CUTEst test set. The left figure gives the profiles for
the number of function evaluations. The right figure gives the profiles for the number of iterations.

31

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t

Performance Profiles (funs)

pdb

pdbAll

pdProj

τ
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t

Performance Profiles (itns)

pdb

pdbAll

pdProj

τ

Fig. 4 Performance profiles for the primal-dual interior-point algorithms pdb, pdbAll and pdProj applied
to 648 nonlinearly constrained (NC) problems from the CUTEst test set. The left figure gives the profiles
for the number of function evaluations. The right figure gives the profiles for the number of iterations.

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t

Performance Profiles (funs)

pdb

pdbAll

pdProj

τ
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t

Performance Profiles (itns)

pdb

pdbAll

pdProj

τ

Fig. 5 Performance profiles for the primal-dual interior-point algorithms pdb, pdbAll and pdProj applied
to 141 quadratic programming (QP) problems from the CUTEst test set. The left figure gives the profiles
for the number of function evaluations. The right figure gives the profiles for the number of iterations.

32

Declarations

Funding Research supported in part by National Science Foundation grants DMS-
0915220 and DMS-1318480. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the funding agencies.
Competing interests The authors have no competing interests to declare that are
relevant to the content of this article.
Data availability The data that support the findings of this study are available
from the corresponding author upon request.

References

[1] Gill, P.E., Zhang, M.: Equations for a projected-search path-following method for
nonlinear optimization. Center for Computational Mathematics Report CCoM
22-02, Center for Computational Mathematics, University of California, San
Diego, La Jolla, CA (2022)

[2] Gill, P.E., Kungurtsev, V., Robinson, D.P.: A shifted primal-dual penalty-barrier
method for nonlinear optimization. SIAM J. Optim. 30(2), 1067–1093 (2020)

[3] Andreani, R., Mart́ınez, J.M., Svaiter, B.F.: A new sequential optimality condi-
tion for constrained optimization and algorithmic consequences. SIAM J. Optim.
20(6), 3533–3554 (2010)

[4] Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In:
Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, London and New
York (1969)

[5] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4,
303–320 (1969)

[6] Gill, P.E., Saunders, M.A., Wong, E.: On the performance of SQP methods for
nonlinear programming. In: Defourny, B., Terlaky, T. (eds.) Modeling and Opti-
mization: Theory and Applications. Springer Proceedings in Mathematics and
Statistics, vol. 147, pp. 95–123 (2015)

[7] Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-
scale constrained optimization. SIAM Rev. 47, 99–131 (2005)

[8] Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Uncon-
strained Minimization Techniques, p. 210. John Wiley and Sons, Inc., New York
(1968)

[9] Frisch, K.R.: The logarithmic potential method of convex programming. Memo-
randum of May 13, University Institute of Economics, Oslo, Norway (1955)

[10] Fiacco, A.V.: Barrier methods for nonlinear programming. In: Holzman, A. (ed.)

33

Operations Research Support Methodology, pp. 377–440. Marcel Dekker, New
York (1979)

[11] Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large-scale
nonlinear programming. SIAM J. Optim. 9(4), 877–900 (1999)

[12] Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming:
motivation and global convergence. SIAM J. Optim. 16(1), 1–31 (2005)

[13] Forsgren, A., Gill, P.E.: Primal-dual interior methods for nonconvex nonlinear
programming. SIAM J. Optim. 8, 1132–1152 (1998)

[14] Gertz, E.M., Gill, P.E.: A primal-dual trust-region algorithm for nonlinear
programming. Math. Program., Ser. B 100, 49–94 (2004)

[15] Forsgren, A., Gill, P.E., Shinnerl, J.R.: Stability of symmetric ill-conditioned sys-
tems arising in interior methods for constrained optimization. SIAM J. Matrix
Anal. Appl. 17, 187–211 (1996)

[16] Ponceleón, D.B.: Barrier methods for large-scale quadratic programming. Report
SOL 91-2, Department of Operations Research, Stanford University, Stanford,
CA (1991). PhD thesis

[17] Wright, S.J.: Stability of linear equations solvers in interior-point methods. SIAM
J. Matrix Anal. Appl. 16, 1287–1307 (1995)

[18] Wright, S.J.: Stability of augmented system factorizations in interior point
methods. SIAM J. Matrix Anal. Appl. 18, 191–222 (1997)

[19] Ferry, M.W., Gill, P.E., Wong, E., Zhang, M.: A class of projected-search methods
for bound-constrained optimization. Optimization Methods and Software 0(0),
1–30 (2023) https://doi.org/10.1080/10556788.2023.2241769

[20] Zhang, M.: Projected-search methods for constrained optimization. PhD thesis,
Department of Mathematics, University of California San Diego, La Jolla, CA
(2023)

[21] Curtis, F.E., Nocedal, J.: Flexible penalty functions for nonlinear constrained
optimization. IMA J. Numer. Anal. 28(4), 749–769 (2008)

[22] Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-
scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)

[23] Andreani, R., Mart́ınez, J.M., Ramos, A., Silva, P.J.S.: Strict constraint qualifi-
cations and sequential optimality conditions for constrained optimization. Math.
Oper. Res. 43(3), 693–717 (2018)

[24] Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, Ph.L.: CUTE: Constrained and

34

https://doi.org/10.1080/10556788.2023.2241769

unconstrained testing environment. ACM Trans. Math. Software 21(1), 123–160
(1995)

[25] Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr and SifDec: A constrained and
unconstrained testing environment, revisited. ACM Trans. Math. Software 29(4),
373–394 (2003)

[26] Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes.
Lecture Notes in Econom. Math. Syst. 187. Springer, Berlin (1981)

[27] Gill, P.E., Zhang, M.: Numerical results for a projected-search interior-point
method. Center for Computational Mathematics Report CCoM 22-03, Center for
Computational Mathematics, University of California, San Diego, La Jolla, CA
(2022)

[28] Duff, I.S.: MA57—a code for the solution of sparse symmetric definite and
indefinite systems. ACM Trans. Math. Software 30(2), 118–144 (2004)

[29] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106(1,
Ser. A), 25–57 (2006)

[30] Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91(2, Ser. A), 201–213 (2002)

35

	Introduction
	Notation and terminology

	Background
	An All-Shifted Primal-Dual Penalty-Barrier Function
	Minimizing the Merit Function using Projected Search
	The algorithm
	Convergence analysis

	Solving the Nonlinear Optimization Problem
	The algorithm
	Convergence analysis

	Numerical Experiments
	Implementation details
	Performance profiles

	Conclusions

