
REDUCED-HESSIAN QUASI-NEWTON METHODS FOR
UNCONSTRAINED OPTIMIZATION∗

PHILIP E. GILL† AND MICHAEL W. LEONARD‡

SIAM J. OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 209–237

Abstract. Quasi-Newton methods are reliable and efficient on a wide range of problems, but
they can require many iterations if the problem is ill-conditioned or if a poor initial estimate of the
Hessian is used. In this paper, we discuss methods designed to be more efficient in these situations.
All the methods to be considered exploit the fact that quasi-Newton methods accumulate approx-
imate second-derivative information in a sequence of expanding subspaces. Associated with each
of these subspaces is a certain reduced approximate Hessian that provides a complete but compact
representation of the second derivative information approximated up to that point. Algorithms that
compute an explicit reduced-Hessian approximation have two important advantages over conven-
tional quasi-Newton methods. First, the amount of computation for each iteration is significantly
less during the early stages. This advantage is increased by forcing the iterates to linger on a manifold
whose dimension can be significantly smaller than the subspace in which curvature has been accumu-
lated. Second, approximate curvature along directions that lie off the manifold can be reinitialized as
the iterations proceed, thereby reducing the influence of a poor initial estimate of the Hessian. These
advantages are illustrated by extensive numerical results from problems in the CUTE test set. Our
experiments provide strong evidence that reduced-Hessian quasi-Newton methods are more efficient
and robust than conventional BFGS methods and some recently proposed extensions.

Key words. unconstrained optimization, quasi-Newton methods, BFGS method, conjugate-
direction methods

AMS subject classifications. 65K05, 90C30

PII. S1052623400307950

1. Introduction. Quasi-Newton methods are arguably the most effective meth-
ods for finding a minimizer of a smooth nonlinear function f : Rn → R when sec-
ond derivatives are either unavailable or too expensive to calculate. Quasi-Newton
methods build up second-derivative information by estimating the curvature along a
sequence of search directions. Each curvature estimate is installed in an approximate
Hessian by applying a rank-one or rank-two update. One of the most successful up-
dates is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula, which is a member
of the wider Broyden class of rank-two updates (see section 2 for details).

Despite the success of these methods on a wide range of problems, it is well
known that conventional quasi-Newton methods can require a disproportionately large
number of iterations and function evaluations on some problems. This inefficiency
may be caused by a poor choice of initial approximate Hessian or may result from
the search direction’s being poorly defined when the Hessian is ill-conditioned. This
paper is concerned with the formulation of methods that are less susceptible to these
difficulties.

All the methods to be discussed are based on exploiting an important property
of quasi-Newton methods in which second-derivative information is accumulated in a

∗Received by the editors January 19, 2000; accepted for publication (in revised form) March 5,
2001; published electronically October 18, 2001.

http://www.siam.org/journals/siopt/12-1/30795.html
†Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112

(pgill@ucsd.edu). This author’s research was supported by National Science Foundation grant DMI-
9424639 and Office of Naval Research grant N00014-96-1-0274.

‡Department of Mathematics, University of California, Los Angeles, CA 90095-1555 (na.mleonard
@na-net.ornl.gov). This author’s research was supported by National Science Foundation grant DMI-
9424639.

209

210 PHILIP E. GILL AND MICHAEL W. LEONARD

sequence of expanding subspaces. At the kth iteration (k < n) curvature is known
along vectors that lie in a certain gradient subspace whose dimension is no greater
than k+1. This property is well documented in the context of solving positive-definite
symmetric systems Ax = b. In particular, the iterates lie on an expanding sequence of
manifolds characterized by the Krylov subspace associated with A (see, e.g., Freund,
Golub, and Nachtigal [7] and Kelley [14, p. 12]). These manifolds are identical to
those associated with the BFGS method applied to minimizing the quadratic c −
bTx + 1

2x
TAx. (For further details of the equivalence of quasi-Newton methods and

conjugate-gradient methods, see Nazareth [22].)
In the quasi-Newton context, the availability of an explicit basis for the gradi-

ent subspace makes it possible to represent the approximate curvature in terms of a
reduced approximate Hessian matrix with order at most k + 1. Quasi-Newton algo-
rithms that explicitly calculate a reduced Hessian have been proposed by Fenelon [4]
and Nazareth [21], who also considered modified Newton methods in the same con-
text. Siegel [27] has proposed methods that work with a reduced inverse approximate
Hessian. In practical terms, the reduced-Hessian formulation can require significantly
less work per iteration when k is small relative to n. This property can be exploited
by forcing iterates to linger on a manifold while the objective function is minimized
to greater accuracy. While iterates linger, the search direction is calculated from a
system that is generally smaller than the reduced Hessian. In many practical situ-
ations convergence occurs before the dimension of the lingering subspace reaches n,
resulting in substantial savings in computing time (see section 7).

More recently, Siegel [28] has proposed the conjugate-direction scaling algorithm,
which is a quasi-Newton method based on a conjugate-direction factorization of the
inverse approximate Hessian. Although no explicit reduced Hessian is updated, the
method maintains a basis for the expanding subspaces and allows iterates to linger on
a manifold. The method also has the benefit of finite termination on a quadratic (see
Leonard [16, p. 77]). More importantly, Siegel’s method includes a feature that can
considerably enhance the benefits of lingering. Siegel notes that the search direction
is the sum of two vectors: one with the scale of the estimated derivatives and the
other with the scale of the initial approximate Hessian. Siegel suggests rescaling
the second vector using newly computed approximate curvature. Algorithms that
combine lingering and rescaling have the potential for giving significant improvements
over conventional quasi-Newton methods. Lingering forces the iterates to remain on
a manifold until the curvature has been sufficiently established; rescaling ensures
that the initial curvature in the unexplored manifold is commensurate with curvature
already found.

In this paper we propose several algorithms based on maintaining the triangular
factors of an explicit reduced Hessian. We demonstrate how these factors can be used
to force the iterates to linger while curvature information continues to be accumulated
along directions lying off the manifold. With the BFGS method, it is shown that while
lingering takes place, the new curvature is restricted to an upper-trapezoidal portion
of the factor of the reduced Hessian and the remaining portion retains the diagonal
structure of the initial approximate Hessian. It follows that conjugate-direction scaling
is equivalent to simply reinitializing the diagonal part of the reduced Hessian with
freshly computed curvature information.

Despite the similarities between reduced-Hessian reinitialization and conjugate-
direction scaling, it must be emphasized that these methods are not the same, in the
sense that they involve very different storage and computational overheads. More-

REDUCED-HESSIAN METHODS 211

over, the reduced-Hessian factorization has both practical and theoretical advantages
over Siegel’s conjugate-direction factorization. On the practical side, the early search
directions can be calculated with significantly less work. This can result in a sig-
nificantly faster minimization when the dimension of the manifold grows relatively
slowly, as it does on many problems (see sections 6 and 7). On the theoretical side,
the simple structure exhibited by the reduced-Hessian factor allows the benefits of
reinitialization to be extended to the large-scale case (see Gill and Leonard [9]).

A reduced-Hessian method allows expansion of the manifold on which curvature
information is known. Thus, when implementing software, it is necessary either to
allocate new memory dynamically as the reduced Hessian grows or to reserve sufficient
storage space in advance. In practice, however, the order of the reduced Hessian
often remains much less than n, i.e., the problem is solved without needing room
for an n× n matrix. Notwithstanding this benefit, on very large problems it may be
necessary to explicitly limit the amount of storage used, by placing a limit on the order
of the reduced Hessian. Such limited-memory reduced-Hessian methods discard old
curvature information whenever the addition of new information causes a predefined
storage limit to be exceeded. Methods of this type have been considered by Fenelon [4]
and Siegel [27]. Limited-memory methods directly related to the methods considered
in this paper are discussed by Gill and Leonard [9].

The paper is organized as follows. Section 2 contains a discussion of various
theoretical aspects of reduced-Hessian quasi-Newton methods, concluding with the
statement of Algorithm RH, a reduced-Hessian formulation of a conventional quasi-
Newton method. Algorithm RH is the starting point for the improved algorithms
presented in sections 3 and 4. Section 3 is concerned with the effects of lingering on
the form of the factorization of the reduced Hessian. In section 4, Siegel’s conjugate-
direction scaling algorithm is reformulated as an explicit reduced-Hessian method. In
section 4.1 we present a reduced-Hessian method that combines lingering with reini-
tialization. The convergence properties of this algorithm are discussed in sections 4.2
and 4.3. To simplify the discussion, the algorithms of sections 2–4 are given with the
assumption that all computations are performed in exact arithmetic. The effects of
rounding error are discussed in section 5. Finally, sections 6 and 7 include some nu-
merical results when various reduced-Hessian algorithms are applied to test problems
taken from the CUTE test collection (see Bongartz et al. [1]). Section 6 also includes
comparisons with Siegel’s method and with Lalee and Nocedal’s automatic column-
scaling method [15], which is another extension of the BFGS method. Results from
the package NPSOL [10] are provided to illustrate how the reduced-Hessian approach
compares to a conventional quasi-Newton method. Our experiments demonstrate that
reduced-Hessian methods can require substantially less computer time than these al-
ternatives. Part of the reduction in computer time corresponds to the smaller number
of iterations and function evaluations required when using the reinitialization strat-
egy. However, much of this reduction comes from the fact that the average cost of an
iteration is less than for competing methods.

Unless explicitly indicated otherwise, ‖ · ‖ denotes the vector two-norm or its
subordinate matrix norm. The vector ei is used to denote the ith unit vector of the
appropriate dimension. A floating-point operation, or flop, refers to a calculation of
the form αx+ y, i.e., a multiplication and an addition.

2. Background. Given a twice-continuously differentiable function f : Rn → R
with gradient vector ∇f and Hessian matrix ∇2f , the kth iteration of a quasi-Newton

212 PHILIP E. GILL AND MICHAEL W. LEONARD

method is given by

Hkpk = −∇f(xk), xk+1 = xk + αkpk,(2.1)

where Hk is a symmetric, positive-definite matrix, pk is the search direction, and αk

is a scalar step length. If Hk is interpreted as an approximation to ∇2f(xk), then
xk + pk can be viewed as minimizing a quadratic model of f with Hessian Hk. The
matrix Hk+1 is obtained from Hk by adding a low-rank matrix defined in terms of
δk = xk+1 − xk and γk = gk+1 − gk, where gk = ∇f(xk). Updates from the Broyden
class give a matrix Hk+1 such that

Hk+1 = Hk −
1

δT
kHkδk

Hkδkδ
T
kHk +

1
γT

kδk
γkγ

T
k + φk(δT

kHkδk)wkw
T
k ,(2.2)

where wk = γk/γ
T
kδk − Hkδk/δ

T
kHkδk, and φk is a scalar parameter. It is generally

accepted that the most effective update corresponds to φk = 0, which defines the
well-known BFGS update

Hk+1 = Hk −
1

δT
k Hkδk

Hkδkδ
T
k Hk +

1
γT

k δk
γkγ

T
k .(2.3)

For brevity, the term “Broyden’s method” refers to a method based on iteration
(2.1) when used with an update from the Broyden class. Similarly, the term “BFGS
method” refers to iteration (2.1) with the BFGS update.

The scalar γT
kδk, known as the approximate curvature, is a difference estimate of

the (unknown) curvature δT
k∇2f(xk)δk. Each Broyden update gives an approximate

Hessian satisfying δT
k Hk+1δk = γT

k δk, which implies that the approximate curvature
γT

k δk is installed as the exact curvature of the new quadratic model in the direction δk.
It follows that a positive value for the approximate curvature is a necessary condition
for Hk+1 to be positive definite.

We follow common practice and restrict our attention to Broyden updates with
the property that if Hk is positive definite, then Hk+1 is positive definite if and only
if γT

kδk > 0. This restriction allows Hk+1 to be kept positive definite by using a step
length algorithm that ensures a positive value of the approximate curvature. Practical
step length algorithms also include a criterion for sufficient descent. Two criteria often
used are the Wolfe conditions

f(xk + αkpk) ≤ f(xk) + µαkg
T
kpk and gT

k+1pk ≥ ηgT
kpk,(2.4)

where the constants µ and η are chosen so that 0 ≤ µ ≤ η < 1 and µ < 1
2 .

If n is sufficiently small that an n × n dense matrix can be stored explicitly,
two alternative methods have emerged for implementing quasi-Newton methods. The
first is based on using the upper-triangular matrix Ck such that Hk = CT

k Ck (see Gill
et al. [10]). The second uses a matrix Vk satisfying the conjugate-direction identity
V T

k HkVk = I (see Powell [25], Siegel [28]). Neither of these methods store Hk (or
its inverse) as an explicit matrix. Instead, Ck or Vk is updated directly by exploiting
the fact that every update from the Broyden class defines a rank-one update to Ck

or Vk (see Goldfarb [12] and Dennis and Schnabel [3]). The rank-one update to Ck

generally destroys the upper-triangular form of Ck. However, the updated Ck can be
restored to upper-triangular form in O(n2) operations.

REDUCED-HESSIAN METHODS 213

2.1. Reduced-Hessian quasi-Newton methods. In this section, we review
the formulation of conventional quasi-Newton methods as reduced-Hessian methods.
The next key result is proved by Siegel [27] (see Fletcher and Powell [6], and Fenelon
[4] for similar results in terms of the DFP and BFGS updates). Let Gk denote the
subspace Gk = span{g0, g1, . . . , gk}, and let G⊥k denote the orthogonal complement of
Gk in Rn.

Lemma 2.1. Consider the Broyden method applied to a general nonlinear func-
tion. If H0 = σI (σ > 0), then pk ∈ Gk for all k. Moreover, if z ∈ Gk and w ∈ G⊥k ,
then Hkz ∈ Gk and Hkw = σw.

Let rk denote dim(Gk), and let Bk (B for “basis”) denote an n× rk matrix whose
columns form a basis for Gk. An orthonormal basis matrix Zk can be defined from the
QR decomposition Bk = ZkTk, where Tk is a nonsingular upper-triangular matrix.1

Let the n − rk columns of Wk define an orthonormal basis for G⊥k . If Qk is the
orthogonal matrix Qk =

(
Zk Wk

)
, then the transformation x = QkxQ defines

a transformed approximate Hessian QT
kHkQk and a transformed gradient QT

kgk. If
H0 = σI (σ > 0), it follows from (2.2) and Lemma 2.1 that the transformation
induces a block-diagonal structure, with

QT
kHkQk =

(
ZT

kHkZk 0
0 σIn−rk

)
and QT

kgk =

(
ZT

kgk

0

)
.(2.5)

The positive-definite matrix ZT
kHkZk is known as a reduced approximate Hessian (or

just reduced Hessian). The vector ZT
kgk is known as a reduced gradient.

If we write the equation for the search direction as (QT
kHkQk)QT

k pk = −QT
k gk, it

follows from (2.5) that

pk = Zkqk, where qk satisfies ZT
k HkZkqk = −ZT

kgk.(2.6)

If the Cholesky factorization ZT
k HkZk = RT

kRk is known, qk can be computed from
the forward substitution RT

k dk = −ZT
k gk and back-substitution Rkqk = dk. A benefit

of this approach is that Zk and Rk require less storage than Hk when k � n (see
Gill and Leonard [9]). In addition, the computation of pk when k � n requires less
work than it does for methods that store Ck or Vk. A benefit of using an orthonormal
Zk is that cond(ZT

k HkZk) ≤ cond(Hk), where cond(·) denotes the spectral condition
number (see, e.g., Gill, Murray, and Wright [11, p. 162]).

There are a number of alternative choices for the basis Bk. Both Fenelon and
Siegel propose thatBk be formed from a linearly independent subset of {g0, g1, . . . , gk}.
With this choice, the orthonormal basis can be accumulated columnwise as the itera-
tions proceed using Gram–Schmidt orthogonalization (see, e.g., Golub and Van Loan
[13, pp. 218–220]). During iteration k, the number of columns of Zk either remains
unchanged or increases by one, depending on the value of the scalar ρk+1, such that
ρk+1 = ‖(I − ZkZ

T
k)gk+1‖. If ρk+1 = 0, the new gradient has no component outside

range(Zk) and gk+1 is said to be rejected . Thus, if ρk+1 = 0, then Zk already provides
a basis for Gk+1 with rk+1 = rk and Zk+1 = Zk. Otherwise, rk+1 = rk + 1 and the
gradient gk+1 is said to be accepted . In this case, Zk gains a new column zk+1 defined
by the identity ρk+1zk+1 = (I − ZkZ

T
k)gk+1. The calculation of zk+1 also provides

the rk-vector uk = ZT
k gk+1 and the scalar zT

k+1gk+1 (= ρk+1), which are the compo-
nents of the reduced gradient ZT

k+1gk+1 for the next iteration. This orthogonalization
procedure requires approximately 2nrk flops.

1The matrix Tk appears only in the theoretical discussion—it is not needed for computation.

214 PHILIP E. GILL AND MICHAEL W. LEONARD

Definition (2.6) of each search direction implies that pj ∈ Gk for all 0 ≤ j ≤ k.
This leads naturally to another basis for Gk based on orthogonalizing the search
directions p0, p1, . . . , pk. The next lemma implies that Zk can be defined not only by
the accepted gradients, but also by the corresponding search directions.

Lemma 2.2. At the start of iteration k, let Zk denote the matrix obtained by
orthogonalizing the gradients g0, g1, . . . , gk of Broyden’s method. Let Pk and Gk denote
the matrices of search directions and gradients associated with iterations at which a
gradient is accepted. Then there are nonsingular upper-triangular matrices Tk and T̂k

such that Gk = ZkTk and Pk = ZkT̂k.
Proof. Without loss of generality, it is assumed that every gradient is accepted.

The proof is by induction on the iteration number k.
The result is true for k = 0 because the single column g0/‖g0‖ of Z0 is identical

to the normalized version of the search direction p0 = −g0/σ.
If the result is true at the start of iteration k − 1, there exist nonsingular Tk−1

and T̂k−1 with Gk−1 = Zk−1Tk−1 and Pk−1 = Zk−1T̂k−1. At the start of iteration k,
the last column of Zk satisfies ρkzk = gk − Zk−1Z

T
k−1gk, and

Gk =
(
Gk−1 gk

)
=
(
Zk−1 zk

)(Tk−1 ZT
k−1gk

0 ρk

)
= ZkTk.(2.7)

The last equality defines Tk, which is nonsingular since ρk 6= 0. Since pk = ZkZ
T
kpk,

we find

Pk =
(
Pk−1 pk

)
=
(
Zk−1 zk

)(T̂k−1 ZT
k−1pk

0 zT
k pk

)
= ZkT̂k,

where the last equality defines T̂k. The scalar zT
k pk is nonzero (see Leonard [16, pp. 94–

99]2), which implies that T̂k is nonsingular, and thus the induction is
complete.

Lemma 2.2 can be used to show that Zk provides an orthonormal basis for the
span Pk of all search directions {p0, p1, . . . , pk}.

Theorem 2.3. The subspaces Gk and Pk generated by the gradients and search
directions of the conventional Broyden method are identical.

Proof. The definition of each pj (0 ≤ j ≤ k) implies that Pk ⊆ Gk. Lemma 2.2
implies that Gk = range(Pk). Since range(Pk) ⊆ Pk, it follows that Gk ⊆ Pk.

Given Zk+1 andHk+1, the calculation of the search direction for the next iteration
requires the Cholesky factor of ZT

k+1Hk+1Zk+1. This factor can be obtained from Rk

in a two-step process that does not require knowledge of Hk. The first step, which
is not needed if gk+1 is rejected, is to compute the factor R′′k of ZT

k+1HkZk+1 (the
symbol R′k is reserved for use in section 3). This step involves adding a row and
column to Rk to account for the new last column of Zk+1. It follows from Lemma 2.1
and (2.5) that

ZT
k+1HkZk+1 =

(
ZT

k HkZk ZT
k Hkzk+1

zT
k+1HkZk zT

k+1Hkzk+1

)
=

(
ZT

k HkZk 0
0 σ

)
,

2The proof is nontrivial and is omitted for brevity.

REDUCED-HESSIAN METHODS 215

giving an expanded block-diagonal factor R′′k defined by

R′′k =

Rk, if rk+1 = rk,(

Rk 0
0 σ1/2

)
, if rk+1 = rk + 1.

(2.8)

This expansion procedure involves the vectors vk = ZT
k gk, uk = ZT

k gk+1, and qk =
ZT

k pk, which are stored and updated for efficiency. As both pk and gk lie in Range(Zk),
if gk+1 is accepted, the vectors v′′k = ZT

k+1gk and q′′k = ZT
k+1pk are trivially defined

from vk and qk by appending a zero component (cf. (2.5)). Similarly, the vector
u′′k = ZT

k+1gk+1 is formed from uk and ρk+1. If gk+1 is rejected, then v′′k = vk,
u′′k = uk and q′′k = qk. In either case, vk+1 is equal to u′′k and need not be calculated
at the start of iteration k + 1 (see Algorithm 2.1 below).

The second step of the modification alters R′′k to reflect the rank-two quasi-Newton
update to Hk. This update gives a modified factor Rk+1 = Broyden(R′′k , sk, yk),
where sk = ZT

k+1(xk+1 − xk) = αkq
′′
k and yk = ZT

k+1(gk+1 − gk) = u′′k − v′′k . The work
required to compute Rk+1 depends on the choice of Broyden update and the numerical
method used to calculate Broyden(R′′k , sk, yk). For the BFGS update, Rk+1 is the
triangular factor associated with the QR factorization of R′′k + w1w

T
2 , where w1 and

w2 are given by

w1 =
1

‖R′′ksk‖
R′′ksk and w2 =

1
(yT

ksk)1/2
yk −

1
‖R′′ksk‖

R′′Tk R′′ksk(2.9)

(see Goldfarb [12] and Dennis and Schnabel [3]). Rk+1 can be computed from R′′k
in 4r2k + O(rk) flops using conventional plane rotations, or in 3r2k + O(rk) flops us-
ing a modified rotation3 (see Gill et al. [8]). These estimates exclude the cost of
forming w1 and w2. The vector w1 is computed in O(rk) operations from the vector
dk/‖dk‖, where dk = −R−T

k vk is the intermediate quantity used in the calculation of
qk (see section 2.1). Similarly, w2 is obtained in O(rk) operations using the identity
R′′Tk R′′ksk = −αkv

′′
k implied by (2.6) and the definition of ZT

k+1gk.

2.2. A reduced-Hessian method. We conclude this section by giving a com-
plete reduced-Hessian formulation of a quasi-Newton method from the Broyden class.
This method involves two main procedures: an expand , which determines Zk+1 us-
ing the Gram–Schmidt QR process and possibly increases the order of the reduced
Hessian by one; and an update, which applies a Broyden update directly to the
reduced Hessian. For brevity, we use the expression (Zk+1, R

′′
k , u

′′
k , v

′′
k , q

′′
k , rk+1) =

expand(Zk, Rk, uk, vk, qk, gk+1, rk, σ) to signify the input and output quantities as-
sociated with the expand procedure. This statement should be interpreted as the
following: Given values of the quantities Zk, Rk, uk, vk, qk, gk+1, rk, and σ, the
expand procedure computes values of Zk+1, R′′k , u′′k , v′′k , q′′k , rk+1. (Unfortunately, the
need to associate quantities used in the algorithm with quantities used in its derivation
leads to an algorithm that is more complicated than its computer implementation. In
practice, almost all most quantities are updated in situ.)

3Certain special techniques can be used to reduce this flop count further; see Goldfarb [12].

216 PHILIP E. GILL AND MICHAEL W. LEONARD

Algorithm 2.1. Reduced-Hessian quasi-Newton method (RH).

Choose x0 and σ (σ > 0);
k = 0; r0 = 1; g0 = ∇f(x0);
Z0 = g0/‖g0‖; R0 = σ1/2; v0 = ‖g0‖;
while not converged do

Solve RT
k dk = −vk; Rkqk = dk;

pk = Zkqk;
Find αk satisfying the Wolfe conditions (2.4);
xk+1 = xk + αkpk; gk+1 = ∇f(xk + αkpk); uk = ZT

k gk+1;
(Zk+1, rk+1, R

′′
k , u

′′
k , v

′′
k , q

′′
k) = expand(Zk, rk, Rk, uk, vk, qk, gk+1, σ);

sk = αkq
′′
k ; yk = u′′k − v′′k ; Rk+1 = Broyden(R′′k , sk, yk);

vk+1 = u′′k ; k ← k + 1;
end do

In exact arithmetic, Algorithm RH generates the same iterates as its conven-
tional Broyden counterpart, and the methods differ only in the storage needed and
the number of operations per iteration. Since vk is defined as a by-product of the or-
thogonalization, the computation of pk involves the solution of two triangular systems
and a matrix-vector product, requiring a total of approximately nrk + r2k flops. For
the BFGS update, 3r2k +O(rk) flops are required to update Rk, with the result that
Algorithm RH requires approximately (3rk + 1)n+ 4r2k +O(rk) flops for each BFGS
iteration. As rk increases, the flop count approaches 7n2 + O(n). When rk reaches
n, Zk is full and no more gradients are accepted; only ZT

kgk+1 is computed during
the orthogonalization, and the work drops to 6n2 +O(n). Although Hk is not stored
explicitly, it is always implicitly defined by reversing (2.5), i.e.,

Hk = QkR
T
QRQQ

T
k , where RQ =

(
Rk 0
0 σ1/2In−rk

)
(2.10)

and Qk =
(
Zk Wk

)
.

2.3. Geometric considerations. Next we consider the application of Algo-
rithm RH to the strictly convex quadratic

f(x) = c− bTx+ 1
2x

TAx,(2.11)

where c is a scalar, b is an n-vector, and A is an n× n constant symmetric positive-
definite matrix. Suppose that the BFGS update is used, and that each αk is computed
from an exact line search (i.e., αk minimizes f(xk + αpk) with respect to α). Under
these circumstances, it can be shown that the k+1 columns of Zk are the normalized
gradients {gi/‖gi‖}, and that Rk is upper bidiagonal with nonzero components rii =
‖gi−1‖/(yT

i−1si−1)1/2 and ri,i+1 = −‖gi‖/(yT
i−1si−1)1/2 for 1 ≤ i ≤ k, and rk+1,k+1 =

σ1/2 (see Fenelon [4]). These relations imply that the search directions satisfy

p0 = − 1
σ
g0, pk = − 1

σ
gk + βk−1pk−1, k ≥ 1,

with βk−1 = ‖gk‖2/‖gk−1‖2. These vectors are parallel to the well-known conjugate-
gradient search directions (cf. Corollary 4.2). When used with an exact line search,
the search directions and gradients satisfy the relations (i) pT

iApj = 0, i 6= j; (ii)
gT

i gj = 0, i 6= j; and (iii) gT
i pi = −‖gi‖2/σ (see, e.g., Fletcher [5, p. 81] for a proof for

REDUCED-HESSIAN METHODS 217

the case σ = 1). The identities (i), (ii), and (iii) can be used to show that if the search
directions are independent, then the local quadratic model ϕ(p) = gT

kp + 1
2p

THkp is
exact at the start of iteration n+ 1, i.e., Hn+1 = A.

Since the columns of Zk are the normalized gradients, the BFGS orthogonality
relations (ii) imply that a new gradient gk+1 can be rejected only if gk+1 = 0, at which
point the algorithm terminates. It follows that the reduced Hessian steadily expands
as the iterations proceed. The curvature of the local quadratic model ϕ(p) along any
unit vector in Range(Wk) depends only on the choice of H0 and has no effect on the
definition of pk. Only curvature along directions in Range(Zk) affects the definition
of pk, and this curvature is completely determined by ZT

k HkZk.
The next lemma implies that f(x) is minimized on a sequence of expanding linear

manifolds and that, at the start of iteration k, the curvature of the quadratic model
is exact on a certain subspace of dimension k. LetM(Gk) denote the linear manifold
M(Gk) = {x0 + z | z ∈ Gk} determined by x0 and Gk.

Lemma 2.4. Suppose that the BFGS method with an exact line search is applied to
the strictly convex quadratic f(x) (2.11). If H0 = σI, then at the start of iteration k,
(a) xk minimizes f(x) on the linear manifold M(Gk−1), and (b) the curvature of the
quadratic model is exact on the k-dimensional subspace Gk−1. Thus, zTHkz = zTAz
for all z ∈ Gk−1.

Proof. Part (a) follows directly from the identity ZT
k−1gk = 0 implied by the

orthogonality of the gradients and the special form of Zk−1.
To verify part (b), we write the normalized gradients in terms of the search

directions. With Fenelon’s form of Zk and Rk, we find that Zk = −PkDkRk, where
Pk =

(
p0 p1 · · · pk

)
and Dk is the nonnegative diagonal matrix such that

D2
k = σ2 diag

(
yT
0s0
‖g0‖4

,
yT
1s1
‖g1‖4

, . . . ,
yT

k−1sk−1

‖gk−1‖4
,

1
σ‖gk‖2

)
.

A simple computation using the conjugacy condition (i) above gives the reduced
Hessian as ZT

k AZk = RT
kDkP

T
k APkDkRk = RT

k D̂Rk, where

D̂k = σ2 diag

(
yT
0s0
‖g0‖4

pT
0 Ap0,

yT
1s1
‖g1‖4

pT
1 Ap1, . . . ,

yT
k−1sk−1

‖gk−1‖4
pT

k−1Apk−1,
pT

kApk

σ‖gk‖2

)
.

The definition of αi as the minimizer of f(xi +αpi) implies that αi = −gT
i pi/(pT

i Api)
and gT

i+1pi = 0. Hence, for all i such that 0 ≤ i ≤ k − 1, it follows that

yT
i si = αiy

T
i pi = −αig

T
i pi = (gT

i pi)2/pT
i Api.

Using these identities with gT
i pi = −‖gi‖2/σ from (iii) above, the expression for D̂k

simplifies, with D̂k = diag(Ik, 1/αk).
Finally, if Zk is partitioned so that Zk =

(
Zk−1 gk/‖gk‖

)
, where Zk−1 has k

columns, then comparison of the leading k×k principal minors of the matrices RT
kRk

(= ZT
k HkZk) and RT

k D̂kRk (= ZT
k AZk) gives the required identity ZT

k−1HkZk−1 =
ZT

k−1AZk−1.
Part (a) of this result allows us to interpret each new iterate xk+1 as “stepping

onto” a larger manifold M(Gk) such that M(Gk−1) ⊂ M(Gk). This interpretation
also applies when minimizing a general nonlinear function, as long as gk is accepted
for the definition of Gk. (Recall from the proof of Lemma 2.2 that zT

kpk 6= 0 in this
case.)

218 PHILIP E. GILL AND MICHAEL W. LEONARD

We say that the curvature along z is established if zTHkz = zT∇2f(xk)z. In
particular, under the conditions of Lemma 2.4, the curvature is established at iteration
k on all of Range(Gk−1).

3. Lingering on a manifold. Up to this point we have considered reduced-
Hessian methods that generate the same iterates as their Broyden counterparts. Now
we expand our discussion to include methods that are not necessarily equivalent to
a conventional quasi-Newton method. Our aim is to derive methods with better
robustness and efficiency.

When f is a general nonlinear function, the step from xk to xk+1 is unlikely to
minimize f on the manifoldM(Gk). However, in a sequence of iterations in which the
gradient is rejected, Zk remains constant, and the algorithm proceeds to minimize f
on the manifold M(Gk). In this section, we propose an algorithm in which iterates
can remain, or “linger,” on a manifold even though new gradients are being accepted.
The idea is to linger on a manifold as long as a good reduction in f is being achieved.
Lingering has the advantage that the order of the relevant submatrix of the reduced
Hessian can be significantly smaller than that of the reduced Hessian itself.

An algorithm that can linger uses one of two alternative search directions: an RH

direction or a lingering direction. An RH direction is defined as in Algorithm RH, i.e.,
an RH direction lies in Gk and is computed using the reduced Hessian associated with
Zk. As discussed above, an RH direction defines an xk+1 on the manifoldM(Gk). By
contrast, a lingering direction forces xk+1 to remain on a manifoldM(Uk), such that
Uk ⊂ Gk. Given a point xk ∈M(Uk), the next iterate xk+1 will also lie onM(Uk) as
long as pk ∈ Uk. Accordingly, an algorithm is said to “linger onM(Uk)” if the search
direction satisfies pk ∈ Range(Uk), where the columns of Uk form a basis for Uk. As
long as Uk remains constant and pk has the form pk = UkpU for some pU , the iterates
xk+1, xk+2, . . . will continue to linger onM(Uk).

The subspace Uk and an appropriate basis Uk are defined as follows. At the start
of iteration k, an orthonormal basis for Gk is known such that

Zk =
(
Uk Yk

)
,(3.1)

where Uk is an n× lk matrix whose columns span the subspace Uk of all RH directions
computed so far, and Yk corresponds to a certain subset of the accepted gradients
defined below. The integer lk (0 ≤ lk ≤ rk) is known as the partition parameter
for Zk. It must be emphasized that the partition (3.1) is defined at every iteration,
regardless of whether or not lingering occurs. The partition is necessary because
quantities computed from Uk and Yk are used to decide between an RH direction and
a lingering direction.

The matrix Zk is an orthonormal factor of a particular basis for Gk consisting
of both gradients and search directions. Let Pk denote the n × lk matrix of RH

search directions computed so far, and let Gk denote an n × (rk − lk) matrix whose
columns are a subset of the accepted gradients. (Note that the definitions of Pk

and Gk are different from those of Lemma 2.2.) The matrix Zk is the orthonormal
factor corresponding to the QR factorization of the basis matrix Bk = (Pk Gk),
i.e., (Pk Gk) = ZkTk for some nonsingular upper-triangular matrix Tk. If Tk is
partitioned appropriately, we have

Bk =
(
Pk Gk

)
= ZkTk =

(
Uk Yk

)(TU TUY

0 TY

)
,(3.2)

REDUCED-HESSIAN METHODS 219

where TU is an lk× lk upper-triangular matrix. Note that the definition of Bk implies
that Range(Pk) = Range(UkTU) = Range(Uk), as required.

Although the dimension of Uk remains fixed while iterates linger, the column di-
mension of Yk increases as new gradients are accepted into the basis for Gk. While it-
erates linger, the (as yet) unused approximate curvature along directions in Range(Yk)
continues to be updated.

Lingering on a manifold ends when an RH direction is chosen and xk+1 steps
“off”M(Uk). Once an RH step is taken, the requirement that Uk+1 be a basis for the
subspace of all previously computed RH directions implies that Uk+1 must be made to
include the component of pk in Range(Yk). This update necessitates a corresponding
update to Rk. These updates are discussed in sections 3.3–3.4.

3.1. Definition of the basis. At the start of the first iteration, r0 = 1 and
Z0 is just the normalized gradient g0/‖g0‖, as in Algorithm RH. The initial partition
parameter l0 is zero, which implies that U0 is void and Y0 (= Z0) is g0/‖g0‖. Since
U0 is empty, it follows that p0 6∈ Range(U0), and an RH step is always taken on the
first iteration. At the start of the second iteration, if g1 is rejected, then Z1 = Z0,
Y1 is void, U1 = Z1, r1 = 1, and l1 = 1. On the other hand, if g1 is accepted,
then Z1 = (z0 z1), where z0 = g0/‖g0‖ and z1 is the normalized component of g1
orthogonal to z0. In this case r1 = 2 and l1 = 1, which implies that U1 = z0 and
Y1 = z2. Using the definitions of z0 and z1 it can be verified that

B1 =
(
p0 g1

)
=
(
z0 z1

)(ρ0 zT
0 g1

0 ρ1

)
= Z1T1,

where ρ0 = ‖p0‖.
At the start of the kth iteration, the composition of Bk depends on what has

occurred in previous iterations. More precisely, we show that Bk is determined by
Bk−1 = (Pk−1 Gk−1) and two decisions made during iteration k − 1: (i) the choice
of pk−1 (i.e., whether it defines an RH or a lingering step), and (ii) the result of the
orthogonalization procedure (i.e., whether or not gk is accepted at the end of iteration
k − 1).

Next, we consider the choice of search direction. Suppose pk−1 is an RH direction.
Given Bk−1, the definition of the new basis Bk involves a two-stage procedure in which
an intermediate basis B′k−1 is defined from matrices P ′k−1 and G′k−1. The matrix
P ′k−1 is defined by appending pk−1 to the right of Pk−1 to give P ′k−1 = (Pk−1 pk).
The RH direction pk−1 must, by definition, satisfy pk−1 ∈ Range(Pk−1 Gk−1), and
hence (Pk Gk−1) = (Pk−1 pk−1 Gk−1) will always have dependent columns. To
maintain a linearly independent set of basis vectors, it is therefore necessary to define
G′k−1 as Gk−1 with one of its columns removed. When a column is removed from
Gk−1, the matrices Zk−1 and Rk−1 must be updated. The work needed for this
is least if the last column is deleted from Gk−1 (see section 3.3). This procedure
corresponds to discarding the most recently computed gradient remaining in Gk−1,
say gk−j (k ≥ j > 0). Note that this deletion procedure is always well defined since
Gk−1 cannot be void when pk−1 is an RH direction. Now assume that pk−1 is a
lingering direction. In this case, we define P ′k−1 = Pk−1 and G′k−1 = Gk−1.

The second stage in the calculation of Bk is the definition of Pk and Gk from
P ′k−1 and G′k−1 after the orthogonalization procedure of iteration k − 1. Under the
assumption that gk is accepted, we define Pk = P ′k−1 and Gk = (G′k−1 gk). If gk is
not accepted, then Pk = P ′k−1 and Gk = G′k−1.

220 PHILIP E. GILL AND MICHAEL W. LEONARD

Table 3.1
Example of the composition of Pk and Gk.

k Pk Gk pk gk+1

0 void (g0) RH accepted
1 (p0) (g1) RH rejected
2 (p0 p1) void lingering accepted
3 (p0 p1) (g3) lingering accepted
4 (p0 p1) (g3 g4) lingering accepted
5 (p0 p1) (g3 g4 g5) lingering accepted
6 (p0 p1) (g3 g4 g5 g6) RH accepted
7 (p0 p1 p6) (g3 g4 g5 g7) RH rejected
8 (p0 p1 p6 p7) (g3 g4 g5) RH rejected
9 (p0 p1 p6 p7 p8) (g3 g4) lingering rejected
10 (p0 p1 p6 p7 p8) (g3 g4) – –

These updating rules provide the basis for an algorithm in which Pk can grow at
a rate that is commensurate with the rate at which curvature is being established on
the manifoldM(Uk). To illustrate how Pk can change from one iteration to the next,
consider the composition of Pk and Gk for the first ten iterations for a function f
with at least seven variables. The iterations are summarized in Table 3.1. Each row
of the table depicts quantities computed during a given iteration. The first column
gives the iteration number, the next two columns give the composition of Pk and Gk,
the fourth column indicates the type of direction used, and the last column states
whether or not gk+1 is accepted after the line search.

If Gk has one more column than Gk−1, then pk−1 must be a lingering direction
and gk must be accepted (as is the case for k = 3, 4, 5, and 6). Similarly, if Gk has one
less column than Gk−1, then pk−1 must be an RH direction and gk must be rejected
(k = 2, 8, 9). The matrix Gk will have the same number of columns as Gk−1 if pk−1

is a lingering direction and gk is rejected (k = 10), or if pk−1 is an RH direction and
gk is accepted (k = 1, 7).

The column dimension of Gk is the number of accepted gradients with indices
between 0 and k less the number of RH directions with indices between 0 and k − 1.
In our example, only g3 and g4 remain in G10, although every other gradient lies in
Range

(
P10 G10

)
.

To simplify the notation for the remainder of this section, the index k is omitted
and overbars indicate quantities associated with iteration k + 1.

3.2. Definition of the search direction. Next we consider the definition of
the lingering and RH search directions, and give a method for choosing between them.

If the rows and columns of R are partitioned to match the partition Z = (U Y),
we obtain

R =

(
RU RUY

0 RY

)
,(3.3)

where RU is an l× l upper-triangular matrix. In terms of this partition, the interme-
diate system RTd = −v of Algorithm RH is equivalent to two smaller systems

RT
U dU = −vU and RT

Y dY = −(RT
UY dU + vY),

where vU , vY , dU , and dY denote subvectors of v and d corresponding to the U - and
Y -parts of Z. Note that the vector vU = UT g is the reduced gradient associated with

REDUCED-HESSIAN METHODS 221

the subspace Range(U). The RH direction minimizes the quadratic model ϕ(p) in
the r-dimensional subspace Range(Z), which includes Range(Y). The RH direction
is denoted by pr to distinguish it from the lingering direction pl defined below.

If the new iterate x̄ is to lie onM(U), the search direction must lie in Range(U).
The obvious choice for pl is the unique minimizer of the local quadratic model ϕ(p) =
gT p + 1

2p
THp in Range(U). This minimizer is given by −U(UTHU)−1UT g, from

which it follows that pl can be computed as pl = UR−1
U dU .

The choice between pr and pl is based on comparing ϕ(pr) with ϕ(pl), where the
quadratic model ϕ(p) estimates f(x + p) − f(x), the change in the objective. From
the definitions of pr and pl, we have

ϕ(pr) = − 1
2‖d‖

2 and ϕ(pl) = − 1
2‖dU‖2.

These predictions are attained if f is a convex quadratic and an exact line search is
used. In this case the gradients are mutually orthogonal (see section 2.3), both vU

and dU are zero, and the only way to decrease f is to step off M(U) using pr.
On the other hand, when minimizing a general nonlinear function with an inexact

line search, it is possible that ‖dU‖ ≈ ‖d‖, and nearly all of the reduction in the
quadratic model is obtained on M(U). In this event, little is lost by forcing the
iterates to remain on M(U). In addition, lingering can be used to ensure that the
reduced gradient vU is “sufficiently small,” and may help to further establish the
curvature on U . In this sense, lingering is a way of forcing Broyden’s method to
perform on a general nonlinear function as it does on a quadratic.

As noted by Fenelon [4, p. 72], it can be inefficient to remain onM(U) until the
reduced gradient vU is zero. Instead, iterates are allowed to linger until the predicted
reduction corresponding to a step moving off ofM(U) is significantly better than the
predicted reduction for a step that lingers. In particular, a step off ofM(U) is taken
if ‖dU‖2 ≤ τ‖d‖2, where τ is a preassigned constant such that 1

2 < τ < 1.
The following simple argument shows that if p = pr is selected when the condition

‖dU‖2 ≤ τ‖d‖2 is satisfied, then the next iterate steps off of M(U). If the U - and
Y -parts of q are denoted by qU and qY , respectively, the partitioned form of Rq = d
is given by

RY qY = dY and RUqU = dU −RUY qY .(3.4)

Written in terms of pU and pY , the search direction satisfies p = UqU + Y qY . The
inequality (1 − τ)‖dU‖2 ≤ τ‖dY ‖2 implies that both d and dY are nonzero, and it
follows from (3.4) and the nonsingularity of RY that qY is nonzero. Hence, Y qY is
also nonzero and x̄ = x+ αpr steps off ofM(U).

3.3. Updating Z. Let P , G, T , and Z denote matrices associated with the
orthogonal factorization (3.2) at the start of an iteration. In section 3.1 it was shown
that the basis undergoes two (possibly trivial) changes during an iteration, i.e., B =
(P G)→ B′ = (P ′ G′)→ B̄ = (P̄ Ḡ).

The first change to Z involves updating the orthogonal factorization (P G) =
ZT = (U Y)T to obtain (P ′ G′) = Z ′T ′ = (U ′ Y ′)T ′, associated with the
intermediate basis B′. The update depends on the choice of p. If p is the lingering
direction pl, we have the trivial case T ′ = T , U ′ = U , and Y ′ = Y . If p is the RH

direction pr, then P ′ = (P p) and the resulting effect on U and Y must be calculated.

222 PHILIP E. GILL AND MICHAEL W. LEONARD

Introducing p on both sides of the decomposition
(
P G

)
= ZT yields

(
P p G

)
=
(
U Y

)(TU qU TUY

0 qY TY

)
,

where q = ZT p and qU and qY denote the components of q corresponding to the U -
and Y -parts of Z. The left-hand side can be repartitioned as (P ′ G′ g), where
P ′ =

(
P p

)
and g is the most recently accepted gradient remaining in the basis.

Let S denote an r × r orthogonal upper-Hessenberg matrix constructed such that

S =

(
Il 0
0 SY

)
and Sq =

(
qU

‖qY ‖e1

)
.

It follows that

(
P ′ G′ g

)
=
(
U Y ST

Y

)
TS, where TS =

(
TU qU TUY

0 SY qY SY TY

)
.(3.5)

The shape of S implies that the (r − l) × (r − l + 1) matrix
(
SY qY SY TY

)
is

upper-Hessenberg, and the r × (r + 1) matrix TS is upper-trapezoidal. Deleting the
last column from each side of the identity (3.5) gives the required factorization. In
particular, U ′ = (U Y ST

Y e1), Y ′ = (Y ST
Y e2 Y ST

Y e3 · · · Y ST
Y er−l), Z ′ = (U ′ Y ′),

and T ′ = TSEr, where Er denotes the matrix of first r columns of Ir+1.
The matrix S is defined as a product of plane rotations and need not be stored

explicitly. One choice of S that uses symmetric Givens matrices instead of plane
rotations is given by Daniel et al. [2] in the context of inserting a column into a QR
factorization. As S can be generated entirely from qY , the matrix T need not be
stored.

If l < r−1, then the modification of U and Y requires approximately 3(r− l−1)n
flops (see Daniel et al. [2]). If l = r − 1, then no work is required since the columns
of Z =

(
U Y

)
are already an orthonormal basis for

(
P p

)
. (The argument

is similar to that given in Lemma 2.2, although here qY is nonzero according to the
reasoning given at the end of section 3.2.)

The second stage in updating Z is to compensate for the change from B′ to the
final basis B̄. After the line search, if the new gradient ḡ is rejected, then we have
the trivial case T̄ = T ′, Ū = U ′, and Ȳ = Y ′. If ḡ is accepted, then ρ̄z̄ = ḡ − Z ′Z ′T ḡ
defines the normalized component of ḡ outside Range(Z ′) (see section 2.1). In this
case, the identity

(
P ′ G′ ḡ

)
=
(
Z ′ z̄

)(T ′ Z ′T ḡ

0 ρ̄

)

implies that P̄ = P ′, Ḡ =
(
G′ ḡ

)
, Ū = U ′, Ȳ = (Y ′ z̄), and T̄ is T ′ augmented

by the column Z̄T ḡ. In both cases, we define Z̄ = (Ū Ȳ).

3.4. Updating R. When Z is updated to include the new RH direction, the
new reduced Hessian is Z ′THZ ′ = SZTHZST = SRTRST , where H is given by
(2.10). The (2, 2) block of RST is RY S

T
Y , which can be restored to upper-triangular

form using a suitable sequence of plane rotations S′ applied on the left of R. This

REDUCED-HESSIAN METHODS 223

results in RY S
T
Y being premultiplied by an orthogonal matrix S′Y such that S′YRY S

T
Y

is upper-triangular. The Cholesky factor of Z ′THZ ′ is then

R′ = S′RST =

(
RU RUY S

T
Y

0 S′YRY S
T
Y

)
=

(
R′

U′ R′
U′Y ′

0 R′
Y ′

)
,

where R′
U′ and R′

Y ′ are upper-triangular matrices of order l + 1 and r − l − 1. For
more details, see Leonard [16, p. 40]. The calculation of R′ simplifies considerably if
the BFGS update is used (see section 3.7).

It remains to update R′ to reflect the second stage of the basis change: B′ =
(P ′ G′) → B̄ = (P̄ Ḡ), which corresponds to the orthogonalization of the new
gradient. If R′′ denotes the updated factor, then R′′ is obtained from R′ by adding a
scaled unit row and column, as in (2.8).

3.5. Updating related quantities. After the new gradient has been orthog-
onalized, the vectors u′′ = Z̄T ḡ, v′′ = Z̄T g, and q′′ = Z̄T p are used to define the
quasi-Newton update R̄ = Broyden(R′′, s, y) with s = αq′′ and y = u′′ − v′′. The
vector u′′ is computed as a by-product of the orthogonalization, as in Algorithm RH.
The vectors v′′ and q′′ can be computed from v and q using intermediate vectors
v′ = Z ′T g and q′ = Z ′T p in conjunction with the two-stage update to B. If p is a
lingering direction, then v′ = v and q′ = q. Otherwise, the definition of Z ′ implies
that

v′ = Z ′T g = SZT g = Sv =

(
vU

SY vY

)
,

which can be computed efficiently by applying the plane rotations of S as they are
generated. Similarly, the U ′- and Y ′-portions of q′ are q′

U′ = (qU , ‖qY ‖)T and q′
Y ′ = 0,

since SY qY = ‖qY ‖e1. These expressions provide a cheaper alternative to computing
the RH search direction as p = UqU + Y qY . With this alternative, U is modified as
soon as qU and qY are known, and p is computed from the expression p = U ′q′

U′ .
Once v′ and q′ are known, v′′ and q′′ are found from v′ and q′ during the orthog-

onalization procedure as in Algorithm RH.

3.6. A reduced-Hessian method with lingering. We summarize the results
of this section by describing a complete reduced-Hessian method with lingering. As
in Algorithm RH of section 2.2, certain calculations are represented schematically as
functions with input and output arguments. The first stage of the basis update can be
viewed as swapping the new RH direction with the most recently accepted gradient
remaining in Bk. Accordingly, the modification of Zk (and hence Uk and Yk) and
related quantities is represented by (Z ′k, R

′
k, q

′
k, v

′
k) = swap(Zk, Rk, qk, vk).

Algorithm 3.1. Reduced-Hessian method with lingering (RHL).

Choose x0 and σ (σ > 0);
k = 0; r0 = 1; l0 = 0; g0 = ∇f(x0);
Z0 = g0/‖g0‖; R0 = σ1/2; v0 = ‖g0‖;
while not converged do

Partition Rk as RU , RY , and RUY ; Partition vk as vU and vY ;
Solve RT

U dU = −vU ; RT
Y dY = −(RT

UY dU + vY);
if ‖dU‖2 > τ‖d‖2 then

Solve RUqU = dU ; qY = 0;

224 PHILIP E. GILL AND MICHAEL W. LEONARD

Z ′k = Zk; R′k = Rk; q′k = qk; v′k = vk;
l′k = lk;

else
Solve RY qY = dY ; RUqU = dU −RUY qY ;
(Z ′k, R

′
k, q

′
k, v

′
k) = swap(Zk, Rk, qk, vk);

l′k = lk + 1;
end if
pk = U ′kq

′
U′ ; lk+1 = l′k;

Find αk satisfying the Wolfe conditions (2.4);
xk+1 = xk + αkpk; gk+1 = ∇f(xk + αkpk); uk = ZT

k gk+1;
(Zk+1, rk+1, R

′′
k , u

′′
k , v

′′
k , q

′′
k) = expand(Z ′k, rk, R

′
k, uk, v

′
k, q

′
k, gk+1, σ);

sk = αkq
′′
k ; yk = u′′k − v′′k ; Rk+1 = Broyden(R′′k , sk, yk);

vk+1 = u′′k ; k ← k + 1;
end do

As in Algorithm RH, no new gradients are accepted once rk reaches n. If the
test ‖dU‖2 ≤ τ‖d‖2 is satisfied every iteration, Algorithm RHL generates the same
sequence of iterates as Algorithm RH. In this case, every iteration starts with lk = rk
or lk = rk − 1. If lk = rk, the previous gradient gk was rejected and both algorithms
compute a lingering direction. Otherwise, if lk = rk− 1, then gk was accepted and Yk

must have just one column. Once the RH direction is computed, the swap procedure
amounts to moving the partition of Zk so that the Y -part becomes void. It follows
that if only RH directions are chosen, the partition of Zk is used only to decide if pk

is an RH or lingering direction.

3.7. The BFGS update. If the BFGS update is used, the block structure (3.3)
of R simplifies to the extent that RY is always σ1/2Ir−l. This can be shown using two
results. The first describes the effect of the BFGS update on R when s ∈ Range(U).

Lemma 3.1. Let R denote an r × r nonsingular upper-triangular matrix parti-
tioned as in (3.3). Let y and s be r-vectors such that yT s > 0. If the Y -components
of s are zero, then the update R̄ = BFGS(R, s, y) does not alter the (2, 2) block of R
(i.e., R̄Y = RY). Moreover, R̄U and R̄UY are independent of RY .

Proof. The result follows from the definition (2.9) of the rank-one BFGS update
to R (see Leonard [16, pp. 13–15] for the first part).

The next lemma considers the cumulative effect of Algorithm RHL on the block
structure of R.

Lemma 3.2. Assume that Algorithm RHRL is used with the BFGS update, and
that Z is partitioned as Z =

(
U Y

)
. Then there exist orthogonal matrices S and

S′ for the basis update such that, at the start of every iteration, R has the form(
RU RUY

0 RY

)
with RY = σ1/2Ir−l.(3.6)

Proof. The proof is by induction. The result holds at the start of the first iteration
since r0 = 1, l0 = 0, and RY = σ1/2. Assume that the result holds at the start of
iteration k.

If the partition parameter is increased, the columns of Y are modified and the
(2, 2) block of R′ satisfies R′Y = S′YRY S

T
Y = σS′Y S

T
Y . If S′ = S, then R′Y = σIr−l. If

the partition parameter does not change, then R′ = R and R′Y = σIr−l trivially.

REDUCED-HESSIAN METHODS 225

The repartition resulting from the change in l gives σ1/2Ir−l̄ in the (2, 2) block,
and it follows that R′

Y ′ has the required form prior to the line search. Note that R′
Y ′

is void if either RY is void (i.e., l = r) or l was increased to r (giving l̄ = r).
The expansion procedure may add a scaled unit row and column to R′. In either

case, R′′ can be partitioned to match Ū and Ȳ as

R′′ =

(
R′′Ū R′′ŪȲ

0 R′′Ȳ

)
.

It follows that R′′Ȳ = σ1/2Ir̄−l̄.
Whatever the choice of search direction, q′′ is of the form q′′ = (q′′Ū , 0)T , where

q′′Ū is an l̄-vector. Thus, R′′ and s satisfy the conditions of Lemma 3.1, and R̄ =
BFGS(R′′, s, y) has the required structure.

If, in the BFGS case, instead of defining S′ = S, we update RY according to the
procedure of section 3.3, then the updated matrix will be of the form RY = σ1/2Ĩr−l,
where Ĩr−l is a diagonal matrix of plus or minus ones. The purpose of Lemma 3.2 is
to show that it is unnecessary to apply ST and S′ to RY when RHL is used with the
BFGS update. Instead, ST

Y need only be applied to RUY , at a cost of 3(r − l − 1)l
flops.

3.8. Operation count for RHL with the BFGS update. The number of
operations for an iteration of the BFGS version of Algorithm RHL will depend on the
type of search direction selected. If a lingering direction is used, the vector RTRq will
be different from −v, and the vector v cannot be substituted for the matrix-vector
product in (2.9). However, in this case we have

RTRq =

(
RT

URUqU

RT
UYRUqU

)
=

(
−vU

RT
UYRUqU

)
,

which requires only RT
UYRUqU to be computed explicitly.

Whichever search direction is used, the vector s has r̄− l̄ trailing zeros (see (2.9)),
and the cost of applying the BFGS update drops to 6r̄l̄ − 3l̄2 flops. It follows that
iterations involving a lingering direction require (2r+ l+1)n+ 1

2r
2+7rl− 7

2 l
2+O(r)+

O(l) flops. If l = r, the work is commensurate with that of Algorithm RH. If an RH

step is taken, an additional n flops are required because p is a linear combination of
l+1 n-vectors instead of l n-vectors. In this case, 3(r− l−1)(l+n) flops are required
to update Z and R using the method of sections 3.3–3.4.

4. Modifying approximate curvature. The choice ofH0 can greatly influence
the practical performance of quasi-Newton methods. The usual choice H0 = σI
(σ > 0) can result in many iterations and function evaluations—especially if ∇2f(x∗)
is ill-conditioned (see, e.g., Powell [25] and Siegel [28]). This is sometimes associated
with “stalling” of the iterates, a phenomenon that can greatly increase the overall cpu
time for solution (or termination).

To date, the principal modifications of conventional quasi-Newton methods have
involved scaling all or part of the approximate Hessian. Several scaling methods have
appeared in the literature. In the self-scaling variable metric (SSVM) method of
Oren and Luenberger [24], Hk is multiplied by a positive scalar prior to application
of the Broyden update. The conjugate-direction scaling method of Siegel [28] scales
columns of a certain conjugate-direction factorization of H−1

k . This scheme, which

226 PHILIP E. GILL AND MICHAEL W. LEONARD

is a refinement of a method of Powell [25], has been shown to be globally and q-
superlinearly convergent. In what follows, Siegel’s method will be referred to as
Algorithm CDS. Finally, Lalee and Nocedal [15] have proposed an algorithm that
scales columns of a lower-Hessenberg factor of Hk. This method will be referred to as
Algorithm ACS, which stands for automatic column scaling .

Here, scaling takes the form of resetting certain diagonal elements of the Cholesky
factor of the reduced-Hessian. The structure of the transformed Hessian QT

kHkQk

(2.5) reveals the influence of H0 on the approximate Hessian. For example, the initial
Hessian scale factor σ represents the approximate curvature along all unit directions
in G⊥k (see Lemma 2.1). Inefficiencies resulting from poor choices of H0 may be
alleviated by maintaining a current estimate σk of the approximate curvature in G⊥k .
At the end of each iteration, the new estimate σk+1 replaces σk in the transformed
Hessian wherever this can be done without endangering its positive definiteness. This
replacement has the effect of reinitializing approximate curvature along all directions
in G⊥k , and along certain directions in Gk. In the next section, an algorithm of this
type is introduced as a generalization of Algorithm RHL.

4.1. Reinitialization combined with lingering. In this section we extend
the BFGS version of Algorithm RHL so that approximate curvature is modified in
a subspace of dimension n − l̄ immediately following the BFGS update. We choose
to emphasize the BFGS method because the diagonal structure R̄Ȳ = σ1/2Ir̄−l̄ of
the (2, 2) block of the BFGS Cholesky factor reveals the main influence of H0 on
the approximate Hessian. In this case, the initial approximate curvature along unit
directions in Range(Ȳ) is explicit and easily reinitialized. The approximate curvature
along directions in Range(Ū) is considered to be sufficiently established (in the sense
of Lemma 2.4) and hence the corresponding part of the reduced Hessian is unaltered.

Reinitialization is not hard to achieve in comparison to some scaling procedures
previously proposed. Reinitialization simply involves replacing the factor

R′′′ =

(
R′′′Ū R′′′ŪȲ

0 σ1/2Ir̄−l̄

)
by R̄ =

(
R′′′Ū R′′′ŪȲ

0 σ̄1/2Ir̄−l̄

)
,

where the matrix R′′′ is the final factor obtained in an iteration of Algorithm RHL.
The corresponding effect on the (2, 2) block of the reduced Hessian is to replace the
term σIr̄−l̄ by σ̄Ir̄−l̄.

This reinitialization exploits the special structure of R′′′ resulting from the lin-
gering scheme. The resulting method may be compared to Liu and Nocedal’s limited-
memory L-BFGS method [17]. In this case, the BFGS inverse Hessian is defined as
the last of a sequence of auxiliary inverse Hessians generated implicitly from σI and a
set of vector pairs (δk, γk) (see (2.3)). This form allows σI to be reinitialized at every
iteration (in which case, every auxiliary inverse Hessian is changed). The fact that
the rank-two terms are not summed explicitly is crucial. If the inverse Hessian were
to be stored elementwise, then any reinitialization that adds a (possibly negative-
definite) diagonal (σ̄ − σ)I would leave all the auxiliary approximations unchanged
except the first, and thereby define a potentially indefinite approximation. In the
reduced-Hessian formulation, it is possible to maintain an elementwise approximation
and reinitialize unestablished curvature without risk of indefiniteness. The diagonal
form of R̄Ȳ means that σ occurs as an explicit modifiable term in the expression for
the curvature along directions in Range(Ȳ). This term can be safely reset to any
positive number σ̄.

REDUCED-HESSIAN METHODS 227

It remains to define an appropriate value for σ̄. We consider four alternatives
that have been effective in practice. The first two are the simple choices:

σR0
k+1 = 1 and σR1

k+1 =
yT
0 y0
yT
0 s0

(4.1)

(see Shanno and Phua [26] for a discussion of σR1
k+1). The third alternative is related

to the scaling parameters used in Algorithm CDS (see Siegel [28]). It is defined in
terms of a scalar γi and satisfies

σR2
k+1 = min

0≤i≤k
{γi}, where γi =

yT
i si

‖si‖2
.(4.2)

The fourth alternative is the inverse of the value suggested by Liu and Nocedal [17]
for use in the limited-memory BFGS method (see Nocedal [23]). For this option, we
define

σR3
k+1 =

yT
k yk

yT
k sk

.(4.3)

Reinitialization is represented schematically as R̄ = reinitialize(R′′′, σ̄) in the algo-
rithm below.

Algorithm 4.1. Reduced-Hessian method with reinitialization and
lingering (RHRL).

Choose x0 and σ0 (σ0 > 0);
k = 0; r0 = 1; l0 = 0; g0 = ∇f(x0);
Z0 = g0/‖g0‖; R0 = σ

1/2
0 ; v0 = ‖g0‖;

while not converged do
Partition Rk as RU , RY and RUY ; Partition vk as vU and vY ;
Solve RT

U dU = −vU ; RT
Y dY = −(RT

UY dU + vY);
if ‖dU‖2 > τ‖d‖2 then

Solve RUqU = dU ; qY = 0;
Z ′k = Zk; R′k = Rk; q′k = qk; v′k = vk;
l′k = lk;

else
Solve RY qY = dY ; RUqU = dU −RUY qY ;
(Z ′k, R

′
k, q

′
k, v

′
k) = swap(Zk, Rk, qk, vk);

l′k = lk + 1;
end if
pk = U ′kq

′
U′ ; lk+1 = l′k;

Find αk satisfying the Wolfe conditions (2.4);
xk+1 = xk + αkpk; gk+1 = ∇f(xk + αkpk); uk = ZT

k gk+1;
(Zk+1, rk+1, R

′′
k , u

′′
k , v

′′
k , q

′′
k) = expand(Z ′k, rk, R

′
k, uk, v

′
k, q

′
k, gk+1, σk);

sk = αkq
′′
k ; yk = u′′k − v′′k ; R′′′k = BFGS(R′′k , sk, yk);

Compute σk+1; Rk+1 = reinitialize(R′′′k , σk+1);
vk+1 = u′′k ; k ← k + 1;

end do

Other than the addition of the reinitialize procedure, Algorithm RHRL differs
from RHL only in the specific use of the BFGS update.

228 PHILIP E. GILL AND MICHAEL W. LEONARD

Reinitialization can be applied directly to Algorithm RH by redefining σ before
the expand and Broyden procedures. When the BFGS update is used and Rk

expands, the last diagonal of R′′k is unaltered and is independent of the remainder of
R̄ (see section 3.7). In this case, the last diagonal can be redefined either before or
after the update. This option is also available for RHRL, but reinitialization is done
after the BFGS update to simplify the proof of Theorem 4.3. (The trailing columns of
the conjugate-direction matrix are scaled after the BFGS update in Algorithm CDS

[28].)

4.2. Algorithm RHRL applied to a quadratic. Consider the strictly convex
quadratic function f(x) = c − bTx + 1

2x
TAx of (2.11). The next theorem extends

Fenelon’s quadratic termination results for Algorithm RH to Algorithm RHRL (see
section 2.3). In the statement of the theorem, rij denotes the (i, j)th component of
Rk. For details of the proof, see Leonard [16, pp. 58–61].

Theorem 4.1. Consider Algorithm RHRL applied with an exact line search and
σ0 = 1 to minimize the quadratic f(x) of (2.11). Then, at the start of iteration k,
the rank of Rk is rk = k + 1, the partition parameter is lk = k, and Zk satisfies
Zk = (Uk Yk), where the columns of Uk are the normalized gradients {gi/‖gi‖}, 1 ≤
i ≤ k − 1, and Yk = gk/‖gk‖. Moreover, the upper-triangular matrix Rk is upper bi-
diagonal with Rk

UY = −‖gk‖/(yT
k−1sk−1)ek and Rk

Y = σ
1/2
k . The nonzero components

of Rk in Rk
U satisfy rii = ‖gi−1‖/(yT

i−1si−1)1/2 and ri,i+1 = −‖gi‖/(yT
i−1si−1)1/2 for

1 ≤ i ≤ k. Furthermore, the search directions satisfy

p0 = −g0; pk = − 1
σk
gk + βk−1pk−1, βk−1 =

σk−1

σk

‖gk‖2

‖gk−1‖2
, k ≥ 1.

Corollary 4.2. If Algorithm RHRL is applied with an exact line search to
minimize the quadratic f(x) of (2.11), and σ0 = 1, then the minimizer will be found
in at most n iterations.

Proof. We show by induction that the search directions are parallel to the
conjugate-gradient directions {dk}. Specifically, σkpk = dk for all k. This is true
for k = 0 since σ0p0 = −g0 = d0. Assume that σk−1pk−1 = dk−1. Using Theorem 4.1
and the inductive hypothesis, we find

σkpk = −gk + σk−1
‖gk‖2

‖gk−1‖2
pk−1 = −gk +

‖gk‖2

‖gk−1‖2
dk−1 = dk,

which completes the induction. Since the conjugate-gradient method has quadratic
termination under the assumptions of the theorem, Algorithm RHRL must also have
this property.

4.3. An equivalence with conjugate-direction scaling. The next theo-
rem, proved by Leonard [16, pp. 62–77], states that under certain conditions, Al-
gorithm RHRL generates the same iterates as the CDS algorithm of Siegel [28].

Theorem 4.3. Suppose that Algorithm RHRL and Algorithm CDS are used to
find a local minimizer of a twice-continuously differentiable function f : Rn → R. If
both algorithms start from the same point and use the same line search, and if RHRL

uses σ0 = 1, σk = σR2
k , τ = 10

11 , then the algorithms generate the same sequence of
iterates.

Despite this equivalence, we emphasize that RHRL and CDS are not the same
method . First, the stated equivalence concerns CDS and one instance of RHRL, so

REDUCED-HESSIAN METHODS 229

RHRL may be considered as a generalization of CDS. Second, the dimensions of the
matrices required and the computation times differ substantially for the two methods.
CDS has a 33% advantage with respect to storage, since RHRL requires 3

2n
2 elements

for Zk and Rk, assuming that they grow to full size. However, RHRL requires substan-
tially lower cpu times in practice—principally because of the more efficient calculation
of pk when k is small relative to n (see section 6.5).

The last result of this section gives convergence properties of Algorithm RHRL

when applied to strictly convex functions.
Corollary 4.4. Let f : Rn → R denote a strictly convex, twice-continuously

differentiable function. Moreover, assume that ∇2f(x) is Lipschitz continuous with
‖∇2f(x)−1‖ bounded above for all x in the level set of f(x0). If Algorithm RHRL with
σ0 = 1, σk = σR2

k , τ = 10
11 , and a Wolfe line search is used to minimize f , then

convergence is global and q-superlinear.
Proof. Since the conjugate-direction scaling algorithm has these convergence prop-

erties (see Siegel [28]), the proof is immediate from Theorem 4.3.

5. Implementation details. In this section, we discuss the implementation of
Algorithm RHRL. Numerical results are given in section 6.

5.1. Reorthogonalization. In exact arithmetic, a gradient is accepted into the
basis B′k =

(
P ′k G′k

)
if ρk+1 > 0, where ρk+1 is the two-norm of (I − Z ′kZ ′Tk)gk+1.

This ensures that the basis vectors are linearly independent, and that the implicitly
defined matrix T ′k (3.2) is nonsingular. When ρk+1 is computed in finite precision,
gradients with small (but nonzero) ρk+1 are rejected to discourage {Tk} from becoming
too ill-conditioned. In practice, an accepted gradient must satisfy ρk+1 ≥ ε‖gk+1‖,
where ε is a preassigned positive constant. In the numerical results presented in
section 6, ε was set at 10−4.

Even when ε is large relative to the machine precision, Gram–Schmidt orthogo-
nalization is unstable (see Golub and Van Loan [13, p. 218]). Two of the best known
algorithms for stabilizing the process are modified Gram–Schmidt and Gram–Schmidt
with reorthogonalization (see Golub and Van Loan [13, p. 218] and Daniel et al. [2]).
We have used Gram–Schmidt with reorthogonalization in our implementation. Each
reorthogonalization requires an additional 2nrk flops.

5.2. The line search, BFGS update, and termination criterion. The line
search for the reduced-Hessian methods is a slightly modified version of that used in
the package NPSOL [10]. It is designed to ensure that αk satisfies the strong Wolfe
conditions:

f(xk + αkpk) ≤ f(xk) + µαkg
T
kpk and |gT

k+1pk| ≤ η|gT
kpk|

with 0 ≤ µ ≤ η < 1 and µ < 1
2 . (For more details concerning algorithms designed

to meet these criteria, see, e.g., Gill, Murray, and Wright [11], Fletcher [5], and Moré
and Thuente [20].) The step length parameters are µ = 10−4 and η = 0.9. The line
search is based on using a safeguarded polynomial interpolation to find an approximate
minimizer of the univariate function ψ(α) = f(xk +αpk)− f(xk)−µαgT

kpk (see Moré
and Sorensen [19]). The step αk is the first member of a minimizing sequence {αi

k}
satisfying the Wolfe conditions. The sequence is always started with α0

k = 1.
If αk satisfies the Wolfe conditions, it holds that yT

k sk ≥ −(1−η)αkg
T
kpk > 0, and

hence the BFGS update can be applied without difficulty. On very difficult problems,
however, the combination of a poor search direction and a rounding error in f may
prevent the line search from satisfying the line search conditions within 20 function

230 PHILIP E. GILL AND MICHAEL W. LEONARD

Table 6.1
Comparison of RHRL with four reinitialization values on 64 CUTE problems.

Option Itn Fcn Cpu

R0 26553 45476 22:26

R1 34815 41327 21:50

R2 25808 39856 20:56

R3 23356 30684 18:01

evaluations. In this case, the search terminates with αk corresponding to the best
value of f found so far. If this αk defines a strict decrease in f , the minimization
continues and the BFGS update is skipped unless yT

ksk ≥ εMαk|gT
kpk|, where εM is

the machine precision. If a strict decrease in f is not obtained after 20 function
evaluations, then the algorithm is terminated (no restarts are allowed).

Every run was terminated when ‖gk‖ < 10−6 or ‖gk‖ < ε0.8
M (1 + |f(xk)|). Our

intent is to compare methods when they succeed , and identify the cases where methods
fail.

6. Numerical results. The methods are implemented in double precision For-
tran 77 on an SGI O2 with R5000 processor and 64MB of RAM. The test problems
are taken from the CUTE collection (see Bongartz et al. [1]).

The test set was constructed using the CUTE interactive select tool, which allows
identification of groups of problems with certain features:

Objective function type : *
Constraints type : U
Regularity : R
Degree of available derivatives : *
Problem interest : *
Explicit internal variables : *
Number of variables : v
Number of constraints : 0.

Of the 73 problems selected with this specification, indef was omitted from the tri-
als because the iterates became unbounded for all the methods. For the remaining
problems, the smallest allowable value of n satisfying n ≥ 300 was chosen, with the
following exceptions: Smaller values of n were used for penalty3, mancino, and sensors
because they otherwise took too much memory to “decode” using the SIF decoder
(compiled with the option “tobig”); a smaller n was used for penalty2 because the
initial steepest-descent direction for n = 300 was unusable by the optimizers; n = 50
was used for chnrosnb and errinros since this was the largest value admitted; and the
value n = 31 was used for watson for the same reason.

Four more problems were identified using the select tool with input:

Number of variables : in [50, 300].

This resulted in problems tointgor , tointpsp, tointqor , and hydc20ls being added to
the test set. All of these problems have 50 variables except hydc20ls, which has 99
variables.

We begin our discussion by identifying the “best” implementation of the various

REDUCED-HESSIAN METHODS 231

Table 6.2
Final nonoptimal gradients for RHRL reinitialization schemes on 5 CUTE problems.

Reinitialization option

Problem R0 R1 R2 R3

bdqrtic – 1.0E-4 – 1.3E-5

cragglvy – 9.5E-6 – –
engval1 2.0E-6 3.0E-6 – –
fletcbv3 3.8E-1 1.0E-1 – –
vardim – 2.1E-5 2.1E-5 2.1E-5

Table 6.3
RHRL vs. RHR on 62 CUTE problems.

Method Itn Fcn Cpu

RHRL (R3) 19453 20949 16:35

RHR (R0) 25898 43676 22:19

RHR (R1) 31609 35722 19:30

RHR (R2) 25575 35994 21:00

RHR (R3) 25445 27411 18:30

reduced-Hessian methods presented earlier. There follows a numerical comparison
between this method and several leading optimization codes, including NPSOL [10],
the CDS method [28], and the ACS method [15].

6.1. The benefits of reinitializing curvature. First, we compare an imple-
mentation of RHRL using four alternative values of σk+1 (see (4.1)–(4.3)), labeled
R0–R3. Table 6.1 gives the total number function evaluations and total cpu time
(in minutes and seconds) required for a subset of 64 of the 76 problems. The subset
contains the 64 problems for which RHRL succeeded with every choice of σk+1.

The results clearly indicate that some form of approximate curvature reinitializa-
tion is beneficial in terms of the overall number of function evaluations. This point is
reinforced when RHRL is compared with NPSOL, which has no provision for altering
the initial approximate curvature. However, on the CUTE problems, the decrease in
function evaluations does not necessarily translate into a large advantage in terms
of cpu time. The reason for this is that on the problems where a large difference
in function evaluations occurs, the required cpu time is small. For example, on the
problem extrosnb, the function evaluations/cpu seconds required using R0–R3 are, re-
spectively, 5398/39.6, 4914/20.6, 6764/27.1, and 3418/14.6. Although R3 (i.e., RHRL

implemented with reinitialization option R3) offers a large advantage in terms of func-
tion evaluations, it gains little advantage in cpu time relative to the overall cpu time
required for all 64 problems. This is partly because the CUTE problems tend to have
objective functions that are cheap to evaluate. (On problem extrosnb, RHRL with R0
takes longer than R2 because the final rk is roughly twice the R2 value. With R0,
rk reaches 67 at iteration 81 and remains at that value until convergence at iteration
3862. With R2, however, rk reaches only 17 by iteration 81 and is never greater than
35, converging after 4976 iterations.)

None of R0–R3 succeed on problems arglinb, arglinc, freuroth, hydc20ls, mancino,
nonmsqrt , and penalty3. The problems for which at least one of R0–R3 fail are bdqrtic,
cragglvy , engval1 , fletcbv3, and vardim. Table 6.2 shows which of R0–R3 failed on
these five problems by giving the corresponding values for ‖gk‖ at the final iterate. It

232 PHILIP E. GILL AND MICHAEL W. LEONARD

Table 6.4
Final nonoptimal gradients for RHRL and RHR on 7 CUTE problems.

Problem RHRL (R3) RHR (R0) RHR (R1) RHR (R2) RHR (R3)

bdqrtic 1.3E-5 – 8.3E-5 – –
cragglvy – – 1.2E-5 – –
engval1 – – 1.9E-6 – –
fletcbv3 – 3.3E-01 1.4E-1 1.3E-1 6.7E-2

fletchbv – – 6.4E+3 – 1.4E+6

penalty2 – 1.1E+11 – – –
vardim 2.1E-5 – 2.1E-5 2.1E-5 2.1E-5

Table 6.5
RHRL vs. NPSOL on 64 CUTE problems.

Method Itn Fcn Cpu

RHRL (R3) 22362 27458 17:05

NPSOL 29204 49420 23:55

should be noted that R2 has no real advantage over R3 in this table because R3 nearly
meets the termination criteria on bdqrtic (the final objective value is 1.20× 10−3 for
both methods) and because 74 function evaluations are required by R2, compared to
53 for R3. The cpu seconds required by R2 and R3 on bdqrtic are 0.38 and 0.28.

6.2. The benefits of lingering. Now we illustrate the benefits of lingering by
comparing RHRL with an algorithm, designated RHR, that reinitializes the curvature
when a gradient is accepted, but does not linger. Five algorithms were tested: RHR

with all four resetting options R0–R3, and RHRL with option R3. The termination
criteria were satisfied on 62 of the 76 problems. Table 6.3 gives the total number of
iterations, function evaluations, and cpu time required. All five algorithms failed on
problems arglinb, arglinc, freuroth, hydc20ls, mancino, nonmsqrt and penalty3. This
leaves seven other problems on which at least one of the five methods failed. The
two-norms of the final nonoptimal gradients for these problems are given in Table 6.4.

6.3. RHRL compared with NPSOL. Here we make a numerical comparison
between RHRL and the general-purpose constrained solver NPSOL (see Gill et al.
[10]). NPSOL uses a Cholesky factor of the approximate Hessian. The code requires
approximately n2 +O(n) storage locations for unconstrained optimization. The flop
count for the method is 4n2 +O(n) per iteration, with approximately 3n2 operations
being required for the BFGS update to the Cholesky factor.

In our comparison, both methods meet the termination criteria on 64 of the 76
problems. Table 6.5 gives the total number of iterations, function evaluations and cpu
time for RHRL with R3 and for NPSOL. Both methods failed on problems arglinb,
arglinc, hydc20ls, mancino, nonmsqrt , and penalty3. This leaves six other problems
on which at least one of the methods failed (see Table 6.6).

6.4. RHRL compared with automatic column scaling. Next we compare
RHRL and Algorithm ACS proposed by Lalee and Nocedal [15]. ACS requires storage
for an n × n lower-Hessenberg matrix plus O(n) additional locations; however, the
implementation uses n2 +O(n) elements, as does NPSOL. The flop count for ACS is
not given by Lalee and Nocedal, but we estimate it to be 4n2 +O(n). This number
is obtained as follows. A total of 3

2n
2 +O(n) flops are required to restore the lower-

REDUCED-HESSIAN METHODS 233

Table 6.6
Final nonoptimal gradients for RHRL and NPSOL on 6 CUTE problems.

Problem RHRL (R3) NPSOL

bdqrtic 1.3e-5 –
engval1 – 1.8e-6

fletchbv – 1.1E+6

freuroth 3.6e-6 –
penalty2 – 2.6E+4

vardim 2.1e-5 –

Table 6.7
RHRL vs. ACS on 57 CUTE problems.

Method Itn Fcn Cpu

RHRL (R3) 24667 34947 20:19

ACS (23) 32828 39725 29:38

Hessenberg matrix to a lower-triangular matrix Lk prior to solving for the search
direction. Another n2 flops are required to compute the search direction pk. After
some additional O(n) operations, 3

2n
2 +O(n) flops are required for the BFGS update,

assuming that LT
kpk is saved while computing pk. Note that the work is essentially the

same as that needed for NPSOL because both methods require two sweeps of rotations
to maintain a triangular factor of the approximate Hessian. We have neglected any
computations required for scaling since the version of ACS we tested scales very con-
servatively. In particular, the ACS code has six built-in rescaling strategies numbered
21–26. The last two only rescale during the first iteration. Option 23 appears to be
the one preferred by Lalee and Nocedal since it performs the best on the problems
of Moré, Garbow, and Hillstrom [18] (see Lalee and Nocedal [15, p. 20]). This is the
option used in the tests below.

In our comparison, both RHRL and ACS meet the termination criteria on 57 of
the 76 problems. In Table 6.7, we show the total numbers of iterations, function
evaluations and cpu time for RHRL with R3 and for ACS with scaling option 23.
Both methods fail on problems arglinb, arglinc, bdqrtic, freuroth, hydc20ls, mancino,
nonmsqrt , and penalty3. This leaves nine other problems on which at least one of the
methods fails (see Table 6.8).

6.5. RHRL compared with conjugate-direction scaling. In this section,
we provide a comparison between RHRL and Algorithm CDS proposed by Siegel [28].
CDS requires n2+O(n) storage locations, making it comparable with the implemented
versions of both NPSOL and ACS. An iteration of the algorithm presented by Siegel
[28, p. 9] requires 7n2 + n(n− lc) +O(n) flops when a “full” step is taken, where the
parameter lc is analogous to the partition parameter of RHRL. Otherwise the count
is 4n2 + 3nlc +O(n) flops (see [28, p. 23]). However, Siegel gives a more complicated
formulation that requires only 3n2 + O(n) flops per iteration (see [28, pp. 23–26]).
For our comparison, the faster version of CDS was emulated by using the simpler
formulation while counting the cpu time for only 3n2 +O(n) flops per iteration. This
was done as follows. In order to isolate the 3n2 flops, the flop count for the simpler
CDS method was divided into five parts. The first part is the calculation of V T

k gk,
which requires n2 flops for both the full and partial step. The second part is the
start of the Goldfarb–Powell BFGS update to Vk and the calculation of the search

234 PHILIP E. GILL AND MICHAEL W. LEONARD

Table 6.8
Final nonoptimal gradients for RHRL and ACS on 11 CUTE problems.

Problem RHRL(R3) ACS(23)

chainwoo – 1.8e-6

cragglvy – 2.7e-5

edensch – 3.1e-6

engval1 – 2.7e-6

errinros – 5.2e-6

ncb20 – 2.2e-6

ncb20b – 4.5e-6

noncvxun – 3.1e-6

penalty2 – 3.3e+1

tointgor – 2.7e-6

vardim 2.1e-5 –

Table 6.9
RHRL (R2) vs. CDS on 68 CUTE problems.

Method Itn Fcn Cpu

RHRL (R2) 27190 43577 22:20

CDS 26974 44003 27:10

direction. This part involves postmultiplying Vk by an orthogonal lower-Hessenberg
matrix, Ωk say, and requires 3n2 flops for the full step. (Powell [25, p. 42] suggests a
way to reduce this cost.) In the case of the partial step, 3nlc flops are required. In
both cases, the search direction can be provided as a by-product at the same cost (see
Powell [25, pp. 41–42]), but Siegel prefers to list this calculation separately. Hence,
the third part of CDS is the calculation of the search direction, which requires n2 and
nlc additional flops for the full and partial steps, respectively. The fourth part of CDS

is the completion of the BFGS update, which requires an additional 2n2 flops for both
steps (see Powell [25, p. 33]). The last part of CDS scales trailing columns of Vk and
requires n(n− lc) flops (multiplications). Hence, in order to count only 3n2 flops per
iteration for both types of step, we omit the cpu time for the three tasks of calculating
VkΩk, computing the search direction, and scaling Vk.

The CDS code was implemented with the same line search used for RHR and
RHRL. This allows a fair comparison of CDS with RHRL (R2), which is the reduced-
Hessian variant satisfying the conditions of Theorem 4.3.

Table 6.9 illustrates the connection between RHRL and CDS (see Theorem 4.3)
as well as the advantage of using the reduced-Hessian method. A direct comparison
can be made because both methods meet the termination criteria on the same 68
problems. The problems on which both methods fail are arglinb, arglinc, freuroth,
hydc20ls, mancino, nonmsqrt, penalty3, and vardim. Note that despite the similarity
in the number of iterations and function evaluations, RHRL is roughly 21% faster than
CDS. The improvement in cpu time is gained primarily because the reduced-Hessian
approach allows the search direction to be computed more cheaply during iterations
when r is much less than n.

To further illustrate the connection between RHRL (R2) and CDS, Table 6.10
compares data obtained for the two methods at particular iterations. This comparison
is only for illustration and no statistical argument is being made. The three problems
were chosen because the iterates match quite closely. Table 6.9 illustrates that the

REDUCED-HESSIAN METHODS 235

Table 6.10
Iteration data for RHRL (R2) and CDS on 3 CUTE problems.

Problem Method k αk f(xk) ‖gk‖ |gT
kpk|

broydn7d RHRL 144 0.12E+00 0.12069659E+03 0.35E-05 0.19E-11

CDS 144 0.12E+00 0.12069659E+03 0.35E-05 0.19E-11

dixmaanl RHRL 322 0.10E+01 0.10000001E+01 0.57E-04 0.12E-06

CDS 322 0.10E+01 0.10000001E+01 0.57E-04 0.12E-06

morebv RHRL 300 0.10E+01 0.15708889E-07 0.71E-05 0.72E-08

CDS 300 0.10E+01 0.15708889E-07 0.71E-05 0.72E-08

Table 6.11
RHRL (R3) vs. CDS on 67 CUTE problems.

Method Itn Fcn Cpu

RHRL (R3) 26255 37082 21:10

CDS 26921 43900 27:07

iterates are not always identical.
When RHRL is used with R3, a further improvement in cpu time is gained relative

to CDS. In this case, RHRL fails on one additional problem, bdqrtic, with final gradient
norm 1.3 × 10−5. Table 6.11 compares the iterations, function evaluations, and cpu
time for the two methods on the set of 67/76 mutually successful test problems. Here,
RHRL has a 28% advantage in cpu time.

7. Conclusions. Algorithms that compute an explicit reduced-Hessian approx-
imation have two important advantages over conventional quasi-Newton methods.
First, the amount of computation for each iteration is significantly less during the
early stages. Second, approximate curvature along directions that lie off the manifold
can be reinitialized as the iterations proceed, thereby reducing the influence of a poor
initial estimate of the Hessian.

The results of section 6 indicate that reduced-Hessian methods can require sub-
stantially less computer time than a conventional BFGS method and some recently
proposed extensions. Part of the reduction in computer time corresponds to the
smaller number of iterations and function evaluations required when using the reini-
tialization strategy (see Tables 6.5, 6.7, 6.9, and 6.11). However, much of the reduction
in computer time is the result of the average cost of an iteration being less than for
competing methods. This result may seem surprising when it is considered that a
reduced-Hessian iteration generally requires more work as the number of iterations
approaches n. For example, if an RH direction is always used on a problem with
dimension n = 300, an iteration of RHRL is more expensive than an iteration of CDS

when rk ≥ 170. However, on 83% of the problems tested with dimension 300, the
average value of rk remains below this value. In most cases, the maximum value of
rk remained small relative to 170. Table 7.1 gives the average and maximum values
of rk for 54 CUTE problems with n = 300. The maximum value of rk exceeds 170
on only 20 of the 54 problems listed, while the average value exceeds 170 on only 9
problems. (Remarkably, there are several cases where rk does not exceed 50.) It is
this feature that gives RHRL a significant advantage over the other algorithms tested
in terms of the cost of the linear algebra per iteration.

236 PHILIP E. GILL AND MICHAEL W. LEONARD

Table 7.1
Final and average values of rk on 54 CUTE problems with dimension n = 300.

Problem Mean r Final r Problem Mean r Final r

arglina 2 2 fletchbv 288 300
arwhead 2 2 fletchcr 26 50
brownal 3 3 genrose 225 300
broydn7d 78 154 hilberta 9 12
brybnd 27 52 hilbertb 4 6
chainwoo 101 193 liarwhd 2 2
cosine 6 11 morebv 159 296
cragglvy 54 106 ncb20 87 173
dixmaana 3 3 ncb20b 166 300
dixmaanb 6 11 noncvxu2 164 298
dixmaanc 7 13 noncvxun 150 290
dixmaand 8 14 nondia 2 2
dixmaane 48 93 nondquar 217 300
dixmaanf 47 90 penalty1 2 2
dixmaang 46 91 powellsg 4 4
dixmaanh 45 88 power 86 98
dixmaani 170 300 quartc 274 298
dixmaank 173 300 schmvett 22 43
dixmaanl 169 300 sinquad 3 3
dixon3dq 158 300 sparsine 216 300
dqdrtic 5 5 sparsqur 174 300
dqrtic 274 298 srosenbr 2 2
edensch 14 29 testquad 104 161
engval1 12 23 tointgss 2 2
extrosnb 28 32 tridia 85 166
fletcbv2 149 297 vareigvl 104 204
fletcbv3 284 300 woods 4 4

Acknowledgments. We thank Marucha Lalee and Jorge Nocedal for graciously
providing a copy of their ACS code.

REFERENCES

[1] I. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint, CUTE: Constrained and
unconstrained testing environment, ACM Trans. Math. Software, 21 (1995), pp. 123–160.

[2] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogonalization and
stable algorithms for updating the Gram–Schmidt QR factorization, Math. Comput., 30
(1976), pp. 772–795.

[3] J. E. Dennis, Jr., and R. B. Schnabel, A new derivation of symmetric positive definite
secant updates, in Nonlinear Programming 4, O. L. Mangasarian, R. R. Meyer, and S. M.
Robinson, eds., Academic Press, London, New York, 1981, pp. 167–199.

[4] M. C. Fenelon, Preconditioned Conjugate-Gradient-Type Methods for Large-Scale Uncon-
strained Optimization, Ph.D. thesis, Department of Operations Research, Stanford Uni-
versity, Stanford, CA, 1981.

[5] R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley, Chichester, New York,
Brisbane, Toronto, Singapore, 1987.

[6] R. Fletcher and M. J. D. Powell, A rapidly convergent descent method for minimization,
Computer Journal, 6 (1963), pp. 163–168.

[7] R. W. Freund, G. H. Golub, and N. M. Nachtigal, Iterative solution of linear systems,
Acta Numer. 1992, Cambridge University Press, Cambridge, UK, 1992, pp. 57–100.

[8] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods for modifying matrix
factorizations, Math. Comput., 28 (1974), pp. 505–535.

[9] P. E. Gill and M. W. Leonard, Limited-Memory Reduced-Hessian Methods for Uncon-
strained Optimization, Numerical Analysis Report NA 97-1, University of California, San
Diego, CA, 1997.

REDUCED-HESSIAN METHODS 237

[10] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, User’s Guide for NPSOL
(Version 4.0): A Fortran Package for Nonlinear Programming, Report SOL 86-2, Depart-
ment of Operations Research, Stanford University, Stanford, CA, 1986.

[11] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, Lon-
don, New York, 1981.

[12] D. Goldfarb, Factorized variable metric methods for unconstrained optimization, Math. Com-
put., 30 (1976), pp. 796–811.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1989.

[14] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Frontiers in Appl. Math.
16, SIAM, Philadelphia, PA, 1995.

[15] M. Lalee and J. Nocedal, Automatic column scaling strategies for quasi-Newton methods,
SIAM J. Optim., 3 (1993), pp. 637–653.

[16] M. W. Leonard, Reduced Hessian Quasi-Newton Methods for Optimization, Ph.D. thesis,
Department of Mathematics, University of California, San Diego, CA, 1995.

[17] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,
Math. Programming, 45 (1989), pp. 503–528.

[18] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization soft-
ware, ACM Trans. Math. Software, 7 (1981), pp. 17–41.

[19] J. J. Moré and D. C. Sorensen, Newton’s method, in Studies in Numerical Analysis, MAA
Stud. Math. 24, G. H. Golub, ed., The Mathematical Association of America, Washington,
DC, 1984, pp. 29–82.

[20] J. J. Moré and D. J. Thuente, Line search algorithms with guaranteed sufficient decrease,
ACM Trans. Math. Software, 20 (1994), pp. 286–307.

[21] J. L. Nazareth, The method of successive affine reduction for nonlinear minimization, Math.
Programming, 35 (1986), pp. 97–109.

[22] L. Nazareth, A relationship between the BFGS and conjugate gradient algorithms and its
implications for new algorithms, SIAM J. Numer. Anal., 16 (1979), pp. 794–800.

[23] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comput., 35 (1980),
pp. 773–782.

[24] S. S. Oren and D. G. Luenberger, Self-scaling variable metric (SSVM) algorithms, Part I:
Criteria and sufficient conditions for scaling a class of algorithms, Management Science,
20 (1974), pp. 845–862.

[25] M. J. D. Powell, Updating conjugate directions by the BFGS formula, Math. Programming,
38 (1987), pp. 693–726.

[26] D. F. Shanno and K. Phua, Matrix conditioning and nonlinear optimization, Math. Program-
ming, 14 (1978), pp. 149–160.

[27] D. Siegel, Implementing and Modifying Broyden Class Updates for Large Scale Optimiza-
tion, Report DAMTP/1992/NA12, Department of Applied Mathematics and Theoretical
Physics, University of Cambridge, Cambridge, UK, 1992.

[28] D. Siegel, Modifying the BFGS update by a new column scaling technique, Math. Program-
ming, 66 (1994), pp. 45–78.

