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Abstract

Almost all interior-point methods for linear programming published to date
can be viewed as application of Newton’s method to minimize (approximately)
a sequence of logarithmic barrier functions. These methods have been observed
to suffer from certain undesirable features—most notably, badly behaved sub-
problems arising from large derivatives of the barrier function near the con-
straint boundary. We define a shifted barrier method intended to avoid these
difficulties. Convergence proofs are given for both exact and approximate so-
lution of the shifted barrier subproblems corresponding to the primal and dual
problems. We also show that the usual Newton iterates eventually satisfy the
requirements for sufficiently accurate approximate solutions. Several practical
strategies are suggested for initializing and updating the weights and shifts.

1. Introduction

Consider the inequality-constrained optimization problem

minimize
x∈Rn

f(x) subject to c(x) ≥ 0, (NIP)
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87ER25030; National Science Foundation Grant CCR-8413211; and the Office of Naval Research
Contract N00014-87-K-0142.
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where c(x) is an l-vector of constraint functions.
A “classical” approach (dating from the 1950’s) for solving (NIP) is to create a

barrier function, which is a weighted combination of ϕ(x) and a barrier term for each
constraint. (A barrier term is a differentiable function with a positive singularity
at the constraint boundary.) We treat only the logarithmic barrier function, first
proposed by Frisch [Fri55], in which the barrier term corresponding to the constraint
ci(x) ≥ 0 is − ln ci(x), so that the barrier function associated with (NIP) is

B(w, x) ≡ ϕ(x)−
l∑

i=1

wi ln ci(x), (1.1)

where wi > 0 for all i. When all {wi} have a common value (say, µ), µ is usually
called the barrier parameter.

Let x∗(w) denote an unconstrained minimizer of B(w, x). Under mild conditions
on ϕ and {ci}, it can be shown that

lim
‖w‖→0

x∗(w) = x∗,

where x∗ is a solution of the original problem (NIP). In a practical barrier-function
method, the requirement of exact minimization is relaxed, and approximate mini-
mizers of B(wk, x) are computed for a sequence of weight vectors {wk} converging
to zero. Since the barrier term is undefined outside the feasible region, a strictly
feasible starting point (satisfying c(x) > 0) is required for each minimization, and
only strictly feasible iterates are generated.

A complementary and similarly longstanding approach to solving problem (NIP)
involves definition of a penalty function, a weighted combination of ϕ and a penalty
term (a continuous function that measures constraint violations). The most popular
penalty term has traditionally been the squared two-norm, which gives the quadratic
penalty function. Under mild conditions, the unconstrained minimizers of a sequence
of quadratic penalty functions converge to x∗ if the weight corresponding to each
violated constraint becomes infinite.

For a complete discussion of barrier methods, see Fiacco [Fia79]. Classical barrier
and penalty methods are described in Fiacco and McCormick [FM68]. Fletcher [Fle81]
and Gill, Murray and Wright [GMW81] give overviews of barrier and penalty meth-
ods.

Powell [Pow69] derived the well known class of augmented Lagrangian methods
from the idea of adaptively shifting the constraint boundaries in a quadratic penalty
method, i.e., replacing the constraint ci(x) ≥ 0 by ci(x)+si ≥ 0, where the nonnega-
tive shift si may change as the algorithm proceeds. With proper choice of shifts and
weights, the penalty function is equivalent to an augmented Lagrangian function,
and the sequence of penalty-function minimizers converges to x∗ for a finite weight
vector. An obvious extension to barrier methods is to shift the location of the singu-
larity. (A brief description of such an algorithm in the context of active-set methods
for nonlinear programming is given by Osborne [Osb72].) However, there is no clear
relationship between a shifted barrier function and the Lagrangian function, and
such methods have not been widely used.
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It is now generally recognized that essentially all interior-point methods for lin-
ear programming inspired by Karmarkar’s [Kar84] projective method are closely
related to application of Newton’s method to a sequence of barrier functions. New-
ton’s method is based on minimizing a local quadratic model of the barrier function
derived from first and second derivative information at the current iterate. Unfortu-
nately, several difficulties can arise because of the nature of barrier functions. The
extreme nonlinearity of the barrier term near the boundary means that a quadratic
model may be accurate only in a very small neighborhood of the current point. For a
degenerate linear program, the Hessian of the barrier function becomes increasingly
ill-conditioned at x∗(w) when ‖w‖ is very small (see Section 4). Finally, a strictly
interior starting point may be inconvenient or impossible to obtain.

The purpose of this paper is to derive shifted barrier methods for linear pro-
gramming specifically designed to avoid these difficulties. In Section 2, we describe
a shifted barrier method for a linear program in standard form, and give a rela-
tionship between the weights and shifts that ensures convergence. A shifted barrier
method for the dual formulation of a linear program is given in Section 3. In Sec-
tion 4, we describe the behavior of shifted barrier subproblems in the neighborhood
of the solution. The properties of Newton’s method applied to both the primal and
dual subproblems are discussed in Section 5. Finally, methods for initializing and
updating the shifts are proposed in Section 6, which concludes with the definition
of a Lagrangian shifted barrier method for both primal and dual problems.

1.1. Notation and background

The primal linear program is taken to be of the form

LP minimize
x

cTx

subject to Ax = b, x ≥ 0,
(1.2)

where A is an m× n matrix of full rank with m ≤ n, and both b and c are nonzero.
We assume throughout that a solution exists.

The dual linear program associated with (1.2) is given by

DLP minimize
π∈Rm

−bTπ

subject to −ATπ ≥ −c,
(1.3)

where for consistency we have posed the problem in terms of minimization and
lower-bound constraints.

The feasible point x∗ solves the primal problem (1.2) if an m-vector π∗ exists
such that the n-vector z∗ defined by

z∗ ≡ c−ATπ∗ (1.4)

satisfies

z∗ ≥ 0 and (1.5a)

z∗jx
∗
j = 0, j = 1, . . . , n. (1.5b)
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The vectors π∗ and z∗ are the Lagrange multipliers associated with the constraints
Ax = b and x ≥ 0 respectively, and π∗ is a solution of the dual problem. Let
X ∗ denote the (nonempty) set of all solutions of LP, and Π∗ denote the set of all
solutions of DLP. Associated with each π∗ ∈ Π∗ is z∗. Let Z∗ denote the set of all
z∗. It will be convenient to introduce the notation x∗k, π∗k and z∗k to denote the
nearest element in X ∗, Π∗ and z∗ to xk, π

k and zk respectively. We shall sometimes
need to refer to nondegenerate points. A point is said to be nondegenerate if the
number of constraints that are exactly satisfied at the point is not greater than the
number of variables. In the primal space this implies a point x is nondegenerate if
no more than n −m elements of x are zero. In the dual space it implies no more
than m elements of z are zero.

2. Shifted Barrier Methods for the Primal Problem

Throughout this paper, s and w will denote vectors called shifts and weights. The
shifted barrier function corresponding to problem (NIP) is

B(w, s, x) = ϕ(x)−
l∑

i=1

wi ln(ci(x) + si), (2.1)

where wi > 0 and si ≥ 0. Any unconstrained minimizer of (2.1) lies strictly interior
with respect to the shifted constraints. Choosing si = 0 for all i gives an “unshifted”
barrier function.

Specializing this definition to linear programming, the primal shifted barrier
subproblem associated with problem (1.2) is

SBP(w, s) minimize
x

FP (x) ≡ cTx−
n∑
j=1

wj ln(xj + sj)

subject to Ax = b.

(2.2)

We shall show the explicit dependence of SBP on w and s only when necessary.
Throughout this section, we assume that the constraints of problem LP define a

bounded feasible region. This assumption guarantees that the feasible region for the
dual has a nontrivial interior. Any solution of SBP must satisfy Ax = b. Since the
feasible region of LP is bounded and the objective function of SBP is strictly convex,
its solution, denoted by x∗(w, s), is unique. Since A has full rank, the associated
Lagrange multiplier vector π∗(w, s) associated with the equality constraints of SBP
is also unique, and ‖π∗(w, s)‖ is bounded (see Stewart [Ste88]).

2.1. The role of the Lagrangian function

The Lagrangian function associated with SBP is

L(x, π, w, s) = cTx−
n∑
j=1

wj ln(xj + sj)− πT(Ax− b), (2.3)
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where π is usually interpreted as a vector of Lagrange multipliers associated with
the constraints Ax = b. For any m-vector π, it is convenient to associate an n-vector
z defined by

z ≡ c−ATπ. (2.4)

The gradient of the Lagrangian (2.3) with respect to x is denoted by gL, and is given
by

gL(x, π) ≡ ∇xL(x, π) = c−
n∑
j=1

wj
xj + sj

ej −ATπ (2.5a)

= z −
n∑
j=1

wj
xj + sj

ej , (2.5b)

where ej denotes the j-th coordinate vector. (As with SBP, the dependence of gL
on w and s is suppressed if the meaning is clear.) Because of the properties of SBP,
the Lagrangian (2.3) has a unique stationary point at (x∗(w, s), π∗(w, s)).

In an unshifted barrier method, ‖w‖ must converge to zero in order for minimiz-
ers of the barrier function (1.1) to converge to the solution of the original problem.
We now give a more relaxed condition that ensures convergence of the sequence of
solutions of the shifted barrier subproblem when there exists a dual solution that is
a nondegenerate point.

Consider a sequence of shifted barrier subproblems {SBP(wk, sk)}, where wk

and sk denote the vectors of weights and shifts defining the k-th subproblem. Let
the solution of the k-th subproblem be xk, with πk the corresponding Lagrange
multiplier.

Lemma 2.1. Let {wk} and {sk} be sequences of positive weights and shifts such
that

lim
k→∞

wkj

skj
= z∗j , (2.6)

where z∗ is defined by (1.4) for any π∗ ∈ Π∗. If there exists a dual solution that is
a nondegenerate point of the dual of LP, then limk→∞ x

k = x∗.

Proof. The existence of a nondegenerate dual solution implies x∗ is unique. Con-
vergence of the ratio {wkj /skj } to z∗j implies that wkj /s

k
j = z∗j + εkj , where εkj → 0.

(We sometimes use the notation τk → γ to mean limk→∞ τ
k = γ.) Because of the

optimality conditions for LP (cf.. (1.5b)), we know that z∗jx
∗
j = 0. Accordingly, wkj

may be written as

wkj = skj z
∗
j + skj ε

k
j = (x∗j + skj )z

∗
j + skj ε

k
j ,

which gives
wkj

x∗j + skj
= z∗j +

skj ε
k
j

x∗j + skj
. (2.7)
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Let Lk denote the Lagrangian function (2.3) defined with weights wk and shifts
sk. From (2.5), the gradient of Lk with respect to x evaluated at (x∗, π∗) is given
by

gkL(x∗, π∗) = c−
n∑
j=1

wkj

x∗j + skj
ej −ATπ∗.

Substituting from (2.7) gives

gkL(x∗, π∗) = c− z∗ −
n∑
j=1

skj ε
k
j

x∗j + skj
ej −ATπ∗ = −

n∑
j=1

skj ε
k
j

x∗j + skj
ej .

Because x∗ ≥ 0 and sk > 0, the quotient skj /(x
∗
j + skj ) is uniformly bounded, and

consequently gkL(x∗, π∗) = O(‖εk‖). Since the solution of SBP is unique, convergence
of εk to 0 and boundedness of the feasible region of (1.2) imply that limk→∞ x

k = x∗,
as required.

2.2. Convergence of the primal shifted barrier method

There are many ways in which the shifts may be defined. However, some restrictions
are necessary to ensure that the sequence {xkj } is feasible in the limit. We shall define

one particular algorithm for skj .
Those chosen were done with the view to the knowledge that in solving the

(k + 1)-th subproblem we may wish to use as an initial point the solution of the
k-th subproblem. This being the case we require xk + sk+1 > 0. It will be always
possible to satisfy this condition if sk+1 < sk only if xk > 0.

The algorithm requires three preassigned scalars: ν, ρ and θ. The value of ν
(0 < ν < 1) determines the maximum potential reduction in any shift at each
iteration. The values of θ (0 < θ < ∞) and ρ (0 < ρ < ∞) are used to limit the
oscillations in xj for components whose reduced costs are going to zero.

Given an initial estimates {x0j} and {π0i } of the primal and dual variables, the

initial shifts {s1j} are any set of bounded positive numbers and the initial weights

are w1
j = z0j s

1
j , where z0 ≡ c−ATπ0. Thereafter, xk denotes the (unique) minimizer

of SBP(wk, sk) subject to x + sk > 0, πk denotes the associated multiplier vector
and zk ≡ c−ATπk.

Associated with each variable are two numbers µj and aj . The scalar µj holds
the smallest reduced cost computed so far. The scalar aj defines a threshold value
that is used to test if the zj-s appear to be converging to zero. A decreasing reduced
cost that is less than aj triggers a reduction in the shift. Initially, we set µj = z0j
and aj = νz0j .
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Algorithm WS (Update for the weights and shifts)

σ1 ← skj ; σ2 ← skj ;

µj ← min{µj , zkj };
if xkj < −θ/k then

nj ← nj + 1;
else if xkj > ρµj and nj > 0 then

σ1 ← νρµj ; nj ← 0;
end if
if zkj < zk−1j and zkj < aj then

σ2 ← νskj ; aj ← νaj ;

end if
sk+1
j ← min{σ1, σ2}; wk+1

j ← zkj s
k+1
j ;

The following lemma summarizes the properties that are needed to prove the
main convergence theorem. Any alternative definition of the shifts must give a
sequence {skj } that satisfies the same properties.

Lemma 2.2. If the shifts are defined by Algorithm WS, then the sequence {skj } has
the following properties.

1. If {ki} is a subsequence such that limi→∞ z
ki
j = 0, then limk→∞ s

k
j = 0.

2. There exists a bounded positive constant M such that 0 ≤ skj ≤M for all k > 0

and Mskj > sij for all i > k.

In the main theorem, we establish convergence without any assumptions regard-
ing the degeneracy of either LP or its dual.

Theorem 2.1. (Convergence with exact solutions of SBP.) Let {wk} and {sk} de-
note the weights and shifts generated by Algorithm WS. Let xk denote the (unique)
minimizer of SBP(wk, sk) subject to x+ sk > 0, πk the associated multiplier vector
and zk ≡ c−ATπk. Then

lim
k→∞

‖x∗k − xk‖ = 0 and lim
k→∞

‖π∗k − πk‖ = 0.

Proof. First, we use an inductive argument to show that the elements of wk and zk

are positive for all k. Assume that wl > 0 for l ≥ 0. By definition, gL (2.5) vanishes
at (xl, πl), which implies that

zlj = cj − aTj πl =
wlj

xlj + slj
. (2.8)

Since xl is interior with respect to the shifted constraints, we have xlj + slj > 0,

and (2.8) then implies that zlj > 0. The positivity of wl+1 follows directly from the

definition wl+1
j = zljs

l+1
j (see Algorithm WS). Since w0 is positive by construction,
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wl > 0 for all l. Furthermore, the positivity of zl implies that πl is feasible for the
dual problem (1.3).

Premultiplying the relation zk = c−ATπk by (xk)T gives

(xk)T zk = (xk)T (c−ATπk).

Since xk satisfies Axk = b, we have

(xk)T zk = cTxk − bTπk. (2.9)

A similar argument with zk−1 gives

(xk)T zk−1 = cTxk − bTπk−1. (2.10)

Combining (2.9) and (2.10), we obtain

bTπk − bTπk−1 = (xk)T (zk−1 − zk). (2.11)

Next we substitute wkj = zk−1j skj in (2.8) to obtain

zkj =
wkj

xkj + skj
=

zk−1j skj

xkj + skj
, or zk−1j =

zkj (xkj + skj )

skj
. (2.12)

Using the latter expression to substitute for zk−1j in (2.11) gives

bTπk − bTπk−1 =

n∑
j=1

zkj (xkj )
2

skj
> 0. (2.13)

Since πk is feasible for the dual problem (1.3), it follows that bTπk ≤ bTπ∗ < ∞.
The sequence {bTπk} is monotonically increasing and bounded above, and therefore
converges, i.e., limk→∞(bTπk − bTπk−1) = 0. It follows from (2.13) that

lim
k→∞

n∑
j=1

zkj (xkj )
2

skj
= 0.

Since ‖sk‖ is bounded, we have

zkj x
k
j → 0 and (zk)Txk → 0. (2.14)

Relations (2.9) and (2.14) then give

lim
k→∞

(cTxk − bTπk) = 0, or equivalently, lim
k→∞

cTxk = lim
k→∞

bTπk. (2.15)

The standard duality connection between LP and DLP implies that

cTx∗ = bTπ∗, (2.16)
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so that (2.15) gives

lim
k→∞

cTxk = lim
k→∞

bTπk ≤ bTπ∗ = cTx∗, (2.17)

which leads to
lim
k→∞

cTxk ≤ cTx∗. (2.18)

We shall now show a subsequence {xkj} exists such that

lim
j→∞

‖xkj − x̄j‖ = 0,

where x̄j is the closest feasible point to xkj . The sequence {xkj } must behave as one
of the following cases:

(1) lim infk→∞ x
k
j ≥ 0;

(2) lim infk→∞ x
k
j < 0 and lim supk→∞ x

k
j < 0;

(3) lim infk→∞ x
k
j < 0 and lim supk→∞ x

k
j > 0; or

(4) lim infk→∞ x
k
j < 0 and lim supk→∞ x

k
j = 0.

If case (1) occurs, the component of xk is feasible. If case (2) occurs, then for some
k > K we have xki < −θ < 0. Given the identity

zkj =
skj

xkj + skj
zk−1j ,

it follows that zkj is monotonically increasing for k > K, which contradicts the result

that limk→∞ z
k
j = 0 implied by (2.14).

In case (3), there must exist a subsequence, say {xkij } such that xkij < −θ < 0.

It follows from (2.14) that limi→∞ z
ki
j = 0. Hence from condition (c) on the shifts

we have limi→∞ s
ki
j = 0. This contradicts the condition that xkij + skij > 0.

It follows from lemma (6.3) that if even if case (4) occurs for all elements of xk,
there exists a subsequence such that

lim
i→∞
‖x̂li − x̂i‖ = 0,

where x̂k denotes those elements of xk for which case (4) occurs. We have shown
that the convergence behavior is described by case (1), so that

lim
i→∞
‖xki − x̄i‖ = 0.

It follows immediately from this result and (2.17) that

lim
k→∞

cTxk = lim
k→∞

bTπk = bTπ∗ = cTx∗. (2.19)



2. Shifted Barrier Methods for the Primal Problem 10

Finally, since πk is dual feasible we must have

lim
k→∞

‖π∗k − πk‖ = 0

and
lim
k→∞

‖z∗k − zk‖ = 0. (2.20)

Note we have yet to use condition (b). It follows from (2.19) that in order to
prove the final result, it is necessary only to show that limk→∞ dk = 0, where dk is the
shortest distance from xk to the feasible region. Suppose there exists a subsequence
such that xkij ≤ −ε < 0. It follows that limi→∞ z

ki
j = 0. From condition (b) we

obtain limi→∞ s
ki
j = 0, which implies that for i sufficiently large, xkij +skij < 0. Since

this contradicts our assumptions regarding the definition of the shifts, it follows no
such subsequence exists and

lim
k→∞

‖x∗k − xk‖ = 0.

It should be noted that there is no difficulty in constructing a sequence such
that limk→∞ s

k
j = 0 if limi→∞ z

ki
j = 0 since this latter limit implies the existence of

a subsequence {li} such that xlij > 0.

Corollary 2.1. If condition (b) in Theorem 2.1 is replaced by the assumption that
Z∗ is a set of nondegenerate points then the results of the theorem still hold.

Proof. Since condition (b) was not used to show convergence of {πk} we need only
be concerned with showing {xk} converges to a feasible point. If z∗ is a nondegen-
erate point then x∗ is unique. Consider the following linear program:

LPk minimize
x

cTx

subject to Ax = b,

xj ≥ 0, j /∈ J k, xj ≥ xkj , j ∈ J k,

(2.21)

where J k is the set of indices such that xkj < 0. Let X̂k denote the set of solutions

of LPk and (Ẑk, Π̂k) the corresponding dual solutions. Clearly xk is feasible for LPk

and (zk, πk) is dual feasible. It follows from (2.14) that

lim
k→∞

∑
i/∈J k

xki z
k
i = 0.

Consequently, limk→∞ ‖zk − ẑk‖ = 0 and limk→∞ ‖πk − π̂k‖ = 0, where ẑk and
π̂k are the nearest elements in Ẑk and Π̂k to zk and πk respectively. This implies
that in the limit there exists a dual solution of LPk that is a nondegenerate point.
Consequently, in the limit the primal solution of LPk is unique. From (2.19) we have
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limk→∞ c
Tx̄k = cTx∗. We can, therefore, infer that the solution of LPk is unique only

if limk→∞ x
k = x∗.

It follows from
lim
k→∞

∑
i∈J k

xki z
k
i + bTπk = bTπ∗

that in the limit all dual solutions of LPk are dual solutions of LP. Consequently all
dual solutions of LPk are nondegenerate points.

Corollary 2.2. Under the same assumptions as in theorem 2.1 except condition (b)
is replaced by the assumption that x∗ and z∗ are unique (this would be true if
x∗ and z∗ are nondegenerate points of LP and the dual of LP respectively), then
limk→∞ x

k = x∗ and limk→∞ π
k = π∗. Moreover, condition (c) does not restrict the

choice of sk.

Proof. We need only show the choice of sk is not restricted by condition (c) since
limk→∞ x

k = x∗ and limk→∞ z
k = z∗ follows immediately from the corollary 2.1.

The shifts are only restricted if there exists a subsequence where sk is restricted.
Suppose such a subsequence exists for the i-th shift. Since the previous corollary
establishes the convergence of xk and zk we must either have limk→∞ x

k
i = 0 or

limk→∞ x
k
i > 0. If it is the first case then limk→∞ z

k
i > 0, which implies there exists

θ such that zki ≥ θ and sk is not restricted by the rule. If limk→∞ x
k
i > 0 there

exists K such that for all k > K, xki > θ > 0. This contradicts the existence of the

subsequence, which requires there exists a subsequence {kj} such that x
kj
i < 0.

Although these corollarys show it is not necessary to have some elements of sk

tend to zero it will be seen later that this may be desirable.
In practice, it is likely to be inefficient to solve each shifted barrier subproblem

exactly. The next theorem gives conditions under which a sequence of approximate
solutions of SBP converges to the desired solution of LP. In Section 5 we show that
these conditions are eventually satisfied when Newton’s method is applied to solve
SBP.

Theorem 2.2. (Convergence with approximate solutions of SBP.) Let, xk be an
approximate solution of SBP(wk, sk). Let the sequence {πk} represent corresponding
approximate Lagrange multiplier vectors, with zk = c − ATπk. Assume the weights
and shifts satisfy the conditions given in Theorem 2.1. Let β be a scalar such that
0 < β < 1. If xk and πk satisfy

(a) Axk = b, xk + sk > 0;

(b) bTπk − bTπk−1 ≥ β
n∑
j=1

zk−1j (xkj )
2

xkj + skj
; and

(c) |(gkL)j | < 1
2

skj z
k−1
j

k!(xkj + skj )
;
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then
lim
k→∞

‖x∗k − xk‖ = 0 and lim
k→∞

‖π∗k − πk‖ = 0.

Proof. It should be clear from Theorem 2.1 that the conditions given above are
satisfied by the exact solution of SBP(wk, sk). The proof is similar in structure to
that of Theorem 2.1.

For any x and π, rearranging expression (2.5) gives

zj = (gkL)j +
wkj

xj + skj
.

Hence, for k ≥ 0 (by convention we define z−1j = w0
j/s

0
j )

zkj = (gkL)j +
skj z

k−1
j

xj + skj
.

It follows when condition (c) is satisfied that

zkj = ψk
skj z

k−1
j

xj + skj
,

where ψk is either 1 + 0.5/k! or 1− 0.5/k! depending on the sign of (gkL)j . In either
case it follows from induction that zkj > 0 and wkj > 0. Hence, πk is dual feasible

and bTπk < bTπ∗ <∞.
The sequence {bTπk} is monotonically increasing (from assumption (b)) and

bounded above, and therefore converges, i.e., limk→∞(bTπk − bTπk−1) = 0. Further-
more,

lim
k→∞

zkj x
k
j = 0, so that lim

k→∞
(zk)Txk = 0. (2.22)

Assumption (a) implies that (xk)T zk = cTxk−bTπk, which, combined with (2.22),
gives limk→∞ c

Txk = limk→∞ b
Tπk. The remainder of the proof is now identical to

Theorem 2.1. The condition (c) also ensures that Lemma 6.3 still applies.

Corollary 2.3. If condition (b) in Theorem 2.2 (given in theorem 2.1) is replaced
by the assumption that Z∗ is a set of nondegenerate points then the results of the
theorem still hold.

Corollary 2.4. Under the same assumptions as in theorem 2.2 except condition (b)
on the shifts is replaced by the assumption that x∗ and z∗ are unique (this would
be true if x∗ and z∗ are nondegenerate points of LP and its dual respectively), then
limk→∞ x

k = x∗ and limk→∞ z
k = z∗. Moreover, condition (c) does not restrict the

choice of sk.
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3. Shifted Barrier Methods for the Dual Linear Program

Since all constraints of the dual problem DLP (1.3) are inequalities, applying a
shifted barrier transformation to this problem leads to a purely unconstrained sub-
problem:

DSBP(w, s) minimize
π∈Rm

FD(π) ≡ −bTπ −
n∑
j=1

wj ln(cj − aTjπ + sj). (3.1)

We assume in this section that the feasible region for DLP is bounded. Since DBSP
is then a strictly convex function defined on a bounded domain, its unconstrained
minimizer π∗(w, s) is unique.

Given π, z is defined as usual as z = c−ATπ. For particular vectors w, s and z,
we define x from

xj =
wj

zj + sj
. (3.2)

The choice of the notation x is deliberate, since the gradient of FD is Ax − b, and
x approximates the solution of the primal problem LP when π approximates the
solution of the dual. When the gradient of FD vanishes, x satisfies x > 0 and
Ax = b.

Let {wk} and {sk} denote sequences of weights and shifts. The following lemma,
stated without proof, is analogous to Lemma 2.1.

Lemma 3.1. Let {wk} and {sk} be infinite sequences of positive weights and shifts
such that wkj /s

k
j → x∗j. Assume that LP has at least one primal solution that is a

nondegenerate point, and let πk denote the unconstrained minimizer of DSBP(wk, sk).
Then limk→∞ π

k = π∗.

Theorem 3.1. (Convergence with exact solutions of DSBP.) Let {wk} and {sk}
be infinite sequences of weights and shifts, where w0 > 0, ∞ > M > sk > 0 and
Msk > sj for j > k. Let πk denote the unique minimizer of DSBP with weights wk

and shifts sk, and let xk be given by (3.2). If

(i)
wkj = xk−1j skj for k ≥ 1, (3.3)

(ii) If {ki} is a subsequence such that limi→∞ x
ki
j = 0 then limk→∞ s

k
j = 0.

(iii) If a pair of indices exists, say r and t, with t > r such that

zri < −θ/r

and
zti > M̄φti,

where ∞ > M̄ > 0 and φti = min{xki | k = 1, . . . , t} then sji < M̄φti for j ≥ t.
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It follows if the above conditions are satisfied that

lim
k→∞

‖x∗k − xk‖ = 0

and
lim
k→∞

‖π∗k − πk‖ = 0.

Proof. The proof is almost identical to that of Theorem 2.1. Recall that xk−1 and
xk are feasible for LP. Multiplying zk by (xk−1)T and (xk)T gives

(xk−1)T zk = (xk−1)T c− (xk−1)TATπk = (xk−1)T c− bTπk (3.4)

and
(xk)T zk = (xk)T c− bTπk. (3.5)

Eliminating bTπk from (3.4) and (3.5) gives

cTxk−1 − cTxk = (zk)T (xk−1 − xk) =
n∑
j=1

zkj (xk−1j − xkj ). (3.6)

Substituting wkj (3.3) in the definition of xkj gives

xkj =
wkj

zkj + skj
=
xk−1j skj

zkj + skj
.

Using this expression to substitute for xk−1j in (3.6) we obtain

cTxk−1 − cTxk =

n∑
j=1

(zkj )2xkj

skj
.

It follows that limk→∞ c
T(xk−1 − xk) = 0, and the remainder of the proof follows

that of Theorem 2.1 with the roles of z and x interchanged.

The following two results analogous to Corollaries 2.1 and 2.2 may also be proved
in a straightforward fashion.

Corollary 3.1. Under the same assumptions as in Theorem 3.1 except condition
(ii), but with the assumption that X∗ is a set of nondegenerate points then limk→∞ π

k =
π∗.

Corollary 3.2. Under the same assumptions as in theorem 3.1 except condition (ii)
is dropped, but with the assumption that x∗ and z∗ are unique (this would be true
if x∗ and z∗ are nondegenerate points of LP and the dual of LP respectively), then
limk→∞ x

k = x∗ and limk→∞ π
k = π∗. Moreover, condition (iii) does not restrict

the choice of sk.
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As in the primal method, it is of practical importance to allow approximate
solutions of the subproblem. A complication not present in the primal case is that
the primal-variable estimates xj = wj/(zj + sj) defined by (3.2) satisfy Ax = b only
in the limit. We therefore must introduce another primal estimate x̄ that is “close”
to x and satisfies Ax̄ = b; see Section 5 for a discussion of how x̄ may be computed
in a Newton-based method.

Theorem 3.2. (Convergence with approximate solutions of DSBP.) Let, πk be an
approximate solution of DSBP(wk, sk). For each πk, the vectors zk and xk are
defined by

zk = c−ATπk and xkj =
wkj

zkj + skj
.

Let x̄k denote any vector such that Ax̄k = b. Assume the weights and shifts satisfy
the conditions given in Theorem 3.1. Let β be a scalar such that 0 < β < 1. If {wk}
and {sk} also satisfy

wkj = x̄k−1j skj for k ≥ 1, (3.7)

and if each member of the sequence {πk} satisfies

(i) zk + sk > 0;

(ii) cTx̄k−1 − cTx̄k ≥ β
n∑
j=1

(zkj )2xkj

skj
; and

(iii) |aTj xk − bj | <
skj x̄

k−1
j

k!(zkj + skj )
,

then
lim
k→∞

‖x∗k − xk‖ = 0

and
lim
k→∞

‖π∗k − πk‖ = 0.

4. Properties of Shifted Barrier Subproblems

An unshifted barrier function such as (1.1) contains deliberately constructed singu-
larities on the boundary of the feasible region. The higher-order terms of its Taylor
expansion (those neglected in the quadratic model utilized by Newton’s method)
therefore become increasingly large near the boundary. When the solution of the
original constrained problem lies on the boundary, the neighborhood in which each
current model is “accurate” becomes smaller and smaller as the solution is ap-
proached. This property explains why Newton-based barrier methods may experi-
ence inefficiency when the starting point lies close to the boundary, since the initial
Hessian is ill-conditioned (see below). With shifted barrier methods, a “good” choice
of shifts can improve the condition of the initial Hessian matrix.
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When the original linear programs are nondegenerate, the unshifted barrier sub-
problems do not suffer from a “traditional” flaw of barrier function methods, namely
increasing ill-conditioning of the Hessian of the barrier function along the barrier
trajectory. (See Gill et al.. [GMS+86] for a discussion.) Unfortunately, it is an “ar-
ticle of faith” that practical linear programs are either primal or dual degenerate (or
both), which means that the Hessian of the barrier function does become singular
in the limit.

4.1. Derivatives of the shifted primal barrier function

Let FP denote the objective function of SBP(w, s):

FP ≡ cTx−
n∑
j=1

wj ln(xj + sj).

The gradient and Hessian matrix of FP are given by

gP = ∇FP = c−
n∑
j=1

wj
xj + sj

ej and HP = ∇2FP = diag
( wj

(xj + sj)2

)
. (4.1)

Throughout this section, xk denotes the solution of a primal shifted barrier sub-
problem SBP with weights wk and shifts sk.

Lemma 4.1. (Bounded derivatives of the primal subproblem.) A sufficient condi-
tion that ‖Hk

P‖ = ‖HP (xk)‖ < M <∞ is that xkj + skj ≥ ε > 0.

Proof. Let hjj denote the j-th diagonal element of Hk
P . From (4.1) and the defini-

tion of zk at the minimizer of the k-th subproblem, we have

hjj =
zkj

xkj + skj
.

The result follows directly from the boundedness of zkj and the assumption that

xkj + skj ≥ ε > 0.

In the primal case, the barrier subproblem SBP has linear equality constraints.
Assume without loss of generality that the columns of A are ordered so that A may

be written as
(
B S

)
, where B is an m ×m nonsingular matrix. The columns of

the n× (n−m) matrix Z defined by

Z =

(
−B−1S

I

)
(4.2)

form a basis for the null space of A, and the reduced Hessian matrix ZTHk
PZ deter-

mines the condition of the solution of the subproblem.
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Theorem 4.1. (Bounded condition of the shifted primal subproblem.) Let {xk}
denote the sequence defined in corollaries 2.1 or 2.2. Assuming the assumptions for
those corollaries hold and skj ≥ θε > 0 when zkj ≥ ε > 0 then

‖ZTHk
PZ‖ ≤ M̄ <∞

and
cond(ZTHk

PZ) ≤ M̄ <∞.

Proof. The assumption that all dual solutions are nondegenerate implies x∗ is
unique and there exists at least n −m elements of any z∗ that are nonzero. There
is no loss of generality if we assume z∗j ≥ z∗min > 0 for j = m + 1, . . . , n. It follows
from (4.2) that

ZTHk
PZ = V = diag(v),

where vj = zkm+j/(x
k
m+j + skm+j). Since limk→∞ |zki − z∗i

k| = 0 it follows there exists

ε > 0 such that zkm+j ≥ ε for j = 1, . . . , n − m. From the assumption on ski
we have vmin ≥ ε/M > 0, where vmin is the smallest element of v. We also have
vmax ≤ zmax/θε, where zmax is the largest element of zki for i = m + 1, . . . , n. It
follows that

‖ZTHk
PZ‖ ≤ M̄ <∞

and
cond(ZTHk

PZ) ≤Mzmax/θ <∞.
We have limk→∞ sup{zkmax} ≤ z∗max and limk→∞ inf{zki } ≥ z∗min, where z∗max is the
largest element of z∗. The only restriction on θ is that θε ≤ M . It follows sk may
be chosen such that

lim sup
k→∞

cond(ZTHk
PZ) ≤ z∗max/z

∗
min.

4.2. Properties of the dual shifted barrier function

In considering the limiting behavior of dual barrier subproblems, we use πk to denote
the minimizer of the dual shifted objective function FD of DSBP with weight and
shift vectors wk and sk, and define z and x by (2.4) and (3.2).

Lemma 4.2. (Bounded derivatives of the dual shifted subproblem.) A sufficient
condition that ‖Hk

D‖ = ‖∇2FD(πk)‖ < M <∞ is that zkj + skj ≥ ε > 0.

Proof. Using arguments similar to those of Lemma 4.1, we have

Hk
D = A(Dk)2AT ,

where (Dk)2 = diag(xkj /(z
k
j + skj )). The required result is immediate from the

assumption zkj + skj ≥ ε > 0.

Since the dual barrier subproblem is unconstrained, the condition of its solution
is determined by the Hessian matrix Hk

D.
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Theorem 4.2. (Bounded condition number of the dual subproblem.) Let {zk} de-
note the sequence defined in corollarys 3.1 or 3.2. Assuming the assumptions for
those corollarys hold and skj ≥ θε > 0 when xkj ≥ ε > 0 then there exists a constant

M̄ such that
‖Hk

D‖ ≤ M̄ <∞,

cond(Hk
D) ≤ M̄ <∞,

Proof. From the assumption that the primal solutions are nondegenerate x∗ has
at least m nonzero elements. We can assume without loss of generality that the
nonzero elements of z∗ occur in the first m positions. It follows from these remarks
that z∗ is unique and its first m elements of are nonzero. We have

Hk
D = BV BT + CUCT ,

where B is the matrix composed of the first m columns of A, C the matrix composed
of the remaining columns, V = diag(v) and vj = xkj /(z

k
j + skj ), U = diag(u) and

uj = xkj+m/(z
k
j+m + skj+m). The assumption of primal nondegeneracy means that B

is of rank m. By a similar reasoning to that given in lemma 4.1 we can show V and
U are bounded and that V has a bounded condition number.

5. Newton’s Method

In essentially all interior-point linear programming methods proposed to date, some
version of Newton’s method is applied to solve a barrier-type subproblem. The
special features of the primal and dual problems imply that computation of the
Newton iterate can be posed in terms of solving a least-squares problem. We now
consider applying Newton’s method to the subproblems SBP and DSBP arising in
primal and dual shifted barrier methods.

5.1. Solving the primal subproblem

The shifted barrier subproblem SBP has a nonlinear objective function and linear
equality constraints, and can be solved using various techniques (see, e.g., Gill,
Murray and Wright [GMW81], Chapter 5). Let x denote the current estimate of the
solution, where x + s > 0. At a typical iteration, the new estimate of the solution
is x+ αp, where p is a search direction and α is a positive steplength.

In a projected Newton method for solving SBP (see Gill et al.. [GMS+86]), x
satisfies Ax = b, and p is defined so that A(x+αp) = b for any step α, i.e., Ap = 0.
The value of α is chosen to produce a “sufficient decrease” (in the sense of Ortega
and Rheinboldt [OR70]) in the objective function of SBP, subject to the requirement
that the new iterate remain strictly feasible with respect to the shifted bounds.

Given vectors x and π such that Ax = b and x + s > 0, a typical projected
Newton iteration proceeds as follows:
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1. Solve the system (
HP AT

A

)(
−p
q

)
=

(
gL
0

)
, (5.1)

where HP is the Hessian of FP , and gL is given by gL = gP − ATπ (see (2.5)
and (4.1) ).

2. Find a steplength α such that x+ αp+ s > 0 and

|gP (x+ αp)T p| ≤ −ηgP (x)T p,

where 0 ≤ η < 1.

3. Set x← x+ αp and π ← π + q.

The vector gL appears on the right-hand side of (5.1), so that the vector q is the
change in the multiplier estimate.

The computational effort needed to perform this iteration is dominated by solv-
ing (5.1). As in [GMS+86], the diagonal structure of HP can be used to transform
(5.1) into a smaller system of order m. Let µ = minj wj/(xj + sj)

2 and write gP
and HP as

gP = c−∆e and HP = µD−2,

where e = (1, 1, . . . , 1)T , and ∆ and D are the n× n diagonal matrices

∆ = diag
( wj
xj + sj

)
and D = diag(σj(xj + sj)),

where σj =
√
µ/wj . Substituting for gL and HP in (5.1) gives(

µD−2 AT

A

)(
−p
q

)
=

(
c−∆e−ATπ

0

)
, (5.2)

from which it follows that p and q satisfy

AD2AT q = AD2(z −∆e), with p = − 1

µ
D2(z −∆e−ATq). (5.3)

Using the definition (2.3) of the Lagrangian, (5.3) may be written as

AD2AT q = AD2gL and p = − 1

µ
D2(gL −ATq),

which are the normal equations for the following weighted least-squares problem:

minimize
q∈Rm

‖D(gL −AT q)‖22. (5.4)

(See Marxen [Mar89] for a derivation of analogous equations for the unshifted case.)
The scale factor µ is included in practice to ensure that the matrix D2 is bounded

when the shifts corresponding to zero components of x∗ converge to a positive limit.



5. Newton’s Method 20

If the conditions of Lemma 2.1 hold and {skj } converges to a limit s∗j , the j-th

diagonal element of HP converges to z∗js
∗
j/(x

∗
j + s∗j)

2. We thus have

Hjj →

{
z∗j/s

∗
j if x∗j = 0;

0 if x∗j > 0,
(5.5)

which implies that at least m of the diagonal elements of H−1P become arbitrarily
large.

The subproblem SBP involves minimization of the strictly convex function FP

within the subspace defined by Ax = b, and standard convergence theory for New-
ton’s method with a linesearch can be applied. We simply state the conclusion that
the Newton iterates will eventually converge to the unique solution of SBP(w, s).

Lemma 5.1. Given the weight and shift vectors w and s, and an initial point x
such that Ax = b, x+ s > 0, the sequence of iterates generated by Newton’s method
as sketched above converges to x∗(w, s).

Proof. The proof follows from standard results described in Ortega and Rhein-
boldt [OR70].

In keeping with the aim of computing only an approximate solution of each
subproblem, we now show that the conditions of Theorem 2.2 will eventually hold
at a Newton iterate for the k-th subproblem.

Lemma 5.2. (Characterization of Newton iterates for SBP.) Assume that the fea-
sible region for problem LP is bounded, and let β be any scalar such that 0 < β < 1.
Let x̂ and π̂ satisfy Ax̂ = b, x̂ + sk > 0 and ẑ > 0, where ẑ = c − AT π̂. If wk and
sk satisfy

wkj = ẑjs
k
j and sk > 0, (5.6)

and if Newton’s method is applied to solve SBP(wk, sk) with starting values (x̂, ẑ),
then after a finite number of iterations, a point (x, π) will be reached such that

(i) bTπ − bTπ̂ ≥ β
n∑
j=1

ẑjx
2
j

xj + skj
; and

(ii) |(gkL)j | < 1
2

skj ẑj

k!(xj + skj )
.

Proof. For any x and π, rearranging expression (2.5) gives

zj = (gkL)j +
wkj

xj + skj
. (5.7)

Since ‖gkL‖ converges to zero as the Newton iterations proceed, the boundedness
of the feasible region of LP implies that the dual has a nontrivial interior and
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zj → wkj /(xj + skj ) > 0, so that π is dual feasible. Moreover, since (gkL)j converges
to zero (ii) must eventually be satisfied.

The same argument used in Theorem 2.1 shows that π and π̂ are related by the
equation

bTπ − bTπ̂ = xT (ẑ − z) (5.8)

(see the analogous equation (2.11) of Theorem 2.1). Multiplying z by xT (see (5.7))
and substituting the result in (5.8) gives

bTπ − bTπ̂ =
n∑
j=1

xj

(
ẑj −

ẑjs
k
j

xj + skj

)
− xTgkL

=

n∑
j=1

x2j ẑj

xj + skj
− xTgkL. (5.9)

Since ‖gkL‖ → 0, a Newton iterate (x, π) must eventually be obtained such that

|xTgkL| ≤ (1− β)

n∑
j=1

x2j ẑj

xj + skj
.

The result follows immediately from (5.9).

5.2. Solving the dual subproblem

The dual shifted barrier subproblem DSBP involves unconstrained minimization of
the function

FD(π) ≡ −bTπ −
n∑
j=1

wj ln(cj − aTjπ + sj). (5.10)

The gradient and Hessian matrix of FD are given by

gD = ∇FD = Ax− b and HD = ∇2FD = AD2AT ,

where

D = diag
( √wj
zj + sj

)
and xj =

wj
zj + sj

, (5.11)

In order to define a Newton method for solving DSBP, we assume that a point π
is available such that z+ s > 0 for the associated z (so that HD is positive definite).
Using the definitions above, the Newton search direction q satisfies

AD2ATq = Ax− b. (5.12)

The function FD is strictly convex, and is defined in a bounded region. As in the
primal case, standard convergence theory (see, e.g., Ortega and Rheinboldt [OR70])
applies when Newton’s method with a suitable linesearch (the obvious analogue of
the primal method) is applied to minimize FD.
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Lemma 5.3. Given weight and shift vectors w and s, let π be such that the vector
x defined by (5.11) satisfies Ax = b and x + s > 0. Consider applying a Newton
method starting at π in which the search direction is defined by (5.12) and a standard
linesearch is used to produce a sufficient decrease in FD. Then the Newton iterates
converge to π∗(w, s), the unconstrained minimizer of FD(π).

As in the primal case, the Newton iterates will eventually satisfy the conditions
of Theorem 3.2.

Lemma 5.4. (Characterization of Newton iterates for DSBP.) Assume that the
feasible region for problem DLP is bounded. Let x̂ and π̂ be any vectors such that
x̂ > 0, Ax̂ = b and ẑ+ sk > 0, where ẑ = c−ATπ̂. Assume that the weight and shift
vectors wk and sk satisfy

wkj = x̂js
k
j and skj > 0. (5.13)

For any iterate π of Newton’s method applied to minimize FD, we define z as c−ATπ,
x from (5.11), and x̄ as the closest point to x such that Ax̄ = b. Then after a finite
number of iterations, π and x̄ will satisfy

(i) cTx̂− cTx̄ ≥ β
n∑
j=1

z2jxj

skj
; and

(ii) |aTj x− bj | < 1
2

skj x̄j

k!(zj + skj )
.

Proof. From the definition of xj ,

x̄j = xj + (x̄j − xj) =
wkj

zj + skj
+ (x̄j − xj). (5.14)

Since the Newton iterates must eventually converge to π∗(w, s) and the feasible
region of DLP is bounded, we know that the primal has a nontrivial interior and
x̄j → wkj /(zj + skj ) > 0. Consequently, since ‖Ax − b‖ → 0 condition (ii) will
eventually be satified.

Since Ax̄ = b, we have

cTx̂− cTx̄ = zT (x̂− x̄)

(cf. equation (3.6), Theorem 3.1). From the definition of x and wk, xj may be
written in the form

xj =
wkj

zj + skj
=

x̂js
k
j

zj + skj
. (5.15)
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Performing some simple rearrangement and substituting for xj gives

cTx̂− cTx̄ = zT (x̂− x− (x̄− x)) =

n∑
j=1

zj(x̂j − xj)− zT(x̄− x)

=
n∑
j=1

z2jxj

skj
− zT(x̄− x). (5.16)

Since |x̄j − xj | → 0, eventually we have

|zT(x̄− x)| ≤ (1− β)
n∑
j=1

z2jxj

skj
. (5.17)

The expression (ii) follows directly from (5.16) and (5.17).

The proof of Theorem 5.4 holds if the primal-feasible vector x̄ is chosen so that
‖x̄− x‖ → 0 as k →∞. Such a vector can be computed with little extra work once
the Newton direction q is known. From (5.12) we have

A(x−D2ATq) = b,

giving x̄ = x−D2ATq. From the definition (5.11) of D2, we have

x̄j =
wj

zj + sj
−

wja
T
jq

(zj + sj)2

= wj
z̄j + sj

(zj + sj)2
, (5.18)

where z̄j is the j-th component of z̄ = c−AT(π + q).

6. Definition of the Shifts

In this section we briefly outline methods for initializing and updating the shifts.
(The implementation of specific algorithms will be discussed in a future report.) We
concentrate mainly on the primal method of Section 2, but much of the discussion
applies directly to the dual method.

The convergence proofs of Sections 2 and 3 imply that there is a considerable
degree of choice in the selection of the shifts as long as the weights are updated
appropriately. The simplest strategy is thus to keep the shifts constant and update
only the weights, so that

skj = sk−1j and wkj = zk−1j skj . (6.1)

A disadvantage of this choice is that the sequence {xk} then converges at best
linearly to x∗. To see why, assume that the conditions of Theorem 2.1 hold and
that limk→∞ z

k = z∗. Let j denote the index of a variable that is strictly positive
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at the solution (i.e., x∗j > 0). At the solution of the k-th subproblem we have
zkj = wkj /(x

k
j + skj ) (see (2.8)). Substituting for wkj from (6.1) gives

zkj

zk−1j

=
skj

xkj + skj
. (6.2)

If x∗j is nonzero, z∗j must be zero (see (1.5)), and (6.2) shows that zkj converges to
zero at a linear rate.

A superlinear convergence rate may be obtained if skj converges to zero for vari-
ables that are positive at the solution. For example, the relation

skj =
sk−1j

xk−1j + sk−1j

(6.3)

has the property that skj converges to zero if x∗j > 0 and to one if x∗j = 0. In this

case, wk must converge z∗ to retain the desired convergence properties.
Other schemes may be used to force the relevant elements of sk to converge

to zero at an even faster rate—e.g., the update skj = (sk−1j )2/(xk−1j + (sk−1j )2)
retains many of the properties of (6.3). Other updates may be used to ensure that
components converging to unity have a small deviation from unity compared to the
difference between xk and x∗; for example, we could define

skj =
(sk−1j )2

(xk−1j )2 + (sk−1j )2
.

6.1. Initial values

In contrast to unshifted barrier methods, the shifted primal method does not require
a “Phase 1” procedure to compute a strictly feasible initial point. Given any x that
satisfies Ax = b, the shifts may be selected to make x interior with respect to the
shifted bounds.

Given an arbitrary point x0 at which initial weights and shifts are defined, the
vector p such that A(x0 + p) = b satisfies(

µD−2 AT

A

)(
−p
q

)
=

(
gL
r

)
, (6.4)

where r is the residual vector Ax0− b. Using the techniques of Section 5, the search
vector p of (6.4) can be computed from the equations

AD2AT q = AD2gL + r and p = − 1

µ
D2(gL −ATq).

The weights and shifts are redefined at x0 + p, and the iterations proceed as in
Section 5.



6. Definition of the Shifts 25

The “optimal” amount of work to choose the initial weights and shifts depends
on how much effort the subproblem is expected to require—i.e., how long the pa-
rameters will remain fixed. If the problem is well scaled, a possible choice for the
initial shifts is

s0j =

{
1 if x0j ≥ 0;

1− x0j otherwise.
(6.5)

With this strategy, 1/(s0j + x0j ) ≤ 1.

Given an initial estimate π0, the initial weights should be chosen as

w0
j = z0j (s0j + x0j ),

where z0j = cj −aTjπ0 > 0. If no estimate of π is available, z0j may be taken as either

one or s0j + x0j .
In all the definitions given above, it may be necessary to redefine the j-th shift

if the j-th variable is not sufficiently positive.

6.2. Primal and dual methods based on Lagrangian shifts

A consistent theme in this paper has been that the limiting shifts should be strictly
positive for variables that are zero at the solution, and zero for variables that are
positive. With some safeguards, the vector z satisfies these requirements, and a
possible choice for the shifts in the primal algorithm is

skj = µzk−1j , (6.6)

where zk−1j and M > µ > 0 denotes the final reduced cost cj − aTjπ
k−1 of the

previous subproblem. The parameter µ enables the initial shifts to be chosen so
that x−1 + s0 > 0 when x−1 and z−1 are prescribed initial estimate of x∗ and z∗

respectively. We shall refer to the value (6.6) as the Lagrangian shift, and a primal
Lagrangian shifted barrier method involves a k-th subproblem of the form

LSBP minimize
x

cTx−
n∑
j=1

µ(zk−1j )2 ln(xj + µzk−1j )

subject to Ax = b.

(6.7)

In order to retain feasibility, the shift must be redefined if xk−1 + zk−1 ≤ 0. If
the dual problem is not degenerate, xk + zk will eventually be positive. However, if
both zj and xj are converging to zero, the shift may be repeatedly redefined as the
solution is approached. In this case, the shift should be selected so that zjsj/(xj +
sj)

2 is bounded away from zero, which implies that the condition of the reduced
Hessian of the primal subproblem is bounded irrespective of dual nondegeneracy
(see Theorem 4.1). Strategies for this case will be considered in a future paper.

The k-th Lagrangian dual shifted barrier subproblem is

LDSBP minimize
π

−bTπ −
n∑
j=1

µ(xk−1j )2 ln(cj − aTjπ + µxk−1j ). (6.8)

where Axk−1 = b and xk−1 + zk−1 > 0.
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Appendix

Before presenting the main convergence results we prove three lemmas. In these
lemmas {xk} and {sk} are sequences of scalars. In the main theorems they will be
applied to the elements of xk the similarity of notation is retained to make the use
of the lemmas transparent.

Given a finite sequence x1, x2, . . . , xk and a positive scalar εk, let Pk and Nk
denote the index sets

Pk = {i | xi ≥ 0, i ≤ k} and Nk = {i | xi ≤ −Mε
1/2
k , i ≤ k}

respectively. We shall use the notation |I| to denote the number of elements in an
index set I.

Lemma 6.1. Let {xk} and {sk} be two sequences of scalars. The sequence {sk} is
such that xk + sk > 0, 0 < sk < M and sj ≤Msk, k < j. Define zk to be

zk =
sk

xk + sk
zk−1,

where z0 > 0. If the sequence {xk} is such that

(a) lim supk→∞ x
k = 0;

(b) lim infk→∞ x
k < 0; and

(c) limk→∞ x
kzk = 0,

there exists a sequence {εk} such that limk→∞ εk = 0 and limk→∞ |Nk|/|Pk| = 0.

Proof. From (b), there exists a positive scalar σ and a subsequence {xki} such
that xki < −σ. It follows from (c) that limi→∞ z

ki = 0 and so there must be a
subsequence {zli} such that

zli < zli−1 .

Let J i denote the set of consecutive indices li−1, . . . , li. From the definition of zk

we have
zli =

∏
j∈J i

θjz
li−1 , where θj = sj/(xj + sj).

It follows that ∏
j∈J i

θj < 1.

Define
σi = max{xj | j ∈ J i} and βi = sup{xj | j ≥ li−1}

and we extend the sequence {εi} for all k by defining εk = βi, where li−1 is the
smallest index in L such that i ≥ k. It follows from these definitions and (a) that
limk→∞ εk = 0.
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The indices of J may be partitioned into disjoint subsets J+, J− and J0, where

J+ = {j | xj ≥ 0} J− = {j | xj < −Mε
1/2
j }. It follows that∏

j∈J+

θj
∏
j∈J−

θj
∏
j∈J0

θj < 1. (6.9)

For indices j ∈ J0,
θj =

1

1 + xj/sj
> 1.

For indices j ∈ J+
θj ≥ 1/(1 + εj/s

j).

and −σ < xj ≤ σj ≤ βj (?). It follows from Msk ≥ sk−1, xk + sk > 0 and condition
(b) that sk > σ/M > 0, for all k. Consequently, for j ∈ J+

θj ≥ 1/(1 +Mxj/σ) ≥ 1/(1 +Mβi/σ). (6.10)

Finally, for indices j ∈ J−

θj ≥ 1/(1−Mε
1/2
j /sj) = 1/(1−Mβi/s

j).

It follows for j ∈ J− that

θj ≥ 1/(1− β1/2i ). (6.11)

From (6.9), (6.10) and (6.11) we get

(1− β1/2i )|J−|(1 +Mβi/σ)|J+| > 1.

Since σ > 0 and limi→∞ βi = 0 it follows that

lim
i→∞
|J i−|/|J i+| = lim

i→∞
O(β

1/2
i ) = 0.

Since |Pli | =
∑i

j=1 |J
j
+| and |Nli | =

∑i
j=1 |J−| the required results follows.

Lemma 6.2. If the relationship

zk =
sk

xk + sk
zk−1

in Lemma 6.1 is replaced by

zk =
ψks

k

xk + sk
zk−1,

where
∏∞
k=1 ψk = γ and 0 < ε ≤ γ ≤M <∞ , then the lemma still holds.
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Proof. The subsequence {li} could be chosen such that

zli < γzli−1 .

Consequently, we still require
Li∏
j=1

θj < 1.

Lemma 6.3. Let {xkj }, {zkj } and {skj } for j = 1, . . . , n satisfying the properties of

the sequences {xk}, {zk} and {sk} defined in Lemma 6.1 or Lemma 6.2. If Pk is
the number of the first k elements of these sequences that satisfy the n inequalities:
xij ≥ −M(εik)

1/2, for i = 1, . . . , n, then

lim
k→∞

k

Pk
= 1.

Proof. Assume

lim
k→∞

k

Pk
< 1.

Let Nk denote the number of times xin < −M(εin)1/2, i = 1, . . . , k. There is no loss
of generality if we assume the sequence that satisfies xij < −Mεij the most is {xjn}.
It follows that

Nk ≥ (k − Pk)/n.

Therefore,

lim
k→∞

Nk

k
≥ lim

k→∞

1

n
(1− Pk/k) > 0.

This inequality contradicts lemma 6.1.
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