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Abstract

In applying active-set methods to sparse quadratic programs, it is desirable to uti-
lize existing sparse-matrix techniques. We describe a quadratic programming method
based on the classical Schur complement. Its key feature is that much of the linear
algebraic work associated with an entire sequence of iterations involves a fixed sparse
factorization. Updates are performed at every iteration to the factorization of a smaller
matrix, which may be treated as dense or sparse.

The use of a fixed sparse factorization allows an “off-the shelf” sparse equation solver
to be used repeatedly. This feature is ideally suited to problems with structure that
can be exploited by a specialized factorization. Moreover, improvements in efficiency
derived from exploiting new parallel and vector computer architectures are immediately
applicable.

An obvious application of the method is in sequential quadratic programming meth-
ods for nonlinearly constrained optimization, which require solution of a sequence of
closely related quadratic programming subproblems. We discuss some ways in which
the known relationship between successive problems can be exploited.

Keywords: quadratic programming, indefinite systems, KKT systems, active-set
methods.

This paper is dedicated to the memory of James H. Wilkinson, whose unfailing insight and
clarity of exposition remain an inspiration to us.

1. Background on Quadratic Programming

1.1. Statement of the problem

The topic of concern is the quadratic programming (QP) problem of minimizing a quadratic
objective function subject to linear constraints on the variables. Quadratic programs may
be stated in several (equivalent) forms. We shall consider primarily quadratic programs in
the following standard form:

minimize
x∈Rn

cTx + 1
2xTHx

subject to Ax = b, ` ≤ x ≤ u,
(1.1)
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where the Hessian matrix H is symmetric and A is m × n. Components of ` and u may
be taken as −∞ and +∞ if no bound is present. We assume throughout that A has full
row rank. The constraints Ax = b are called the general constraints of (1.1). We define the
(linear) function g(x) as c + Hx, the gradient of the quadratic objective function.

The term “standard form” refers to the constraints in (1.1), and means that the only
inequality constraints are simple bounds on the variables. (Section 6 treats some of the
issues that arise with alternative formulations.) In much of our discussion, we shall treat all
the variables of (1.1) uniformly. On some occasions, however, the “original” variables of a
quadratic program will be distinguished from its “slack” variables. A quadratic program will
contain slack variables if its “natural” formulation includes general inequality constraints.
For example, a general inequality constraint aT

i x ≥ βi is replaced by the equality constraint
aT

i x + si = βi, and the standard-form version of the problem includes an additional slack
variable subject to the bound si ≤ 0. Slack variables have many special features; one of
particular importance is that they do not appear in the objective function. This paper is
concerned only with problems in which the Hessian matrix H in the original variables is
positive definite. If H is a general matrix, the techniques proposed in this paper may be used
in conjunction with an algorithm outlined by Fletcher [19]). (See Gill, Murray, Saunders
and Wright [31], for details.)

Our interest in sparse quadratic programs arises in large part from the desire to apply se-
quential quadratic programming (SQP) methods to large nonlinearly constrained problems.
In an SQP method, each iteration involves solution of a quadratic programming subprob-
lem, which itself must be solved by an iterative procedure. An important feature of these
subproblems is that information from each can be exploited to solve the next more quickly,
to the extent that later subproblems usually require only a single iteration (see Gill, Murray,
Saunders and Wright [28]). Thus, the first QP iteration comprises a substantial proportion
of the total effort, which implies that initialization of the QP algorithm is just as critical as
subsequent iterations.

In Sections 2–5 we describe a new method (the Schur-complement or SC method) for
quadratic programming. Before giving details of the SC method, we introduce some notation
in Section 1.2, and give a condensed overview of active-set quadratic programming methods
in Section 1.3.

1.2. Notation

The proposed method is iterative, and we usually consider a single (typical) iteration. Un-
barred and barred symbols will be used to denote quantities associated with iterations k
and k + 1. The only exception is the use of the suffix “0” to denote quantities associated
with the first iteration.

We shall make extensive use of properties of the inertia of a matrix K, denoted by In(K),
which is an integer triple (α, β, γ), where α, β and γ are the numbers of positive, negative
and zero eigenvalues of K.

Given a symmetric matrix

K =

(
M NT

N G

)
,

with M nonsingular, the Schur complement of M in K will be denoted by K/M , and is
defined as

K/M ≡ G−NM−1NT .

We sometimes refer simply to “the” Schur complement when the relevant matrices are clear.
(For further discussion of the Schur complement, see Cottle [14].)
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1.3. Background on active-set methods

The Schur-complement method is a primal-feasible active-set method. For an overview, see,
e.g., Fletcher [20]. Each iteration has the following general structure: given the current
iterate x, the next iterate is defined by

x̄ = x + αp, (1.2)

where the vector p is the search direction, and the nonnegative scalar α is the steplength.
An initial feasibility phase is performed to find a point that satisfies the constraints of (1.1)
(see Section 4), and all iterates are thereafter constructed to retain feasibility.

A major question in solving (1.1) is the identification of the active set of constraints,
namely the constraints that hold with equality at the solution. Because (1.1) is in standard
form, the active set must contain the general constraints, plus the set of variables that lie
on one of their bounds at the solution. An active-set method maintains an estimate of the
active set (called the working set), which is a linearly independent set of constraints that are
satisfied exactly at the beginning of each iteration. The matrix of coefficients of constraints
in the working set will be denoted by AW , and always includes the equality constraints.
Thus, a typical working set has the form

AW =

(
A

Ix

)
,

where Ix contains rows of the identity corresponding to variables currently on their bounds.
The constraints in the working set are (temporarily) treated as equalities during the current
iteration.

The search direction p is defined as the solution of the following equality-constrained QP:

minimize
p∈Rn

gTp + 1
2pTHp

subject to AWp = 0,
(1.3)

where g denotes g(x). The constraints AWp = 0 ensure that constraints in the working set
remain unaltered by any move along p. In particular, the components of p corresponding to
bounds in the working set (“active” bounds) must be zero. The solution of (1.3) is the step
from x to the minimizer of the quadratic objective function of (1.1), subject to treating the
working set as equalities. The optimality and feasibility conditions for (1.3) are expressed
by the linear system (

H AT
W

AW

)(
−p

µ

)
=

(
g

0

)
, (1.4)

where µ is the Lagrange multiplier vector for the constraints of (1.3).
Almost all active-set feasible-point methods for convex quadratic programming are math-

ematically identical in the sense that, under certain conditions, the same sequence of iterates
is generated (see Djang [16], and Best [2]). Differences in efficiency and numerical stability
arise from the techniques chosen for solving (1.4). Null-space methods are based on com-
puting either implicitly or explicitly a (nonunique) matrix Z whose columns span the null
space of AW (i.e., AWZ = 0). The solution of (1.4) can then be computed as p = ZpZ , where
pZ satisfies

ZTHZpZ = −ZTg. (1.5)

The matrix ZTHZ is called the reduced Hessian. We stress that the reduced Hessian depends
on the choice of AW as well as on the representation of Z.
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If p is nonzero, two situations are possible. The point x + p may violate one or more
currently inactive bounds. (In this case, AW cannot be the correct active set.) Feasibility is
retained by determining the maximum nonnegative step α < 1 such that x + αp is feasible.
The bound that becomes satisfied exactly at x + αp is then “added” to the working set for
the next iteration by adding a row of the identity matrix to AW .

Otherwise, x + p is feasible, and x̄ = x + p. Since p is the step to the minimizer of (1.3),
it must hold that ZTg(x̄) = 0, which implies that g(x̄) = AT

Wµ for some Lagrange multiplier
vector µ. If the components of µ corresponding to active lower bounds are nonnegative, and
those corresponding to active upper bounds are nonpositive, then x̄ is the (unique) solution
of (1.1). Otherwise, there is at least one component with the “wrong” sign, which means that
deleting the corresponding constraint from the working set will produce a feasible direction
of descent for the objective function. (The same interpretation applies if p = 0: either x
is optimal for (1.1), or a constraint can be deleted from the working set.) When a bound
constraint is deleted, the associated variable is said to be “freed” from its bound, and one
of the rows of Ix is removed from AW .

The standard convergence properties of this algorithm are summarized by the following
two theorems, which are stated without proof (see, e.g., Gill and Murray [25]; Fletcher [20]).

Theorem 1.1. (Linear independence of the working set) If the initial working set is
chosen so that A0 has full row rank, and if AWp = 0 at all subsequent iterations, then: (i)
every working set has full row rank; and (ii) the reduced Hessian is positive definite at every
iteration.

Theorem 1.2. Assume that the feasible region of (1.1) has no degenerate vertices, i.e.,
the set of constraints defining every vertex is linearly independent. Then the feasible-point
active-set method described above will terminate at the unique minimizer of (1.1) in a finite
number of iterations.

If degenerate vertices exist, additional procedures should be included in the algorithm
to prevent cycling, i.e., making an infinite number of changes in the working set without
moving from the current point. Recent techniques for treating degeneracy are described in,
for example, Fletcher [21], Busovac̆a [9], Dax [15], Osborne [36], Ryan and Osborne [37],
and Gill, Murray, Saunders and Wright [30].

1.4. Special properties of the standard form

So far, we have discussed the role of the matrix AW without particular attention to the
computational advantages that arise when the problem is in standard form. Standard form
allows the nonzero (“free”) components of the search direction to be computed using a
matrix whose column dimension is equal to the number of free variables (rather than the total
number of variables). To formalize this idea, let nFR denote the number of free variables (i.e.,
corresponding to bounds not in AW), and let the subscript “FR” denote the corresponding
components of a vector or matrix. For example, AFR denotes the m × nFR submatrix of
columns of A corresponding to free variables. Similarly, the subscript “FX” means the
components corresponding to fixed variables (i.e., those whose bounds are in the working
set). (We shall henceforth switch freely between the terminologies of “working sets” and
“free/fixed variables”. In general, the main iteration will be described in terms of changes
to the working set because the structure of the constraints does not affect the algorithm at
that level.)

The vector pFR satisfies the linear system

K

(
−pFR

π

)
=

(
gFR

0

)
, where K =

(
HFR AT

FR

AFR

)
(1.6)
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and π denotes the vector of multipliers for the general equality constraints. The reduced
gradient vector λ for the fixed variables (i.e., the Lagrange multiplier associated with active
bounds) may be computed as λ = ḡFX −AT

FXπ, where ḡ denotes g(x + p).
Equation (1.6) is called the Karush-Kuhn-Tucker system or just the KKT system. The

following lemma characterizes the relationship between the eigenvalues of K and the eigen-
values of the reduced Hessian ZTHZ.

Lemma 1.1. Let M be an n × n symmetric matrix and N an m × n matrix of full row
rank. If Z is an n× (n−m) null-space basis for N , then

In

(
M NT

N

)
= In(ZTMZ) + (m,m, 0).

Proof. For a proof, see Gould [32].

The inertia of K can be deduced by applying Lemma 1.1 to (1.6) and invoking The-
orem 1.1 to show that the reduced Hessian is positive definite; thus, we conclude that
In(K) = (nFR,m, 0).

1.5. Special features of large quadratic programs

Techniques for obtaining a null-space basis Z explicitly or implicitly have been extensively
studied recently, with particular reference to continuity (see, e.g., Coleman and Sorensen
[13]; Gill et al.[26]). When A is dense, Z is usually computed directly from a QR factorization
of A. When A is sparse, however, known techniques for obtaining an orthogonal and sparse
Z may be expensive in time and storage, although some recent approaches appear promising
(see, e.g., Coleman and Pothen [12]; Gilbert and Heath [22]).

The representation of Z most commonly used in sparse problems is called the reduced-
gradient form of Z, and is obtained as follows. The columns of AFR are partitioned so as to
identify explicitly an m ×m nonsingular matrix B (the basis). Assuming that B is at the
“left” of AFR, we have

AFR =
(

B S
)
. (1.7)

(In practice, the columns of B may occur anywhere.)
When AFR has the form (1.7), a basis for the null space of AFR is given by the columns

of the (non-orthogonal) matrix ZFR defined as

ZFR =

(
−B−1S

I

)
, so that Z =

(
ZFR

0

)
. (1.8)

Furthermore,
ZT

FRHFRZFR = ZTHZ.

Let nZ = n− (m+nFX ), so that ZFR has nZ columns. The form of (1.8) means that matrix-
vector products ZTv or Zv can be computed using a factorization of B (typically, a sparse
LU factorization; see Gill, Murray, Saunders and Wright [29]), and Z need not be stored
explicitly.

For large problems, the reduced Hessian ZTHZ associated with the solution of (1.6) will
generally be much denser than H and B. If nZ is small enough to allow the storage of a
dense matrix of dimension nZ × nZ , the null-space basis provided by (1.8) is very effective
in methods that approximate ZTHZ (see Murtagh and Saunders [35]).
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2. The Schur-Complement Quadratic Programming Method

When A and H are large and sparse, a single system of the form (1.6) can be solved reliably
and efficiently with the sparse-matrix package MA27 (see Duff and Reid [18]; Duff, Erisman
and Reid [17]). In an active-set QP method, however, a sequence of such systems must be
solved, each differing from the preceding by a single row and column. In a method based
on a straightforward interpretation of (1.6), the search direction p and multiplier µ would
be computed from a KKT system that varies in composition and size as the working set
changes. In contrast, we now show that the special nature of these changes allows us to
define a QP algorithm in which the solution of (1.6) may be obtained during k successive
iterations using a fixed factorization of the initial KKT system, and a factorization of a
smaller matrix of (at most) order k.

2.1. Computation of the search vector and multipliers

To illustrate an iteration of the Schur-complement method, we first consider an example
with 4 variables and a single general constraint, where bounds 2 and 4 are in the initial
working set. Thus, p2 = p4 = 0, and the initial KKT system (1.6) is h11 h13 a11

h13 h33 a13

a11 a13 0


 −p1

−p3

π1

 =

 g1

g3

0

 . (2.1)

At the next iteration, suppose that the first variable is to be fixed on a bound, so that
p1 = 0. It is easy to verify that p satisfying (1.6) for the revised working set satisfies

h11 h13 a11 1
h13 h33 a13 0
a11 a13 0 0
1 0 0 0



−p1

−p3

π1

λ1

 =


g1

g3

0
0

 , (2.2)

where λ1 is the reduced gradient for the newly fixed variable.
If, on the other hand, variable 2 is to be freed from its bound at the next iteration, the

desired p satisfies 
h11 h13 a11 h12

h13 h33 a13 h23

a11 a13 0 a12

h12 h23 a12 h22



−p1

−p3

π1

−p2

 =


g1

g3

0
g2

 . (2.3)

The general rule is that the previous KKT system is bordered by a row and column of
the identity when a variable is fixed, and by the free elements of a row and column of H
and a column of A when a variable is freed.

The above process can be repeated in an obvious way over a sequence of iterations. Let
x0 denote the initial point of the sequence, K0 the KKT system at x0, and n0 the number
of free variables at x0. Assume that k changes to the working set have taken place since
K0 was factorized. Let f denote an (n0 + m)-vector whose first n0 components are the
components of the current gradient corresponding to the free variables at x0, and whose
remaining m elements are zero. Let the k-vector w be defined as

wj =

{
gs(x) if xs was freed at iteration j;
0 otherwise.
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Note that both f and w depend on the current iterate x.
After k iterations, the symmetric bordered system to be solved is of dimension at most

n0 + k, and has the form (
K0 U

UT V

)(
y

z

)
=

(
f

w

)
, (2.4)

where U is n0 × k and V is k × k. The j-th column of U is a column of the identity if a
variable was fixed at the j-th iteration; otherwise it contains elements from H and A, as
described above. The nonzero entries of V are elements of H. (If no variables have been
freed, U contains only columns of the identity and V is zero.)

The vectors y and z must be “unscrambled” to obtain p, µ and λ. The first n0 compo-
nents of y are the elements of −p corresponding to the free variables at x0. The remaining
nonzero elements of p and the reduced gradients for the newly fixed variables are found from
z as follows:

zj =

{
λs if xs was fixed at iteration j;

−ps if xs was freed at iteration j.

Since (2.4) (in general) increases in dimension by one at every iteration, it might appear
that there is no benefit from this approach. However, the key point is that (2.4) can be
solved using factorizations of K0 and C, the k × k Schur complement of K0:

C ≡ V − UTK−1
0 U (2.5)

(see, e.g., Bisschop and Meerhaus [3, 4]; Gill, Murray, Saunders and Wright [27]). The
following equations are solved in turn:

K0v = f (2.6a)
Cz = w − UTv (2.6b)

K0y = f − Uz. (2.6c)

Thus, the work required to perform a QP iteration is dominated by two solves with K0 and
one solve with C. If k is small enough, dense QR or LU factors of C may be maintained.
To exploit symmetry, the symmetric indefinite factorization (see Section 5) must be used.
Each of these factorizations can be updated efficiently and in a numerically stable manner
to reflect changes in the working set; see, e.g., Gill, Golub, Murray and Saunders [23], Gill,
Murray, Saunders and Wright [29] and Sorensen [38]. In all cases, the numerical stability of
(2.6) depends largely on the condition of K0.

Each change in the working set results in addition of a new row and column to C. To
show this, consider a single change in the working set, and write the associated KKT system
as (

K0 Ū

ŪT V̄

)
, where Ū =

(
U u

)
and V̄ =

(
V v

vT σ

)
. (2.7)

(The definitions of u, v and σ depend on the nature of the change in the working set.) The
new Schur complement C̄ for (2.7) is given by

C̄ = V̄ − ŪT K−1
0 Ū =

(
V v

vT σ

)
−

(
UT

uT

)
K−1

0

(
U u

)
. (2.8)

Comparison of (2.7) and (2.5) reveals that the Schur complement is bordered by a single
row and column;

C̄ =

(
C t

tT γ

)
, where K0q = u, t = v − UTq and γ = σ − uTq. (2.9)
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Note that a solve with K0 is needed to update C.
The dimension of C need not increase if a variable returns to its original status during

the sequence of iterations. For example, suppose that a given variable is fixed at the initial
point, subsequently freed, and then later fixed again at either the same or opposite bound.
(The same comments apply if a variable is originally free, and then fixed and freed again.) To
effect the second change in the working set, the dimension of C can be reduced by one, by
simply removing the column of U associated with the first change and then modifying C to
“undo” the first update. (It is easy to show that deleting a column from U is equivalent to
deleting a row and column from C.)

In Section 5.2 we identify the special relationship of the Schur complement to the re-
duced Hessian in certain cases. It is therefore of interest to know the inertia of the Schur
complement, which is characterized by the following lemma.

Lemma 2.1. Consider an iteration of a feasible-point active-set method in which p and µ
are computed from (2.6). If iFX of the fixed variables were originally free at x0, and iFR of
the free variables were originally fixed at x0, then

In(C) = (iFR, iFX , 0).

Proof. The bordered matrix (2.4) may be permuted (symmetrically) to a matrix M of the
form

M =

 G ĀT ET

Ā

E

 ,

where E is formed from iFX rows of the identity matrix. The elements of G and Ā are formed
from variables in two categories: those that were free at x0 (and therefore in K0) and those
that were freed in subsequent iterations. Let ν denote the dimension of G.

The inertia of C̄ (2.9) after a single change in the working set is given by

In(C̄) = In(C) + In(C̄/C),

and we may also write

In(C̄/C) = In(M̄/M) = In(M̄)− In(M).

Since the reduced Hessian matrices ZTHZ and Z̄T HZ̄ are positive definite, Lemma 1.1
implies that

In(M̄)− In(M) = (ν̄,m + ı̄FX , 0)− (ν, m + iFX , 0).

If M is expanded by fixing a variable on its bound, the dimension of G remains the same,
but E is expanded by a single row (a coordinate vector). Therefore, ν̄ = ν, ı̄FX = iFX + 1
and

In(C̄) = In(C) + (0, 1, 0).

Similarly, if a variable is freed from its bound, ν̄ = ν + 1, ı̄FX = iFX and

In(C̄) = In(C) + (1, 0, 0).

The desired result follows by applying the arguments above to each expansion of the Schur
complement.
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2.2. Refactorization

As the dimension of C grows, the work needed to solve (2.6) increases, as does the required
storage. It is therefore necessary to “restart” at a “new” x0, and to factorize the current
KKT system from scratch (as in linear programming, where the current basis is refactorized.)

Typically, the dimension of C is allowed to reach a specified limit (say, 100) before
refactorization. If the QP is a “later” subproblem in an SQP method, the solution is likely
to be found before refactorization is required. The exact point at which refactorization
becomes worthwhile depends on the problem. In general, the decision to refactorize is guided
by considerations similar to those in the simplex method for linear programming—i.e., it
is probably desirable to refactorize when the cost of an iteration exceeds an average figure
determined by amortizing the cost of the initial factorization over a number of iterations.
Refactorization may also be mandated by a lack of storage.

Refactorization provides an opportunity to check for any possible deterioration in feasi-
bility through the accumulation of rounding errors, by computing the row residuals b−Ax0

for the general constraints. If x0 is unacceptable because of large row errors (i.e., large
residuals in the general constraints), one or two steps of iterative refinement may be helpful
(see, e.g., Wilkinson [40]; Björck [5]). Unfortunately, iterative refinement can cause some of
the variables to violate their bounds. It is therefore essential for any application of iterative
improvement to include a procedure for restoring feasibility with respect to the bounds (see
Section 4). Because of rounding errors, the possibility of cycling during this process cannot
be completely eliminated. For example, the algorithm could cycle forever between points
that alternately violate the bounds and general constraints. However, the changes to the
variables caused by refinement tend to be small, and cycling is unlikely.

Ill-conditioning in K0 may lead to serious error in the computed solution of the bordered
system (2.4). However, as each new variable is fixed on its bound, the KKT system may
become better conditioned and merit refactorization. In some circumstances, refactoriza-
tion can be postponed by applying iterative refinement on both K0 and C whenever Ap has
drifted away from zero. (This form of iterative refinement is unlikely to cause loss of feasi-
bility with respect to the bounds.) Another alternative is to use deflated block elimination
(see Chan [10]; Chan and Grossi [11]).

3. Avoiding a Solve with K0

When solving (2.4), the calculations can be rearranged so that only one solve with K0 is
needed at every iteration (in contrast to the two solves in (2.6)). The “trick” is to define the
right-hand side of (2.4) so that certain components do not change. This can be accomplished
by computing the step q from x0 to the minimizer of (1.3), rather than the step p from x,
i.e., q satisfies

x0 + q = x + p.

To illustrate this process, we reconsider the four-variable example of Section 2.1. Suppose
that the next iteration involves fixing variable 1 at its lower bound `1. To make the first
component of x0 + q equal to `1, q must satisfy

h11 h13 a11 1
h13 h33 a13 0
a11 a13 0 0
1 0 0 0



−q1

−q3

π1

λ1

 =


g1(x0)
g3(x0)

0
(x0 − `)1

 ,

where g(x0) denotes the quadratic objective gradient at x0. It is easy to verify that the first
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component of x0 + q is given by

(x0 + q)1 = (x0)1 + q1 = (x0)1 − (x0 − `)1 = `1,

as required.
On the other hand, if variable 2 is to be freed at the next iteration, then q satisfies

h11 h13 a11 h12

h13 h33 a13 h23

a11 a13 0 a12

h12 h23 a12 h22



−q1

−q3

π1

−q2

 =


g1(x0)
g3(x0)

0
g2(x0)

 .

To carry out this strategy, let f0 denote the vector f from Section 2.1 evaluated at x0,
and let the k-vector w be defined as

wj =

{
(x0 − x)s if xs was fixed at iteration j;
gs(x0) if xs was freed at iteration j.

The value (x0 − x)s is defined as wj when variable s is fixed at iteration k because xs will
then equal `s or us (depending on which bound is in the working set).

In general, given f0 and w, the search direction and multiplier vector may be found from
the solution of (

K0 U

UT V

)(
y

z

)
=

(
f0

w

)
. (3.1)

Examination of (2.6a) shows that the right-hand side associated with (3.1) is constant, so
that the solution of K0v0 = f0 needs to be computed only once, at the first iteration.
Thereafter, (2.6b) is simply

Cz = w − UTv0.

Only one of the properties mentioned in Section 2 does not apply to this modified
iteration. The exception occurs when a variable moves from one bound to its “opposite”
bound. In this case, it is not possible to decrease the dimension of the Schur complement
and maintain a constant vector f0, since deleting the column of U has the effect of fixing the
variable at the original bound instead of the “new” bound. To allow for this special case,
the Schur complement is expanded as if the variable had originally been free at x0. This
modification is a special case of (2.9) with the values u = 0 and v = es, where s denotes the
iteration at which the variable became free, thereby adding the s-th row and column to C.
The new Schur complement is given by

C̄ =

(
C es

eT
s

)
,

and it is not necessary to compute q, t or γ in (2.9).

4. Finding an Initial Feasible Point

In order to apply the active-set algorithm described in Section 1.3, a feasible starting point
is necessary. In the dense case, problem (1.1) is often solved in two phases. The first (the
feasibility phase) finds a feasible point by minimizing the sum of infeasibilities; the second
(the QP phase) minimizes the quadratic objective function in the feasible region.

In a null-space method for large quadratic problems, the following procedure can be used
to find a feasible point. Given a basis B (a nonsingular m×m submatrix of A), a point x0 can
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be computed such that Ax0 = b, and then tested for feasibility with respect to the bounds.
If some of the bounds are violated, a direction can be computed that strictly decreases the
sum of bound violations, yet remains “on” the general constraints. Once a variable satisfies
its bounds, it is not allowed to become infeasible in subsequent iterations. In a typical
null-space method, both the feasibility and QP phases use the same factorizations, and
the two-phase nature of the algorithm is reflected by changing the function being minimized
from the sum of infeasibilities to the quadratic objective function (see Gill, Murray, Saunders
and Wright [28]).

Unfortunately, this approach will be inefficient within a QP algorithm based on direct
solution of the KKT system, since the factors of B cannot be used to initiate the QP phase.
The inefficiency is even more serious when the QP is a “later” subproblem within an SQP
method, since a feasible point for the QP can usually be obtained directly from knowledge
of the active set in the previous subproblem. If no iterations are required to find a feasible
point, the effort required to factorize the basis would be wasted. Similar inefficiences occur
if ill-conditioning in the QP phase causes a loss of feasibility.

To avoid these difficulties, the feasibility phase can be modified so that it attempts
to reduce the objective function while simultaneously improving feasibility. The objective
function in the feasibility phase then becomes a composite objective function (a weighted
sum of the infeasibilities and the original quadratic objective function). With this approach,
the search direction and multiplier vector satisfy an KKT system similar to (1.6) in both
phases. The major difference between the feasibility and QP iterations is that the steplength
α in (1.2) is restricted to ensure that the number of violated bounds does not increase.

An alternative strategy for the feasibility phase has been suggested in the single-phase
methods of Hoyle [34]. In this case, x0 is chosen to satisfy the bound constraints, and each
search direction satisfies a system of the form(

HFR AT
FR

AFR

)(
−pFR

π

)
=

(
gFR

r

)
, (4.1)

where r = Ax − b. Unless r in (4.1) is zero, the general constraints are not satisfied. As
soon as a step α = 1 is taken, r becomes zero, and the iterates thereafter satisfy all the
constraints.

Neither of these approaches is completely satisfactory for the SC method. With a com-
posite objective function, the gradient vector changes in a discrete fashion as variables
become feasible and so must be recomputed at each iteration, which makes it impossible to
save the solve with K0 during the feasibility phase (see Section 3). If we apply the approach
based on solving (4.1), Theorem 1.1 does not apply as long as r is nonzero, and fixing a
variable may cause AFR to become rank-deficient. In this situation, special procedures must
be invoked to maintain full rank of the working set.

A composite objective function that seems well suited to the SC method involves solving
a QP subproblem with an additional variable ξ (the artificial variable) associated with the
infeasibilities. As in the approach of Hoyle, the bound constraints are always satisfied, so
that the procedure may begin with any x0 satisfying ` ≤ x0 ≤ u. Let r0 denote the residual
b−Ax0, let the unit vector s be defined by s = r0/‖r0‖, and let ξ0 = ‖r0‖. Given a positive
weight ρ, we solve the modified quadratic program

minimize
x∈Rn ξ∈R1

ρξ + cTx + 1
2xTHx

subject to
(

A s
)( x

ξ

)
= b, ` ≤ x ≤ u, 0 ≤ ξ ≤ ‖r0‖,

(4.2)

for which (x0, ξ0) is feasible. If the artificial variable ever becomes zero, a feasible point has
been found, and ξ is thereafter excluded from the problem.
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With formulation (4.2), full rank of the initial working set implies full rank in all subse-
quent working sets, so that no special procedures are needed to correct for rank deficiency.
Further, the gradient of the composite objective function of (4.2) is a smooth function of
x. If ρ is sufficiently large, the solution of (4.2) is identical to that of the original problem
(1.1).

Note that the “artificial column” s is almost always dense. Consequently, ξ0 is treated
as initially fixed on its upper bound so that it is not included in K0. If ρ is large enough,
it is possible to ensure that ξ will be the first variable to be freed. The reduced cost for the
upper bound on ξ is ρ− sTπ, which exceeds the reduced cost for any remaining non-optimal
variable if

ρ > sTπ + max { |ĝj − aT
jπ| : j ∈ J }, (4.3)

where ĝ = g(x0 + p) and J is the index set of non-optimal fixed variables. The lower bound
in (4.3) may be used as an initial estimate of ρ.

If the artificial variable ever moves to its lower bound immediately after being freed,
the Schur complement (a single element) is discarded. This situation often occurs when the
artificial variable is introduced to rectify infeasibility during the QP phase.

In any method that relies on a composite objective function, a strategy must be included
to attempt to decide whether no feasible point exists for the original problem (1.1), or
whether ρ has not yet become sufficiently large. The value of ρ is typically increased if
ξ > 0 at the solution of (4.2)—for example, ρ could be multiplied by a factor. A strategy
that increases ρ gradually may be inefficient if only a single QP is solved, since many values
of ρ may be required. When a sequence of related problems is solved, however, the value of
ρ from one QP is usually a satisfactory choice for the next. In the method of Gould [33],
ρ is increased until two successive values give the same x-value for (4.2). At this stage, the
change in the Lagrange multipliers associated with the last two ρ-values is used to determine
whether a feasible point exists or ρ should be increased further.

If no feasible point exists, it is often desirable to locate the minimium sum of infeasibil-
ities. Although the solution of (4.2) does minimize a weighted sum of infeasibilities if ρ is
large enough, the weights are essentially arbitrary (since they depend on the initial point).

5. Computing the Initial Factorization

The matrix K0 is represented by its symmetric indefinite factorization (see, e.g., Bunch and
Parlett [7], and Bunch and Kaufman [6]):

K0 = LDLT , (5.1)

where L is lower triangular and D is block diagonal, with 1× 1 or 2× 2 blocks. (The latter
are required to retain numerical stability.)

An effective and widely used implementation of (5.1) for sparse matrices is the Harwell
routine MA27 (Duff and Reid [18]), which is a three-phase method. The analyze phase
is purely symbolic (i.e., uses only the sparsity pattern of K0), and applies a version of
the minimum-degree algorithm intended to define a symmetric ordering that produces low
fill-in in L. In the subsequent factorize phase, the numerical factors (5.1) are computed
using the actual entries in K0 ordered as prescribed by analyze, with further symmetric
interchanges performed if necessary for numerical stability. Finally, the solution of K0x = b
is computed in the solve phase.

5.1. A specialized analyze phase

The direct application of MA27 is very effective for problems in which H is sparse and there
are few general constraints (i.e., m is small relative to n). Many problems in statistics
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have this feature, since they require nonnegativity of all variables, with the single general
constraint

∑
i xi = 1. KKT systems with small m are best handled by applying the analyze

phase to the matrix H only. A suitable ordering for the full KKT system may then be
determined by expanding the data structure to include the constraint rows and columns.
If all the 1 × 1 pivots are numerically acceptable in the factorize phase, the first search
direction and multiplier vector would satisfy the range-space equations:

AT
0 H−1

0 A0π = AT
0 H−1

0 g0 and H0p0 = AT
0 π − g0 (5.2)

(see, e.g., Gill et al.[24]). In practice, some 1× 1 pivots may be rejected—for example, any
pivot corresponding to a free slack variable. However, if m is not too large, the symbolic
ordering for H0 is still likely to provide a numerically stable factorization.

When m is not small relative to n, the rows of A0 must be included in the analyze
phase. Unfortunately, the minimum-degree algorithm assumes that no 2 × 2 pivots occur
during the factorization, and hence that the diagonal elements of K0 are nonzero. Since
K0 always has a zero diagonal block in the lower right-hand corner, the symbolic ordering
from analyze is often changed substantially during the factorize phase. In some cases,
the resulting additional fill-in increases the work required to operate with the factors. The
problem is exacerbated if zero diagonal elements occur within H—for example, the diagonals
corresponding to slack variables.

In our experience with large m, an increase in fill-in compared to the predicted level has
occurred consistently, even when all the diagonals of H are nonzero. A possible explanation
is that the number of nonzeros in a given row of A0 is likely to be less than the total number
of nonzeros in a given row of H0 and the corresponding column of A0. Consequently, the
minimum-degree algorithm may well choose an ordering with many zero diagonals. The root
of the difficulty seems to be the persistence of zero diagonal pivots in the reduced matrix.

The special treatment of zero diagonal elements during the minimum-degree ordering
will be incorporated in a new version of MA27 (Duff, private communication). However, the
efficiency of the current version of MA27 on KKT systems may be significantly improved
in some cases by utilizing the facility of MA27 to accept a preassigned ordering for the
factorize. Let T denote a 2× 2 matrix (called a tile) of the form

Tij =

(
h a

ā

)
, (5.3)

where h is an element of H, and a and ā are elements of A. A symmetric tile has the useful
property that it is nonsingular if a is nonzero; moreover, its nonzero eigenvalues must have
opposite sign. Our ordering strategy is to define a permutation matrix Π such that the
upper left-hand corner of a symmetrically permuted version of K0 consists of a symmetric
“checkerboard” matrix T of tiles, i.e.,

M = ΠT K0Π =

(
T FT

F E

)
, (5.4)

where T has the form

T =


T11 T12 T13 · · ·
TT

12 T22 T23 · · ·
TT

13 TT
23 T33 · · ·

...
...

 .
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Each tile (5.3) is essentially a pairing of a column of H with a column of A. For example,
when T is 4× 4, one possible arrangement is

T =


h11 a21 h13 a11

a21 a23

h13 a23 h33 a13

a11 a13


Once an element aij is selected for a diagonal tile Tqq, the elements of column j of A become
entries of the off-diagonal tiles Tpq, where p = 1, 2, . . . , q − 1. The remaining elements in
row i of A become ineligible for inclusion in diagonal tiles.

In the proposed method, the sparsity pattern of M in (5.4) is first processed by a
minimum-degree ordering that treats each tile in T as a single element that is nonzero
if and only if the tile is a nonzero matrix. A suitable ordering for the full matrix is then
determined by expanding the data structure to consider each tile as a 2×2 matrix. The idea
is to force MA27 to use a pivot strategy contrary to that typically used in the Bunch-Parlett
algorithm—i.e., instead of choosing 2 × 2 pivots only when no suitable diagonal pivots are
available, 2× 2 pivots are preferred.

Arranging the Hessian and general constraints of (1.6) into tiles is a very effective method
for dealing with slack variables. If all free slacks are picked first for inclusion in the diagonal
tiles, the associated 2×2 pivots cause no fill-in during the symmetric indefinite factorization.

Many real-world problems have the desirable feature that a “natural” pairing of columns
of H and A is suggested by the nature of the underlying physical system. By applying the
above technique in the analyze phase, fill-in during the factorization may be substantially
reduced compared to an application of MA27 alone. In Table 1 we give some factorization
statistics obtained from applying the tiling strategy to solve QP subproblems arising in the
optimal distribution of electrical power (Burchett, Happ and Vierath [8]). For each problem
we give the dimension of the reduced Hessian, the dimension of the KKT system, the number
of nonzeros in K0, the number of elements in L predicted by the analyze, and the actual
number of nonzeros generated during the factorize.

Table 1: Factorization statistics for various KKT systems

dim(K0) dim(ZTHZ) K0 analyze factorize

1840 56 13593 33486 34676
2048 266 17025 37614 38458
2105 219 13858 38696 38700
5841 1 31697 63278 69323
5997 157 33399 65170 69620

There is a clear need for a general procedure that will find a suitable tiling for an arbitrary
sparse KKT system. Given any 2m× 2m tiled matrix T , there exists a permutation Π̄ such
that

T̄ = Π̄T TΠ̄ =

(
H BT

B

)
, (5.5)

where B is an m ×m subset of the columns of A. Since A has full rank, there must exist
permutations Π and Π̄ for which B is nonsingular. Hence there must exist at least one tiling
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such that T is nonsingular. Finding a “good” set of columns from A is very similar to the
problem of choosing a nonsingular basis. Because the selected columns of A automatically
define the rows and columns of H to be used in T , the “best” arrangement will minimize the
number of nonzero tiles. Once an initial T matrix has been chosen, updating T should be
relatively easy when refactorization is required. In particular, no change is necessary if none
of the free variables corresponding to the selected columns of H has become fixed. This
property implies that construction of the tiles should favor columns of H that are likely to
remain free.

5.2. Relationship between methods

If the KKT system is solved by taking pivots from H0 first, the symmetric indefinite fac-
torization implicitly forms matrices that define the class of range-space methods (cf. (5.2)).
The following theorem shows that a different pivot order will cause the symmetric indefinite
factorization to form matrices associated with the reduced-gradient method.

Lemma 5.1. Define two matrices M and M̄ such that

M =

(
T FT

F E

)
and M̄ =

(
T̄ F̄T

F̄ E

)
,

where T and T̄ are ` × ` and nonsingular, and M̄ is obtained from M by performing sym-
metric permutations of the first ` rows and columns. Then M̄/T̄ = M/T .

Theorem 5.1. Assume without loss of generality that H0 and A0 may be partitioned so
that

H0 =

(
H1 G

GT H2

)
and A0 =

(
B S

)
,

where B and H1 are m × m with B nonsingular. Let T denote a 2m × 2m tiled matrix
formed from elements of H1 and B. If M denotes the permuted KKT system (5.4) then

M/T = ZTHZ, where Z =

 −B−1S

I

0

 .

Proof. Let M̄ and T̄ denote the matrices

M̄ =

 H1 BT G

B S

GT ST H2

 and T̄ =

(
H1 BT

B

)
.

Then by definition,

M̄/T̄ = H2 −
(

GT ST
)
T̄−1

(
G

S

)
= H2 −

(
GT ST

)( V1

V2

)
, (5.6)

where V1 and V2 are defined by the (block-triangular) equations(
H1 BT

B

)(
V1

V2

)
=

(
G

S

)
. (5.7)
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Substituting for V1 and V2 from (5.7) into (5.6), we obtain

M̄/T̄ = H2 −GT B−1S − ST B−T G + ST B−T H1B
−1S

=
(
−ST B−T I

)( H1 G

GT H2

)(
−B−1S

I

)
= ZTHZ.

The result now follows from Lemma 5.1.

This result implies that the symmetric indefinite factorization, when used in conjunction
with a nonsingular tiling, implicitly forms and factorizes the reduced Hessian. Moreover,
ZTHZ is computed in a way that exploits symmetry. In situations when the reduced
Hessian is sparse, the symmetric indefinite factorization thus provides an effective means of
exploiting sparsity during the factorization.

In general, direct factorization of the KKT system provides the opportunity to define a
set of methods for the large-scale case, with each method determined by the order of the
columns in the initial KKT factorization.

6. Formulation of the Constraints

In this section we discuss two aspects of the occasional inefficiency resulting from use of the
standard form (1.1).

6.1. Treatment of slacks in the standard form

In the Schur-complement algorithm, each free slack column adds a unit row and column
to K0, so that symmetric interchanges cannot move the corresponding unit element to the
diagonal. In order to avoid unnecessary fill-in during the initial factorization, the two (unit)
nonzeros associated with each slack must be formed into a 2×2 tile as described in Section 5.
If there are k free slacks, A0 is of the form

A0 =

(
A1

Ik A2

)
, (6.1)

where Ik is the identity of order k. With suitable permutation, the associated KKT system
has the form

K0 =


Ik

Ik A2

AT
2 H1 AT

1

A1

 . (6.2)

A trivial sequence of interchanges in the leading 2k × 2k rows and columns of (6.2) gives
the required tiling, with k matrices (

1
1

)
on the principal diagonal. If 2× 2 pivots are selected from the diagonal, no additional fill-in
occurs in the leading 2k columns. Ideally, a symmetric indefinite solver such as MA27 should
treat singleton rows and columns in this way.
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6.2. General inequalities

Constraints sometimes arise “naturally” in the form

` ≤

(
I

A

)
x ≤ u. (6.3)

In an active-set method based on (6.3), the working-set matrix undergoes both row and
column changes. For sparse problems, few authors have considered the associated compli-
cations of updating sparse factors that vary in dimension. (See Gill, Murray, Saunders and
Wright [29], for an exception.)

In contrast, the Schur-complement method may be generalized quite readily to problems
with constraints of the form (6.3). The equations associated with each iteration are identical
to (1.6), except that AFR is effectively just the submatrix A1 in (6.1). If a general constraint
with gradient a is added to the working set, the KKT system is bordered by a vector made
up from the free elements of a.

The update for deletion of a general constraint from the working set can be illustrated
easily for the first iteration. If the constraint to be deleted corresponds to the s-th row of
AFR, the search direction satisfies the bordered system HFR AT

FR

AFR es

eT
s


 −pFR

π

γ

 =

 gFR

0
0

 ,

where γ may be discarded. The Lagrange multipliers for the general constraints in the
working set may be recovered by deleting the s-th element of π.

Since AFR must be maintained subject to both row and column updates, it is necessary
to access A by both rows and columns. In the case of linear programming, if m � n the
standard form is efficient (and requires only column updates), while if m � n one may
prefer to solve the dual problem, again in standard form. However, once the form (6.3) is
assumed, efficiency can be retained regardless of the ratio of m to n. This advantage is
all the more important for nonlinear problems, where the device of solving the dual is not
necessarily applicable or efficient.

7. Discussion

An important feature of the Schur-complement approach is that any advances in methods for
sparse linear equations are immediately applicable to computation of the initial factorization
of K0. This approach is especially effective when K0 has special structure that can be
exploited in a “black box” equation solver—e.g., when the constraints are derived from
network flow problems.

Many new machines have become available in recent years with vector and/or parallel
capabilities. In most cases, the novelty of their architecture is not exploited by existing
software. In the large-scale mathematical programming area, a portable Fortran code (e.g.,
MINOS, sciconic) will run successfully on vector machines like the cray-1 or cray-xmp,
but most of the computation will be performed only in scalar mode.

It can be expected that sparse linear equation solvers will eventually be developed for
novel machines intended for scientific computation. While explicit updating of LU factors
will probably remain efficient on conventional machines (see Gill, Murray, Saunders and
Wright [29]), the Schur-complement approach is likely to provide the most effective method
for machines with advanced architectures. In the case of vector supercomputers, techniques
have already been developed that allow large linear systems to be solved efficiently (see
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Ashcraft et al.[1]). We therefore believe that the efficient solution of large quadratic pro-
gramming problems on vector machines is now feasible.

The Schur-complement method described here has been implemented within an SQP
method and applied to the solution of optimal power flow (OPF) problems arising in the
electrical power industry. OPF problems concern the optimal generation and distribution
of electrical power in a network (see Stott, Alsac and Marinho [39]). Exact second deriva-
tives are available for these problems, and a specialized Newton-based SQP method has
been applied with great success to general OPF problems of a size previously considered
intractable.
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