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ITERATIVE SOLUTION OF AUGMENTED SYSTEMS ARISING IN
INTERIOR METHODS∗
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Abstract. Iterative methods are proposed for certain augmented systems of linear equations
that arise in interior methods for general nonlinear optimization. Interior methods define a sequence
of KKT equations that represent the symmetrized (but indefinite) equations associated with New-
ton’s method for a point satisfying the perturbed optimality conditions. These equations involve both
the primal and dual variables and become increasingly ill-conditioned as the optimization proceeds.
In this context, an iterative linear solver must not only handle the ill-conditioning but also detect the
occurrence of KKT matrices with the wrong matrix inertia. A one-parameter family of equivalent
linear equations is formulated that includes the KKT system as a special case. The discussion focuses
on a particular system from this family, known as the “doubly augmented system,” that is positive
definite with respect to both the primal and dual variables. This property means that a standard
preconditioned conjugate-gradient method involving both primal and dual variables will either termi-
nate successfully or detect if the KKT matrix has the wrong inertia. Constraint preconditioning is a
well-known technique for preconditioning the conjugate-gradient method on augmented systems. A
family of constraint preconditioners is proposed that provably eliminates the inherent ill-conditioning
in the augmented system. A considerable benefit of combining constraint preconditioning with the
doubly augmented system is that the preconditioner need not be applied exactly. Two particular
“active-set” constraint preconditioners are formulated that involve only a subset of the rows of the
augmented system and thereby may be applied with considerably less work. Finally, some numerical
experiments illustrate the numerical performance of the proposed preconditioners and highlight some
theoretical properties of the preconditioned matrices.
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1. Introduction. This paper concerns the formulation and analysis of precon-
ditioned iterative methods for the solution of augmented systems of the form

(1.1)

(
H −AT

A G

)(
x1

x2

)
=

(
b1
b2

)
,

with A an m×n matrix, H symmetric, and G symmetric positive semidefinite. These
equations arise in a wide variety of scientific and engineering applications, where they
are known by a number of different names, including “augmented systems,” “saddle-
point systems,” “KKT systems,” and “equilibrium systems.” (The bibliography of the
survey by Benzi, Golub, and Liesen [3] contains 513 related articles.) The main focus
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of this paper will be on the solution of augmented systems arising in interior methods
for general constrained optimization, in which case (1.1) is the system associated with
Newton’s method for finding values of the primal and dual variables that satisfy the
perturbed KKT optimality conditions (see, e.g., Wright [49] and Forsgren, Gill, and
Wright [15]). In this context H is the Hessian of the Lagrangian, A is the constraint
Jacobian, and G is diagonal.

Many of the benefits associated with the methods discussed in this paper derive
from formulating the interior method so that the diagonal G is positive definite. We
begin by presenting results for G positive definite and consider the treatment of sys-
tems with positive semidefinite and singular G in section 5. Throughout, for the case
where G is positive definite, we denote G by D and rewrite (1.1) as an equivalent
symmetric system Bx = b, where

(1.2) B =

(
H −AT

−A −D

)
and b =

(
b1

−b2

)
,

with D positive definite and diagonal. We will refer to this symmetric system as the
KKT system. (It is possible to symmetrize (1.1) in a number of different ways. The
format (1.2) will simplify the linear algebra in later sections.) When D is nonsingular,
it is well known that the augmented system is equivalent to the two smaller systems

(1.3) (H + ATD−1A)x1 = b1 + ATD−1b2 and x2 = D−1(b2 −Ax1),

where the system for x1 is known as the condensed system. It is less well known that
another equivalent system is the doubly augmented system

(1.4)

(
H + 2ATD−1A AT

A D

)(
x1

x2

)
=

(
b1 + 2ATD−1b2

b2

)
,

which has been proposed for use with direct factorization methods by Forsgren and
Gill [16]. In this paper we investigate the properties of preconditioned iterative meth-
ods applied to system (1.2) directly or to the equivalent systems (1.3) and (1.4).

If the underlying optimization problem is not convex, the matrix H may be in-
definite. The KKT matrix B of (1.2) is said to have correct inertia if the matrix
H +ATD−1A is positive definite. This definition is based on the properties of the un-
derlying optimization problem. Broadly speaking, the KKT system has correct inertia
if the problem is locally convex (for further details see, e.g., Forsgren and Gill [16],
Forsgren [18], and Griffin [32]). If the KKT matrix has correct inertia, then systems
(1.2)–(1.4) have a common unique solution (see section 2).

1.1. Properties of the KKT system. The main issues associated with using
iterative methods to solve KKT systems are (i) termination control, (ii) inertia con-
trol, and (iii) inherent ill-conditioning. The first of these issues is common to other
applications where the linear system represents a linearization of some underlying non-
linear system of equations. Issues (ii) and (iii), however, are unique to optimization
and will be the principal topics of this paper.

In the context of interior methods, the KKT system (1.2) is solved as part of
a two-level iterative scheme. At the outer level, nonlinear equations that define the
first-order optimality conditions are parameterized by a small positive quantity μ.
The idea is that the solution of the parameterized equations should approach the
solution of the optimization problem as μ → 0. At the inner level, equations (1.2)
represent the symmetrized Newton equations associated with finding a zero of the
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perturbed optimality conditions for a given value of μ. Although systems (1.2)–(1.4)
have identical solutions, an iterative method will generally produce a different se-
quence of iterates in each case (see section 3 for a discussion of the equivalence of
iterative solvers in this context). An iterative method applied to the augmented sys-
tem (1.2) or the doubly augmented system (1.4) treats x1 and x2 as independent
variables, which is appropriate in the optimization context because x1 and x2 are as-
sociated with independent quantities in the perturbed optimality conditions (i.e., the
primal and dual variables). In contrast, an iterative solver for the condensed system
(1.3) will generate approximations to x1 only, with the variables x2 being defined as
x2 = D−1(b2 −Ax1). This becomes an important issue when an approximate solution
is obtained by truncating the iterations of the linear solver. During the early outer
iterations, it is usually inefficient to solve the KKT system accurately, and it is better
to accept an inexact solution that gives a residual norm that is less than some factor
of the norm of the right-hand side (see, e.g., Dembo, Eisenstat, and Steihaug [7]).
For the condensed system, the residual for the second block of equations will be zero
regardless of the accuracy of x1, which implies that termination must be based on the
accuracy of x1 alone. It is particularly important for the solver to place equal weight
on x1 and x2 when system (1.2) is being solved in conjunction with a primal-dual
trust-region method (see Gertz and Gill [20] and Griffin [32]). The conjugate-gradient
version of this method exploits the property that the norms of the (x1, x2) iterates
increase monotonically (see Steihaug [44]). This property does not hold for (x1, x2)
iterates generated for the condensed system.

If the KKT matrix does not have the correct inertia, the solution of (1.2) is not
useful, and the optimization continues with an alternative technique based on either
implicitly or explicitly modifying the matrix H (see, e.g., Toint [45], Steihaug [44],
Gould et al. [30], Hager [33], and Griffin [32]). It is therefore important that the
iterative solver is able to detect if B does not have correct inertia.

As the perturbation parameter μ is reduced, the KKT systems become increas-
ingly ill-conditioned. The precise form of this ill-conditioning depends on the formu-
lation of the interior method, but a common feature is that some diagonal elements
of D are big and some are small. (It is almost always possible to formulate an interior
method that requires the solution of an unsymmetric system that does not exhibit
inevitable ill-conditioning as μ → 0. This unsymmetric system could be solved us-
ing an unsymmetric solver such as GMRES or QMR. Unfortunately, this approach
is unsuitable for general KKT systems because an unsymmetric solver is unable to
determine if the KKT matrix has correct inertia.) In section 3 we consider a pre-
conditioned conjugate-gradient (PCG) method that provably removes the inherent
ill-conditioning. In particular, we define a one-parameter family of preconditioners
related to the class of so-called constraint preconditioners proposed by Keller, Gould,
and Wathen [34]. Several authors have used constraint preconditioners in conjunction
with the conjugate-gradient method to solve the indefinite KKT system (1.2) with
b2 = 0 and D = 0 (see, e.g., Lukšan and Vlček [36], Gould, Hribar, and Nocedal [29],
Perugia and Simoncini [40], and Bergamaschi, Gondzio, and Zilli [4]). Recently, Dol-
lar [12] and Dollar et al. [11] have proposed constraint preconditioners for system (1.2)
with no explicit inertial or diagonal condition on D, but a full row-rank requirement
on A and the assumption that b2 = 0.

Methods that require b2 = 0 must perform an initial projection step that effec-
tively shifts the right-hand side to zero. The constraint preconditioner then forces the
x1 iterates to lie in the null space of A. A disadvantage with this approach is that the
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constraint preconditioner must be applied exactly if subsequent iterates are to lie in
the null space. This limits the ability to perform approximate solves with the precon-
ditioner, as is often required when the matrix A has a PDE-like structure that also
must be handled using an iterative solver (see, e.g., Saad [41], Notay [37], Simoncini
and Szyld [43], and Elman et al. [14]). In section 3 we consider preconditioners that
do not require the assumption that b2 = 0, and hence do not require an accurate solve
with the preconditioner.

1.2. A PCG method for the KKT system. The goal of this paper is to for-
mulate iterative methods that not only provide termination control and inertia control,
but also eliminate the inevitable ill-conditioning associated with interior methods. All
these features are present in an algorithm based on applying a PCG method to the
doubly augmented system (1.4). This system is positive definite if the KKT matrix
has correct inertia, and gives equal weight to x1 and x2 for early terminations. As
preconditioner we use the constraint preconditioner

(1.5) P =

(
M + 2ATD−1A AT

A D

)
,

where M is an approximation of H such that M + ATD−1A is positive definite.
The equations Pv = r used to apply the preconditioner are solved by exploiting the
equivalence of the systems(

M + 2ATD−1A AT

A D

)(
v1

v2

)
=

(
r1
r2

)
,(1.6a) (

M −AT

−A −D

)(
v1

v2

)
=

(
r1 − 2ATD−1r2

−r2

)
, and(1.6b)

(M + ATD−1A)v1 = r1 −ATD−1r2, v2 = D−1(r2 −Av1)(1.6c)

(see section 3). This allows us to compute the solution of (1.6a) by solving either
(1.6b) or (1.6c). (The particular choice will depend on the relative efficiency of the
methods available to solve the condensed and augmented systems.)

We emphasize that the doubly augmented systems are never formed or factored
explicitly. The matrix associated with the doubly augmented equations (1.4) is used
only as an operator to define products of the form v = Bu. As mentioned above, the
equations (1.6a) that apply the preconditioner are solved using either (1.6b) or (1.6c).
An important property of the method is that these equations also may be solved using
an iterative method. (It is safe to use the augmented or condensed system for the
preconditioner equations Pv = r because the inertia of P is guaranteed by the choice
of M (see section 3).)

In section 4 we formulate and analyze two variants of the preconditioner (1.5)
that exploit the asymptotic behavior of the elements of D. The use of these so-called
active-set preconditioners may require significantly less work when the underlying
optimization problem has more constraints than variables. In section 5, we consider
the case where G is positive semidefinite and singular. Finally, in section 6, we present
some numerical examples illustrating the properties of the proposed preconditioners.

1.3. Notation and assumptions. Unless explicitly indicated otherwise, ‖ · ‖
denotes the vector two-norm or its subordinate matrix norm. The inertia of a real
symmetric matrix A, denoted by In(A), is the integer triple (a+, a−, a0) giving the
number of positive, negative, and zero eigenvalues of A. The spectrum of a (possi-
bly unsymmetric) matrix A is denoted by eig(A). As the analysis concerns matrices
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with only real eigenvalues, eig(A) is regarded as an ordered set, with the least (i.e.,
“leftmost”) eigenvalue, denoted by eigmin(A), appearing first. The quantity σk(A)
denotes the kth largest singular value of A. Given a positive-definite A, the unique
positive-definite X such that X2 = A is denoted by A1/2. Given vectors x1 and x2,
the column vector consisting of the elements of x1 augmented by the elements of x2

is denoted by (x1, x2).
When μ is a positive scalar such that μ → 0, the notation p = O

(
μ
)

means that
there exists a constant K such that |p| ≤ Kμ for all μ sufficiently small. For a positive
p, p = Ω(1/μ) implies that there exists a constant K such that 1/p ≤ Kμ for all
μ sufficiently small. In particular, p = O

(
1
)

means that |p| is bounded, and, for a
positive p, p = Ω(1) means that p is bounded away from zero. For a positive p, the
notation p = Θ

(
1
)

is used for the case where both p = O
(
1
)

and p = Ω(1), so that p
remains bounded and is bounded away from zero as μ → 0.

As discussed in section 1.1, we are concerned with solving a sequence of systems of
the form (1.2), where the matrices A, H, and D depend implicitly on μ. In particular,
A and H are first and second derivatives evaluated at a point depending on μ, and
D is an explicit function of μ. The notation defined above allows us to characterize
the properties of H, A, and D in terms of their behavior as μ → 0. Throughout the
analysis, it is assumed that the following properties hold:

(A1) ‖H‖ and ‖A‖ are both O
(
1
)
.

(A2) The row indices of A may be partitioned into disjoint subsets S, M, and B
such that dii = O

(
μ
)

for i ∈ S, dii = Θ
(
1
)

for i ∈ M, and dii = Ω(1/μ) for
i ∈ B.

(A3) If AS is the matrix of rows of A with indices in S and r = rank(AS), then r
remains constant as μ → 0 and σr(AS) = Θ(1).

The second assumption reflects the fact that for μ sufficiently small, some diagonal
elements of D are “small,” some are “medium,” and some are “big.”

It is often the case in practice that the equations and variables corresponding to
unit rows of A are eliminated directly from the KKT system. This elimination creates
no additional nonzero elements and provides a smaller “partially condensed” system
with an Ω(1/μ) diagonal term added to H. It will be shown that preconditioners for
both the full and partially condensed KKT systems depend on the eigenvalues of the
same matrix (see Lemmas 3.4 and 3.5). It follows that our analysis also applies to
preconditioners defined for the partially condensed system.

2. A parameterized system of linear equations. In this section, it is shown
how the indefinite KKT system (1.2) may be embedded in a family of equivalent
linear systems, parameterized by a scalar ν. This parameterization facilitates the
simultaneous analysis of the three systems (1.2)–(1.4).

Definition 2.1 (the parameterized system). Let ν denote a scalar. Associ-
ated with the KKT equations Bx = b of (1.2), we define the parameterized equations
B(ν)x = b(ν), with

B(ν) =

(
H + (1 + ν)ATD−1A νAT

νA νD

)
and b(ν) =

(
b1 + (1 + ν)ATD−1b2

νb2

)
,

where H is symmetric and D is positive definite and diagonal.
The following proposition states the equivalence of the KKT system (1.2) and the

parameterized system of Definition 2.1.
Proposition 2.2 (equivalence of the parameterized systems). Let ν denote a

scalar parameter. If ν �= 0, then the system Bx = b of (1.2) and the system B(ν)x =
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b(ν) of Definition 2.1 are equivalent, i.e., (1.2) has a solution (x1, x2) if and only if
(x1, x2) is a solution to B(ν)x = b(ν). If ν = 0, then (1.2) has a solution (x1, x2) if
and only if x1 is a solution of B(0)x = b(0) and x2 = D−1(b2 −Ax1).

We are particularly interested in the parameterized system B(ν)x = b(ν) for the
values ν = −1, ν = 0, and ν = 1. If ν = −1, we obtain the symmetric KKT system
(1.2). If ν = 0, we obtain the condensed system

(2.1) (H + ATD−1A)x1 = b1 + ATD−1b2 with x2 arbitrary.

In this case, x2 does not appear in the augmented system and must be computed as
x2 = D−1(b2 −Ax1). Finally, if ν = 1, we obtain the doubly augmented system

(2.2)

(
H + 2ATD−1A AT

A D

)(
x1

x2

)
=

(
b1 + 2ATD−1b2

b2

)
.

The next result follows from Lemma A.1 of the appendix and gives the inertia of
B(ν) as a function of ν.

Proposition 2.3 (inertia of the parameterized system). For the matrix B(ν) of
Definition 2.1, it holds that

(i) In
(
B(ν)

)
= In(H + ATD−1A) + (m, 0, 0) if ν > 0;

(ii) In
(
B(ν)

)
= In(H + ATD−1A) + (0,m, 0) if ν < 0; and

(iii) In
(
B(ν)

)
= In(H + ATD−1A) + (0, 0,m) if ν = 0.

This proposition implies that the inertia of B(ν) may be determined from the
inertia of H + ATD−1A and the sign of ν. In particular, the result gives the inertia
of the three alternate systems in the situation where the inertia of B is correct and
the solver can be allowed to continue solving the system. If the inertia of B is correct,
then (i) the doubly augmented system is positive definite; (ii) the KKT system has
n positive eigenvalues and m negative eigenvalues; and (iii) the condensed system is
positive definite (when regarded as a system involving only x1).

Proposition 2.3 implies that it is not worth applying a conjugate-gradient method
to the general indefinite KKT system (1.2) because this method is unable to estimate
the number of negative eigenvalues of an indefinite matrix. In contrast, the conjugate-
gradient method is appropriate for both the doubly augmented system and the con-
densed system because indefiniteness is immediately indicated by the occurrence of a
negative value of pTjCpj , where pi is a conjugate direction and C is either the doubly
augmented matrix or the matrix for the condensed system. In other words, the occur-
rence of a negative value of pTjCpj indicates that the inertia of the system is incorrect
and the search for a solution of (1.2) should be abandoned.

3. Constraint preconditioning for the linear equations. The rate of con-
vergence of the conjugate-gradient method may be accelerated by choosing an appro-
priate symmetric positive-definite preconditioner of the form P = RTR, and applying
the conjugate-gradient method to the preconditioned system R−TBR−1Rx = R−Tb.
As is well known, the computations may be arranged so that the preconditioner is
applied by solving systems of the form Pv = r. It is the eigenvalues of the precondi-
tioned matrix R−TBR−1 that determine the rate of convergence. As eig(R−TBR−1) =
eig(R−1R−TBR−1R) = eig(P−1B), the analysis may be written in terms of P−1B
without regard to R. However, it must be emphasized that P must be symmetric
positive definite for the standard PCG method to be well defined.

Several authors have suggested constraint preconditioners for (1.2) and (1.3), in
which H is replaced by a “simpler” approximation matrix M such that M+ATD−1A is
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positive definite (see, e.g., Keller, Gould, and Wathen [34] and Bergamaschi, Gondzio,
and Zilli [4]).

Under certain circumstances, the PCG method may be applied to all three systems
and will give identical results in exact arithmetic.

Proposition 3.1. Assume that H + ATD−1A is positive definite. Consider the
PCG method applied to the KKT system (1.2), the condensed system (1.3), and the
doubly augmented system (1.4) with preconditioners

(3.1)

(
M −AT

−A −D

)
, M + ATD−1A, and

(
M + 2ATD−1A AT

A D

)
,

respectively. If b2 = 0, then the PCG method generates the same sequence of iterates
for all three systems (where an x2 iterate for the condensed system is defined as the
product of −D−1A and the x1 iterate).

The first preconditioner of (3.1) is not positive definite, which implies that it does
not fit within the conventional PCG framework. However, Proposition 3.1 implies
that the PCG method may be applied safely to the KKT system (1.2) in the special
situation where b2 = 0. The result is a projected PCG method that can be shown to
be formally equivalent to the standard method applied to the condensed system; see,
e.g., Lukšan and Vlček [36] and Gould, Hribar, and Nocedal [29].

The condition b2 = 0 may be achieved by choosing a special initial point y. In
particular, consider the point (y1, y2) such that Ay1 +Dy2 = b2, and the appropriate
preconditioner is used for each system. Let x denote the generic vector of unknowns
(the dimension of x will depend on which of the three systems is to be solved). We may,
for example, solve Py = b, where P is one of the three appropriate preconditioners,
or we may set y1 = 0, y2 = D−1b2. Then use PCG with preconditioner P to solve

Bx̂ = b−By and set x = y + x̂.

In general, if b2 �= 0, it is not safe to apply the PCG method to the indefinite sys-
tem (1.2). Moreover, the PCG method will usually generate different iterates for the
condensed system (1.3) and the doubly augmented system (1.4).

Finally, we note that the condensed system (1.3) and doubly augmented system
(1.4) may be viewed as being preconditioned versions of each other, as defined in the
following result.

Proposition 3.2. Consider the PCG method applied to a generic symmetric
system Ax = b with symmetric positive-definite preconditioner P and initial iterate
x0 = 0. Let L be a nonsingular matrix with the same dimension as A. Then, if the
PCG method is applied to LALTx̂ = Lb with preconditioner LPLT and initial iterate
x̂0 = 0, the PCG iterates are related by the transformation x = LTx̂.

If we consider the decomposition(
M + 2ATD−1A AT

A D

)
=

(
I ATD−1

I

)(
M + ATD−1A

D

)(
I

D−1A I

)
,

then Proposition 3.2 implies that the doubly augmented system may be viewed as a
particular preconditioned version of the condensed system augmented by the diagonal
D for the x2 variables (or vice versa). This is a further illustration that the proposed
approach gives equal weight to x1 and x2. We prefer to do the analysis in terms of
the doubly augmented system because it provides the parameterization based on the
scalar parameter ν.
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3.1. Properties of the constraint preconditioners. We now embed the pre-
conditioners of (3.1) within a family of preconditioners, parameterized by the scalar ν.
This parameterization is analogous to the parameterization of the matrices of Propo-
sition 2.2. The parameterization allows a unified analysis of the three preconditioners
given in (3.1).

Definition 3.3 (a parameterized preconditioner). Associated with the matrix
B(ν) of Definition 2.1, we define the preconditioner P (ν) as

P (ν) =

(
M + (1 + ν)ATD−1A νAT

νA νD

)
,

where M is a symmetric approximation to H such that
(P1) ‖M‖ = O

(
1
)
;

(P2) M + ATD−1A is positive definite;
(P3) eigmin(M + ATD−1A) = Ω(1).
Given suitable A and D, a matrix M satisfying the conditions of Definition 3.3

may be found, for example, by using a suitable factorization when solving with P (−1)
(see Forsgren and Murray [17], Forsgren and Gill [16], and Forsgren [18]).

Proposition 2.3 gives In(P (ν)) = In(M +ATD−1A)+In(νD). It follows that P (ν)
is nonsingular for ν �= 0, positive definite for ν > 0, and In(P (ν)) = (n,m, 0) for ν < 0.
It is straightforward to show that for all nonzero ν, the eigenvalues of P (ν)−1B(ν)
are real and independent of ν. The first lemma reveals the structure of P (ν)−1B(ν).

Lemma 3.4 (structure of the parameterized preconditioner). Let B(ν) and P (ν)
be defined as in Definitions 2.1 and 3.3, respectively. Then, for ν �= 0, it holds that

(3.2) P (ν)−1B(ν) =

(
S
T I

)
=

(
I

−D−1A I

)(
S

I

)(
I

D−1A I

)
,

where S and T are given by

S = (M + ATD−1A)−1(H + ATD−1A),(3.3a)

T = D−1A(M + ATD−1A)−1(M −H).(3.3b)

In addition, the spectrum of P (ν)−1B(ν) is independent of ν and consists of m unit
eigenvalues and the n eigenvalues of (M + ATD−1A)−1(H + ATD−1A).

Proof. The expressions for P (ν)−1B(ν) follow from the decomposition given in
Lemma A.1 of the appendix. The similarity transform (3.2) implies that the spectrum
of P (ν)−1B(ν) consists of the n eigenvalues of (M + ATD−1A)−1(H + ATD−1A)
together with m unit eigenvalues.

Next we relate the O
(
μ
)

diagonal elements in D to eigenvalues of size 1+O
(
μ1/2

)
in the (1, 1) block S of P (ν)−1B(ν) from (3.2).

Lemma 3.5 (eigenvalues of the parameterized preconditioner). Let M satisfy
assumptions (P1)–(P3) of Definition 3.3. Let AS denote the submatrix of rows of A
associated with diagonal elements of D that are O

(
μ
)
. Then the eigenvalues of

(M + ATD−1A)−1(H + ATD−1A)

are all O
(
1
)

with at least rank(AS) being 1 + O
(
μ1/2

)
.

Proof. First we show that (M + ATD−1A)−1 has at least rank(AS) eigenvalues
that are O

(
μ
)
. Let m1 = rank(AS). Without loss of generality it may be assumed that

the rows of A are ordered so that the m1 row indices in S corresponding to linearly
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independent rows of AS appear first. This implies that A and D may be partitioned
as

A =

(
A1

A2

)
and D =

(
D1

D2

)
,

where A1 is m1 × n, and D1 is m1 ×m1 with all eigenvalues O
(
μ
)
. Then

ATD−1A = AT
1 D

−1
1 A1 + AT

2 D
−1
2 A2.

Consider the singular-value decomposition A1 = UΣV T , where U and V are orthonor-
mal matrices of dimension m1 ×m1 and n ×m1, respectively, and Σ is an m1 ×m1

diagonal matrix. Let v = V p, where p is an arbitrary m1-vector of unit length. Then

(3.4) vTAT
1 D

−1
1 A1v = pTV TAT

1 D
−1
1 A1V p = pTΣUTD−1

1 UΣp ≥ σ2
m1

eigmin(D−1
1 ).

Assumption (A3) implies that σm1
= Θ(1). In addition, all eigenvalues of D1 are

O
(
μ
)
, and so (3.4) implies that vTAT

1 D
−1
1 A1v = Ω(1/μ). It follows that

(3.5) vT(M + ATD−1A)v = vTMv + vTAT
1 D

−1
1 A1v + vTAT

2 D
−1
2 A2v = Ω(1/μ),

since vTMv = O
(
1
)

and vTAT
2 D

−1
2 A2v ≥ 0. As p is an arbitrary unit vector such that

v = V p, we conclude from (3.5) that there exists an m1-dimensional subspace of vec-
tors v such that vT(M+ATD−1A)v is Ω(1/μ). The Courant–Fischer min-max theorem
implies that M +ATD−1A has at least m1 eigenvalues that are Ω(1/μ); see, e.g., [28,
Theorem 8.1.2, p. 394]. It follows that there exists an n×m1 orthonormal matrix Y
and m1×m1 diagonal Λ with eigmin(Λ) = Ω(1/μ) such that (M +ATD−1A)Y = Y Λ.
Since M+ATD−1A is positive definite, it must hold that (M+ATD−1A)−1Y = Y Λ−1

and (M + ATD−1A)−1/2Y = Y Λ−1/2 with

‖(Y T(M + ATD−1A)−1Y )‖ = O
(
μ
)
,(3.6a)

‖(M + ATD−1A)−1/2Y ‖ = O
(
μ1/2

)
.(3.6b)

Let E = (M+ATD−1A)−1/2(H−M)(M+ATD−1A)−1/2 and let Z be an n×(n−m1)
orthonormal matrix such that the columns of Z form a basis for the null space of Y T .
Then Q = (Y Z) is orthonormal and E has the same eigenvalues as the matrix

QTEQ =

(
Y TEY Y TEZ
ZTEY ZTEZ

)
,

where

Y TEY = Y T(M + ATD−1A)−1/2(H −M)(M + ATD−1A)−1/2Y ,(3.7a)

Y TEZ = Y T(M + ATD−1A)−1/2(H −M)(M + ATD−1A)−1/2Z,(3.7b)

ZTEZ = ZT(M + ATD−1A)−1/2(H −M)(M + ATD−1A)−1/2Z.(3.7c)

Then Definition 3.3 and the order estimates (3.6) imply that ‖Y TEY ‖ = O
(
μ
)
,

‖ZTEY ‖ = O
(
μ1/2

)
, and ‖ZTEZ‖ = O

(
1
)
. Hence, since ‖ZTEY ‖ = O

(
μ1/2

)
, the

eigenvalues of E differ by O
(
μ1/2

)
from the eigenvalues of Y TEY together with the
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eigenvalues of ZTEZ. But, since ‖Y TEY ‖ = O
(
μ
)
, we conclude that E has m1 eigen-

values that are O
(
μ1/2

)
. By similarity,

eig
(
(M + ATD−1A)−1(H −M)

)
= eig(E),

and it must hold that (M +ATD−1A)−1(H−M) has at least m1 eigenvalues that are
O
(
μ1/2

)
. The required results now follow from the identity

(M + ATD−1A)−1(H + ATD−1A) = I + (M + ATD−1A)−1(H −M),

completing the proof.
If M−H is known to be a definite matrix, then the O

(
μ1/2

)
bound of Lemma 3.5

may be sharpened to be O
(
μ
)
. In this case, the O

(
μ
)

curvature of the product (M +

ATD−1A)−1/2(H−M)(M+ATD−1A)−1/2 over a rank(AS)-dimensional space implied
by (3.7a) is sufficient to guarantee rank(AS) eigenvalues 1 + O

(
μ
)
.

A combination of Lemmas 3.4 and 3.5 gives the following result on the eigenvalues
of P (ν)−1B(ν).

Theorem 3.6 (eigenvalues of the preconditioned matrix). Let ν �= 0, and let
B(ν) and P (ν) be defined as in Definitions 2.1 and 3.3, respectively. Let AS denote
the submatrix of rows of A associated with diagonal elements of D that are O

(
μ
)
. The

preconditioned matrix P (ν)−1B(ν) has the following properties :
(a) The spectrum of P (ν)−1B(ν) is independent of ν and consists of m unit

eigenvalues and the n eigenvalues of (M + ATD−1A)−1(H + ATD−1A).
(b) Every eigenvalue of P (ν)−1B(ν) is of order O

(
1
)
. Moreover, P (ν)−1B(ν)

has at least m + rank(AS) eigenvalues 1 + O
(
μ1/2

)
, of which at least m are

exactly one.
This result implies that if mS denotes the number of eigenvalues of D that are

O
(
μ
)

and the corresponding mS × n submatrix AS has full row rank, then the PCG

method can be expected to give a solution that is O
(
μ1/2

)
accurate in at most n−mS

iterations.

4. Active-set preconditioning. An advantage of interior methods is that all
inequality constraints are treated in the same way—i.e., the solution path does not de-
pend on an explicit prediction of which constraints are active at the solution. However,
this advantage also can be a weakness because all constraint gradients are included
in the linear system, even those having little or no influence on the solution. For ex-
ample, if an interior method is applied to a problem with 100 variables and 100,000
inequality constraints, then a KKT system with 100,100 rows and columns must be
solved at each iteration. However, if only 50 (say) of the inequalities are active at
the solution, an active-set method would need to solve a KKT system of order 150.
In the context of an interior method, the partition of constraints into “active” and
“inactive” is determined by the magnitude of the diagonals of D in the KKT system
(1.2). Broadly speaking, the active set at the solution is estimated by the indices of
the “small” diagonals, and the inactive set is estimated by the indices of the “big”
diagonals.

In this section we formulate and analyze two active-set preconditioners based on
discarding rows of A that correspond to the big diagonals of D. The preconditioners
may be applied with a cost comparable to that of solving the KKT system in an
active-set method. In addition, the preconditioners allow considerable flexibility in
how the diagonals are partitioned into large and small elements—the partition affects
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only the rate of convergence of the iterative solver, not the rate of convergence of the
interior method. Similar preconditioners have been proposed by Gertz and Griffin [21]
in the context of support vector machine classifiers for large data sets. Preconditioners
for the solution of linear programs in standard form have been considered by Gill
et al. [25] and Oliveira and Sorensen [38]. An active-set preconditioner for general
nonlinear optimization has been proposed by Lukšan, Matonoha, and Vlček [35].

4.1. Two active-set preconditioners. Let mS , mM, and mB denote the num-
ber of row indices in the sets S, M, and B of “small,” “medium,” and “big” elements
of D (see section 1.3). These sets are disjoint, and together they contain all the row
indices of A, so that mS + mM + mB = m. If strict complementarity holds for the
underlying optimization problem, then mM is zero for all μ sufficiently small (see,
e.g., Forsgren, Gill, and Wright [15, p. 531]). The following analysis, does not assume
strict complementarity and so mM may be nonzero. However, it must be emphasized
that in this situation, the assumption regarding the order of the small elements of D
is a simplification of the real situation. Our assumption that dii = O

(
μ
)

for i ∈ S
is sufficient to capture the behavior as μ converges to zero. For a detailed discussion
regarding interior methods on degenerate problems, see, e.g., Wright and Orban [48].

In order to simplify the notation, the indices corresponding to the small and
medium diagonals are combined into one set C, i.e., C = S ∪ M. This set is the
complement of B, i.e., C∩B = ∅ and C∪B = {1, . . . ,m}. This simplification is possible
because of our focus on preconditioners based on discarding information associated
with the indices in B. Given the partition induced by B and C, the matrix P (ν) may
be partitioned as

(4.1) P (ν) =

⎛⎝M + (1 + ν)ATD−1A νAT
C νAT

B
νAC νDC
νAB νDB

⎞⎠ .

By eliminating the νDB block from P (ν), we may factor P (ν) as P (ν) = RPPP(ν)RT
P ,

with

RP =

⎛⎝I AT
BD

−1
B

I
I

⎞⎠ ,(4.2a)

PP(ν) =

⎛⎝M + AT
BD

−1
B AB + (1 + ν)AT

CD
−1
C AC νAT

C
νAC νDC

νDB

⎞⎠ .(4.2b)

Here, the subscript “P” identifies matrices that depend on the partition induced by
B and C (note that P (ν) itself is independent of the partition).

The nontrivial step associated with applying the preconditioner in the factored
form P (ν) = RPPP(ν)RT

P requires a solve with the leading principal submatrix of
(4.2b):

(4.3)

(
M + AT

BD
−1
B AB + (1 + ν)AT

CD
−1
C AC νAT

C
νAC νDC

)
.

This matrix, formed by eliminating the block νDB from P (ν), has smaller dimension,
(n + m − mB) × (n + m − mB), compared to (n + m) × (n + m) for P (ν). Lukšan,
Matonoha, and Vlček [35] propose an active-set preconditioner based on forming an
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incomplete factorization of the (1, 1) block. This avoids unnecessary fill-in from the
term AT

BD
−1
B AB. We propose an alternative strategy based on the observation that

since ‖D−1
B ‖ = O

(
μ
)
, then ‖AT

BD
−1
B AB‖ = O

(
μ
)
. In particular, the term AT

BD
−1
B AB

may be omitted from the (1, 1) block of PP(ν) without significantly changing the
preconditioner. This implies that (4.3) is replaced by PC(ν), where

(4.4) PC(ν) =

(
M + (1 + ν)AT

CD
−1
C AC νAT

C
νAC νDC

)
.

The subscript “C” indicates that PC(ν) depends only on the indices in C. In active-set
constraint preconditioning, PC(ν) plays the role of P (ν) in the analysis of the standard
case in section 3.1. Analogous to the assumptions on M , A, and D in Definition 3.3,
we require that

(P′
1) ‖M‖ = O

(
1
)
;

(P′
2) M + AT

CD
−1
C AC is positive definite; and

(P′
3) eigmin(M + AT

CD
−1
C AC) = Ω(1).

When PC(ν) replaces the leading principal submatrix in (4.2b) the product of the
factors becomes

(4.5) P 1
P(ν) =

⎛⎝M + νAT
BD

−1
B AB + (1 + ν)AT

CD
−1
C AC νAT

C νAT
B

νAC νDC
νAB νDB

⎞⎠ ,

which alternatively may be viewed as the preconditioner obtained by subtracting the
term AT

BD
−1
B AB from the (1, 1) block of P (ν).

The preconditioner (4.5) has the factorization P 1
P(ν) = RPP

2
P(ν)RT

P , where RP
is the upper-triangular matrix (4.2a) and P 2

P(ν) is given by

(4.6) P 2
P(ν) =

⎛⎝M + (1 + ν)AT
CD

−1
C AC νAT

C
νAC νDC

νDB

⎞⎠ .

The matrix P 2
P(ν) is yet another active-set preconditioner, which may be derived dif-

ferently by replacing the leading principal submatrix of PP(ν) by PC(ν) and replacing
RP by I. Observe that the replacement of RP by I quantifies the difference between
P 1
P(ν) and P 2

P(ν), and hence P 1
P(ν) is always a “better” approximation to PP(ν) than

P 2
P(ν). However, regardless of the choice of preconditioner, the dominant cost is the

solve with the matrix PC(ν) of (4.4). Note that AB does not appear in P 2
P(ν), which

may make P 2
P(ν) the more attractive preconditioner when it is expensive to form A,

e.g., in PDE-constrained optimization [5].
It remains to establish the theoretical properties of the preconditioners P 1

P(ν) and
P 2
P(ν). The next result shows that, asymptotically, the eigenvalues of P (ν)−1B(ν) and

P 1
P(ν)−1B(ν) are identical.

Theorem 4.1 (properties of the preconditioner P 1
P(ν)). Let B(ν) and P 1

P(ν) be
as defined in Definition 2.1 and (4.5), respectively. In addition, assume that assump-
tions (P′

1)–(P′
3) hold. Then P 1

P(ν) is positive definite for all ν > 0. Moreover, the
following properties hold for all ν �= 0:

(a) The spectrum of P 1
P(ν)−1B(ν) is independent of ν and consists of m unit

eigenvalues and the n eigenvalues of (M + AT
CD

−1
C AC)−1(H + ATD−1A).

(b) The matrix P 1
P(ν)−1B(ν) has all eigenvalues of order O

(
1
)

and at least m+

rank(AS) eigenvalues 1 + O
(
μ1/2

)
, of which at least m are exactly one.
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(c) If P (ν) is the preconditioner of Definition 3.3, then eig(P 1
P(ν)−1B(ν)) =

eig(P (ν)−1B(ν)) + O
(
μ
)
.

Proof. Proposition 2.3 implies that the preconditioner P 1
P(ν) is positive definite

for all ν > 0. For the remainder of the proof it will be assumed that ν is nonzero. It
follows that eig(P 1

P(ν)−1B(ν)) = eig(P 2
P(ν)−1R−1

P B(ν)R−T
P ), where

(4.7) R−1
P B(ν)R−T

P =

⎛⎝H + AT
BD

−1
B AB + (1 + ν)AT

CD
−1
C AC νAT

C
νAC νDC

νDB

⎞⎠ .

By successively replacing H by H+AT
BD

−1
B AB, A by AC , and D by DC in Lemma 3.4,

a combination of (4.6) and (4.7) gives

(4.8) P 2
P(ν)−1R−1

P B(ν)R−T
P =

⎛⎝SC
TC I

I

⎞⎠ ,

where the matrices SC and TC are given by

SC = (M + AT
CD

−1
C AC)−1(H + ATD−1A),(4.9a)

TC = D−1
C AC(M + AT

CD
−1
C AC)−1(M −H −AT

BD
−1
B AB).(4.9b)

The identity (4.8) implies that the spectrum of P 1
P(ν)−1B(ν) consists of the eigenval-

ues of SC and m unit eigenvalues, which proves part (a). Since SC is independent of
ν, the spectrum of P 1

P(ν)−1B(ν) is also independent of ν. Lemma 3.5 implies that SC
has at least rank(AS) eigenvalues that are 1 + O

(
μ1/2

)
, which establishes part (b).

To establish part (c), we need to estimate the difference between the eigenvalues
of SC and S, where S is given by (3.3a). This can be done using Lemma A.2 of the
appendix. We may write

SC = I + (M + AT
CD

−1
C AC)−1(H −M) + (M + AT

CD
−1
C AC)−1AT

BD
−1
B AB,(4.10a)

S = I + (M + ATD−1A)−1(H −M).(4.10b)

By assumption, matrix M+AT
CD

−1
C AC is positive definite with the smallest eigenvalue

bounded away from zero, and AT
BD

−1
B AB is positive definite with ‖D−1

B ‖ = O
(
μ
)
. The

identity (4.10a) implies that the matrix (M +AT
CD

−1
C AC)1/2SC(M +AT

CD
−1
C AC)−1/2

is symmetric and has the same eigenvalues as SC , and it follows from (4.10) that

eig(SC) = 1 + eig((M + AT
CD

−1
C AC)−1(H −M)) + O

(
μ
)
,(4.11a)

eig(S) = 1 + eig((M + ATD−1A)−1(H −M)).(4.11b)

If we define M1 = M + AT
CD

−1
C AC , M2 = AT

BD
−1
B AB, and M3 = H −M , then (4.11)

gives eig(SC) = 1 + eig(M−1
1 M3) + O

(
μ
)

and eig(S) = 1 + eig((M1 + M2)
−1M3).

Lemma A.2 in conjunction with assumptions (P′
1)–(P′

3) gives the desired result.
Next we establish that P 2

P(ν) has the same asymptotic behavior as P (ν) and
P 1
P(ν). For P 2

P(ν) it is assumed that ν > 0, which ensures that the eigenvalues of
P 2
P(ν)−1B(ν) are real. The preconditioner P 2

P(ν) is less expensive to apply than P 1
P(ν),

but the number of unit eigenvalues of the preconditioned matrix decreases from m to
m − rank(AB) because AB does not appear in P 2

P(ν). However, as the next theorem
shows, for ν > 0, P 2

P(ν) behaves almost as well as P 1
P(ν) in the sense that the

eigenvalues of P 2
P(ν)−1B(ν) differ from the eigenvalues of P (ν)−1B(ν) by O

(
μ1/2

)
.
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Theorem 4.2 (properties of the preconditioner P 2
P(ν)). Let B(ν) and P 2

P(ν) be
as defined in Definition 2.1 and (4.6), respectively. In addition, assume that assump-
tions (P′

1)–(P′
3) hold. Then the following properties hold for all ν > 0:

(a) P 2
P(ν) is positive definite.

(b) The matrix P 2
P(ν)−1B(ν) has all eigenvalues of order O

(
1
)

and at least m+

rank(AS) eigenvalues 1+O
(
μ1/2

)
, of which at least m−rank(AB) are exactly

one.
(c) If P (ν) is the preconditioner of Definition 3.3, then eig(P 2

P(ν)−1B(ν)) =
eig(P (ν)−1B(ν)) + O

(
μ1/2

)
.

Proof. The positive definiteness of P 2
P(ν) for ν > 0 follows from Proposition 2.3.

For the remainder of the proof, assume that ν > 0. Then, since P 2
P(ν) is positive def-

inite, the identity eig(P 2
P(ν)−1/2B(ν)P 2

P(ν)−1/2) = eig(P 2
P(ν)−1B(ν)) ensures that

P 2
P(ν)−1B(ν) has real eigenvalues. Analogous to the proof of Theorem 4.1, by succes-

sively replacing the matrix H by H + (1 + ν)AT
BD

−1
B AB, A by AC , and D by DC in

Lemma 3.4, and by using a combination of Proposition 2.3 and (4.6), we find that

(4.12) P 2
P(ν)−1B(ν) =

⎛⎝SC
TC I

I

⎞⎠ +

⎛⎝U X
V Y
W

⎞⎠ ,

where SC and TC are given by (4.9),

U = ν(M + AT
CD

−1
C AC)−1AT

BD
−1
B AB,(4.13a)

V = −νD−1
C AC(M + AT

CD
−1
C AC)−1AT

BD
−1
B AB,(4.13b)

W = D−1
B AB,(4.13c)

X = ν(M + AT
CD

−1
C AC)−1AT

B ,(4.13d)

Y = −νD−1
C AC(M + AT

CD
−1
C AC)−1AT

B .(4.13e)

It follows from (4.12) that P 2
P(ν)−1B(ν) contains m−mB columns from the identity

matrix; hence it has at least m−mB unit eigenvalues. The remaining eigenvalues are
those of the matrix N given by

(4.14) N =

(
SC + U X

W I

)
=

(
SC + νS−1

M AT
BD

−1
B AB νS−1

M AT
B

D−1
B AB I

)
,

with SM = M + AT
CD

−1
C AC . Observe that (4.14) implies that any nonzero vector x

such that AT
Bx = 0 induces an eigenvector corresponding to a unit eigenvalue of N .

Hence, N has at least mB − rank(AB) unit eigenvalues. Further, let Q̃ be defined by

Q̃ =

(
S

1/2
M

ν1/2D
1/2
B

)
.

Then N and Q̃NQ̃−1 have identical eigenvalues, and Q̃NQ̃−1 is given by

Q̃NQ̃−1 =

(
S

1/2
M SCS

−1/2
M + νS

−1/2
M AT

BD
−1
B ABS

−1/2
M ν1/2S

−1/2
M AT

BD
−1/2
B

ν1/2D
−1/2
B ABS

−1/2
M I

)

=

(
S

1/2
M SCS

−1/2
M

I

)
+

(
νS

−1/2
M AT

BD
−1
B ABS

−1/2
M ν1/2S

−1/2
M AT

BD
−1/2
B

ν1/2D
−1/2
B ABS

−1/2
M

)
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

680 ANDERS FORSGREN, PHILIP E. GILL, AND JOSHUA D. GRIFFIN

Note that S
1/2
M SCS

−1/2
M is symmetric, and hence Q̃NQ̃−1 is symmetric. In addi-

tion, from our assumptions, it follows that ‖ν1/2S
−1/2
M AT

BD
−1/2
B ‖ = O

(
μ1/2

)
and

‖νS−1/2
M AT

BD
−1
B ABS

−1/2
M ‖ = O

(
μ
)
. Hence, Q̃NQ̃−1 has mB eigenvalues that differ

by O
(
μ1/2

)
from unity, and n eigenvalues that differ by O

(
μ1/2

)
from the eigen-

values of the matrix S
1/2
M SCS

−1/2
M . In addition, the eigenvalues of S

1/2
M SCS

−1/2
M and

SC are identical. Consequently, it follows that the spectrum of P 2
P(ν)−1B(ν) consists

of m − rank(AB) unit eigenvalues, rank(AB) eigenvalues that are 1 + O
(
μ1/2

)
, and

n eigenvalues that differ by O
(
μ1/2

)
from the eigenvalues of SC . Theorem 4.1 now

shows that eig(P 2
P(ν)−1B(ν)) = eig(P 1

P(ν)−1B(ν)) + O
(
μ1/2

)
, which gives the re-

quired result, since O
(
μ1/2

)
dominates O

(
μ
)
. In particular, Theorem 4.1 implies that

P 2
P(ν)−1B(ν) has at least m + rank(AS) eigenvalues that are 1 + O

(
μ1/2

)
.

We conclude that it is possible to construct appropriate constraint preconditioners
based on solving the smaller system (4.4). Moreover, the matrix PC(ν) of (4.4) has
exactly the same structure as P (ν). The difference is that the number of rows and
columns in the preconditioner has been reduced from n + m to n + m−mB. Hence,
all the previous analysis applies. For our example with 100 variables and 100,000
inequality constraints, a matrix of dimension 150 would need to be factored instead
of a matrix of dimension 100,100.

As shown above, the partition of the row indices into B and its complement C pro-
vides active-set preconditioners P 1

P(ν) and P 2
P(ν) that are asymptotically equivalent

to P (ν). If strict complementarity holds, then mM = 0 and the division into large
and small elements is straightforward. If strict complementarity does not hold, then
mM > 0 and we have chosen to append M to S. Analogous preconditioners may be
constructed by first identifying S and then forming the complementary set S̄, which
is the set obtained by appending M to B. The resulting KKT system analogous to
(4.4) would have smaller dimension because C is replaced by S. However, the result-
ing preconditioners would not be asymptotically equivalent in general. For P 1

P(ν), the
1+O

(
μ1/2

)
cluster of eigenvalues would be the same as for P (ν), but the eigenvalues

resulting from M would differ by an O
(
1
)

term. The reason for this difference is that

the norm of D−1
S̄ would not be of order O

(
μ
)
, but would include terms involving mM

eigenvalues of order one.
It should be emphasized that the choice of C and B affects only the efficiency of

the active-set constraint preconditioners and not the definition of the linear equations
that need to be solved. A poorly chosen partition may adversely affect the quality of
the preconditioner, but not the solution of the linear equations. The partition analyzed
here provides the largest B for which we can guarantee that the preconditioners P 1

P(ν)
and P 2

P(ν) are asymptotically equivalent to P (ν) for ν > 0. If elements are excluded
from B, then P 1

P(ν) and P 2
P(ν) become “better” approximations to P (ν), and the

asymptotic performance is unchanged. However, this increases the dimension of the
KKT system (4.4). As noted above, if B is chosen too large, in the sense that diagonal
elements of D are included in DB that are not Ω(1/μ), then the quality of the active-
set preconditioners can be expected to deteriorate. Hence, it is not essential that B is
estimated correctly, but it is essential that DB contains only large elements.

5. On semidefinite diagonal matrices. Up to this point we have assumed
that the matrix D in the (2, 2) block of the KKT system is positive definite. In the
general case, the last block of equations in the KKT system has the form

(5.1) Ax1 + Gx2 = b2,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ITERATIVE SOLUTION OF AUGMENTED SYSTEMS 681

where G is a diagonal matrix with positive and zero entries. If all the constraints
of the optimization problem are nonlinear, it is always possible to formulate the
interior method so that G is positive definite. For inequality constraints, standard
formulations give positive elements in G that are of the order of the perturbation
parameter μ (see, e.g., Vanderbei and Carpenter [46] and Forsgren and Gill [16]).
Typically, zero elements of G are associated with linearized equality constraints, where
the corresponding subset of equations (5.1) are the Newton equations for a zero of
the constraint residual. An alternative to direct constraint linearization is to impose
equality constraints approximately via a quadratic penalty function. It can be shown
that this approach gives a positive element in G of the order of μ̄, where μ̄ is the
inverse of the penalty parameter (see, e.g., Gould [31] and Forsgren and Gill [16]).
The parameter μ̄ may be allowed to vary with μ, or may be fixed at some small
value (see, e.g., Gill et al. [26] and Saunders and Tomlin [42]). Fixing μ̄ defines a
regularization of the problem, which allows the formulation of methods that do not
require an assumption on the rank of the equality constraint Jacobian. (For more
details on the use of regularization in interior methods, see Gill et al. [24], Vanderbei
and Shanno [47], and Altman and Gondzio [1].)

However, it may not always be beneficial to regularize linear constraints. Regu-
larization in this context is less crucial because reliable techniques exist for discarding
dependent equality constraints. Moreover, interior methods can be defined so that
every iterate satisfies the linear equality constraints (see below). With an appropri-
ate choice of constraints, this feature can be used to guarantee that the nonlinear
functions and their derivatives are well defined at all points generated by the interior
method.

In order to consider KKT systems with a semidefinite (2, 2) block, we assume
that the variables and equations are preordered to give a system Bx = b such that

(5.2)

⎛⎝ H −AT −FT

−A −D
−F

⎞⎠⎛⎝x1

x2

x3

⎞⎠ =

⎛⎝ b1
−b2
−b3

⎞⎠ ,

where D is positive definite. Note that we cannot compute the condensed or doubly
augmented system for these equation because of the zero block. In this case, B has
correct inertia if NT (H + ATD−1A)N is positive definite, where the columns of N
form a basis for the null space of F (see Forsgren [18]).

The KKT system (5.2) may be solved using a projection technique similar to
that described in section 3. First, an initial point y is found with first n components
forming a vector y1 such that Fy1 = b3. This vector may be computed in various
ways—e.g., by computing an LU factorization of FT (see, e.g., Gill, Murray, and
Saunders [27]), or by solving a system for the preconditioning matrix associated with
(5.2), where H is replaced by a suitable approximation M (see Gould, Hribar, and
Nocedal [29]). Once y is known, the PCG method may be used to solve

(5.3)

⎛⎝ H −AT −FT

−A −D
−F

⎞⎠⎛⎝x̂1

x̂2

x̂3

⎞⎠ =

⎛⎝ b̂1
−b̂2

0

⎞⎠ ,

with b̂1 = b1 −Hy1 + ATy2 + FTy3 and b̂2 = b2 − Ay1 −Dy2. The required solution
is then x = y + x̂. Analogous to the situation when G is positive definite, we may
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embed (5.3) into the parameterized system of linear equations

(5.4)

⎛⎝H + (1 + ν)ATD−1A νAT −FT

νA νD
−F

⎞⎠⎛⎝x̂1

x̂2

x̂3

⎞⎠ =

⎛⎝b̂1 + (1 + ν)ATD−1b̂2
νb̂2
0

⎞⎠ ,

with b̂1 = b1 − Hy1 + ATy2 + FTy3 and b̂2 = b2 − Ay1 − Dy2. If the zero elements
of G are associated with linear constraints, and the system (5.3) is solved exactly, it
suffices to compute the special step y only once, when solving the first system. Then,
provided that the constraint preconditioner is applied exactly at every PCG step, the
right-hand side of (5.3) will remain zero for all subsequent iterations.

The linear equations (5.2), (5.3), and (5.4) do not require N . If the preconditioner
cannot be applied exactly, then it is necessary to use an alternative method based
on computing products of the form NTv and Nu. (Gill, Murray, and Saunders [27]
describe how these products may be computed in a numerically stable way without
needing to store N explicitly.) The requirement that Fx̂1 = 0 implies that x̂1 can
be written as x̂1 = Np̂1. Substituting this expression in (5.3) gives the reduced KKT
system

(5.5)

(
NTHN −(AN)T

−AN −D

)(
p̂1

p̂2

)
=

(
NT(b1 −Hy1 + ATy2)
−b2 + Ay1 + Dy2

)
,

from which we can define x̂1 = Np̂1 and x̂2 = p̂2. This system has a nonsingular (2, 2)
block and has correct inertia if (5.2) has correct inertia. Moreover, the iterates define
exact projections regardless of the accuracy of the solves with the preconditioner.
Hence, all the conditions needed for the application of the PCG method proposed
in section 3 apply. The systems (5.3) and (5.5) are mathematically equivalent, which
implies that we may apply the analysis of section 3 directly to both (5.3) and (5.4).

6. Some numerical examples. To illustrate the numerical performance of the
proposed preconditioners, a PCG method was applied to a collection of illustrative
large sparse KKT systems. The test matrices were generated from a number of realis-
tic KKT systems arising in the context of primal-dual interior methods. We conclude
with some randomly generated problems that illustrate some of the properties of the
preconditioned matrices.

6.1. Examples from the COPS test set. First we describe some numerical
results obtained on linear equations arising in a primal-dual interior method applied
to optimization problems from the COPS 3.0 test collection [6, 9, 10] implemented in
the AMPL modeling language [2, 19].

The equations are analogous to those generated by an interior-point method with
barrier parameter μ. The data for the test matrices was generated using a primal-
dual trust-region method (see, e.g., [16, 20, 32]) applied to eight problems, Camshape,
Channel, Gasoil, Marine, Methanol, Pinene, Polygon, and Tetra, from the COPS 3.0
test collection [6, 8, 9, 10]. The interior-point method requires the solution of systems
with a KKT matrix of the form

(6.1)

(
H −JT

−J −Γ

)
,

where H is the n × n Hessian of the Lagrangian, J is the m × n Jacobian matrix of
constraint gradients, and Γ is a positive-definite diagonal with some large and small
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Table 6.1

Dimensions of the AMPL versions of the COPS problems.

Problem n m ‖H −M‖ σk(J)

Camshape 1200 3600 2.6e+0 1.3e-5

Channel 6398 6398 1.1e+2 4.1e-5

Gasoil 4001 4001 1.1e+1 0.0e+0

Marine 6415 6407 3.5e+1 0.0e+0

Methanol 4802 4802 3.1e+0 2.8e-3

Pinene 8000 8000 9.2e+3 6.8e-8

Polygon 398 20496 2.4e+2 0.0e+0

Tetra 1200 4254 2.7e+1 0.0e+0

elements. These systems have the same structure as the generic system (1.2). The
dimensions of the eight problems are given in Table 6.1. The optimization problems
in the COPS collection have a mixture of general nonlinear constraints and simple
upper and lower bounds on the variables. The simple bounds lead to unit rows in
J , and it is customary to define a smaller KKT system in which the unit rows and
columns are eliminated. However, in the numerical experiments, the unit rows were
included in order to more accurately illustrate the results of Theorems 3.6, 4.1, and
4.2. Hence the value of m also includes the bound constraints. The final column gives
the kth largest singular value of J , where k = min{m,n}.

For each of the eight featured COPS problems, matrices H, A, D and the right-
hand side were generated from the matrices H, J , Γ and the right-hand side at a
snapshot taken at iteration 30 of the interior method. For each problem snapshot,
five systems of equations were generated by specifying five matrices D with entries
parameterized by a scalar μ = 10−� for 	 = {1, 2, 4, 6, 8}. For each value of μ, the
matrices A and D were generated from J and Γ using the MATLAB code fragment

[D, ind] = sort(Gamma); % sort the diagonals of Gamma

A = J(ind,:); % reorder the rows of J

k = min([m,n]); %

if k < m, D(k+1:end) = max(D(k+1:end), 1/mu); end

D(1:k) = min(D(1:k),mu);

This choice of D implicitly defines a sequence of systems associated with a ver-
tex solution of the underlying optimization problem for which strict complementarity
holds. This was done deliberately to minimize the effect of the matrix M on the effi-
ciency of the preconditioner (see the definition of P (ν) in (4.1)). Asymptotically, the
matrix M defines the efficiency of the preconditioner within the null space of the ma-
trix of active constraints (see, e.g., Dollar et al. [11]). In our analysis we have focused
on the part of the preconditioner associated with the constraint part of the KKT
system. The formulation and analysis of effective choices for M are beyond the scope
of this paper. (For some possible approaches, see, e.g., [22, 23].) In the experiments
reported here, M was a diagonal matrix with entries Mjj = max

(
|Hjj |, δ

)
, where

δ = 10−1.
Figure 6.1 depicts the number of PCG iterations required to solve the resulting

8 sets of 5 systems of linear equations. The bar charts give the PCG iterations for
the condensed system (top) and doubly augmented system (bottom). The MATLAB
version of SYMMLQ [39] was used as the PCG solver. The symmetric indefinite solver
MA27 was used to factor the constraint preconditioner (see Duff and Reid [13]). The
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Fig. 6.1. Results on the COPS problems. The graphs give the number of PCG iterations for
P (0) (above) and P (1) (below). The vertical axis is limited to 50 iterations. The number of iterations
needed for each off-scale case is given by the appropriate key code “A”, “B”, or “C”.

value of 10−6 was used for the SYMMLQ relative convergence tolerance. For problem
Channel, with the three larger values of μ, PCG did not converge within the pre-
assigned limit of 106 iterations (a more sophisticated choice of M is needed in this
case). Note the similar number of PCG iterations needed to solve the condensed
system and doubly augmented system.

Figure 6.2 gives the number of PCG iterations for the active-set preconditioners on
the COPS problems Camshape, Polygon, and Tetra. These problems have significantly
more constraints than variables and provide good examples on which to test the active-
set preconditioners. In order to illustrate the behavior of the active-set preconditioner,
we scale D so that exactly n elements are less than μ and the remaining elements are
greater than 1/μ. We emphasize that the motivation for manipulating D in this way
is to illustrate the effect of changing μ for fixed H and J .

mS = min([n,m,k]);

JS = J(1:mS,:); JB = J(mS+1:end,:);

DS = D(1:mS); DB = D(mS+1:end);

DS = spdiags(DS,0,mS,mS);
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Fig. 6.2. COPS problems: PCG iterations for P 1
P (1) (left) and P 2

P (1) (right). The vertical axis
is limited to 50 iterations. The number of iterations needed for each off-scale case is given by the
appropriate key code “A”, “B”, or “C”.

6.2. Results from randomly generated problems. Additional experiments
were performed on randomly generated KKT systems. The purpose of these experi-
ments was to illustrate the clustering of the eigenvalues of the preconditioned matrices
associated with the doubly augmented system. The first set of experiments involved
applying the preconditioners P (1), P 1

P(1), and P 2
P(1) to randomly generated prob-

lems satisfying the assumptions of Theorems 4.1 and 4.2. Of particular interest is the
“strict complementarity” assumption that every element of the diagonal D is either
big or small. Given values n = 400, m = 600, and μ = 10−� for 	 = {1, 2, 4, 6, 8},
matrices H, AS , AB, DS , and DB were generated using the MATLAB code fragment

mS = 100; d = 10^(-2);

H = sprandsym(n,d); JS = sprand(mS,n,d,0.1); JB = sprand(m-mS,n,d);

DS = diag(mu*ones(mS,1)); DB = diag((1/mu)*ones(m-mS,1));

Table 6.2 gives details of the eigenvalues of the preconditioned matrices associated
with each of the preconditioners P (1), P 1

P(1), and P 2
P(1), where the diagonal precon-

ditioner M was defined as in the COPS examples of the previous section. In all these
runs, the resulting KKT matrix satisfies ‖H −M‖ = 4.95 and σn(JS) = 10−1. These
linear systems would be typical for a primal-dual method applied to an optimization
problem with 100 active constraints at a point satisfying a strict complementarity as-
sumption. Theorems 3.6 and 4.1 predict that for the preconditioners P (1) and P 1

P(1),
700 (= m + rank(AS)) eigenvalues of the preconditioned matrix will cluster close to
unity, with 600 of these eigenvalues exactly equal to one. Theorem 4.2 predicts that as
μ is reduced, P 2

P(1) also will give 700 eigenvalues close to one, whereas 200 (= m−n)
eigenvalues will be exactly one.

The last four columns of Table 6.2 illustrate the degree of clustering of the eigen-
values of the preconditioned matrix. Clustering is measured by means of the function
l(θ) defined as follows. Given a matrix C with real eigenvalues, the function

l(θ) = card{λ ∈ eig(C) : |λ− 1| ≤ θ}

gives the number of eigenvalues of C within distance θ of unity. Table 6.2 gives the
values of l(θ) for the three preconditioned matrices C = P (1)−1B(1), P 1

P(1)−1B(1),
and P 2

P(1)−1B(1). In this strict-complementarity case, we expect that the proposed
preconditioners would asymptotically give a cluster of 700 unit eigenvalues. Note that
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Table 6.2

Number of clustered eigenvalues of the preconditioned matrix. Randomly generated KKT systems
with n = 400, m = 600, mS = 100, mM = 0, mB = 500, (DS)ii = μ, and (DB)ii = 1/μ.

μ l(10−8) l(10−6) l(10−4) l(10−2)

10−1 600 600 600 601

10−2 600 600 600 612

P 10−4 600 600 612 675

10−6 600 612 673 700

10−8 606 673 700 700

10−1 600 600 600 602

10−2 600 600 600 611

P 1
P 10−4 600 600 612 675

10−6 600 612 673 700

10−8 593 673 700 700

10−1 200 200 200 425

10−2 200 200 215 567

P 2
P 10−4 200 215 566 673

10−6 215 566 672 700

10−8 546 672 700 700

Table 6.3

Number of clustered eigenvalues for the preconditioned matrix. Randomly generated KKT systems
with n = 400, m = 600, mS = 75, mM = 25, mB = 500, (DS)ii = μ, (DM)ii = 1, and
(DB)ii = 1/μ.

μ l(10−8) l(10−6) l(10−4) l(10−2)

10−1 600 600 600 601

10−2 600 600 600 609

P 10−4 600 600 609 654

10−6 600 609 653 675

10−8 604 653 675 675

10−1 600 600 600 602

10−2 600 600 600 609

P 1
P 10−4 600 600 609 654

10−6 600 609 653 675

10−8 591 653 675 675

10−1 200 200 200 425

10−2 200 200 215 563

P 2
P 10−4 200 215 563 653

10−6 215 563 653 675

10−8 544 653 675 675

for small values of μ, P (1) and P 1
P(1) produce very similar numbers of eigenvalues

close to unity. The preconditioner P 2
P(1) tends to give fewer accurate eigenvalues than

P (1) and P 1
P(1) for the larger values of μ, although the differences become less marked

as μ is reduced.
Table 6.3 was generated with the same data used for Table 6.2, with the one

exception that strict complementarity was assumed not to hold. As in Table 6.2, we
simulate an optimization problem with 100 active constraints, but in this case we set
mS = 75 and mM = 25. The corresponding diagonal elements of DM were set at one.
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In this non-strict-complementarity case, Theorems 3.6, 4.1, and 4.2 predict that the
proposed preconditioners would asymptotically give a cluster of 675 (= m+mS) unit
eigenvalues, which is reflected in the results. The performance of the preconditioners
is very similar to that depicted in Table 6.2.

7. Summary and further research. A framework has been proposed for ap-
plying the PCG method to KKT systems of the form (1.1) that arise in interior
methods for general nonconvex optimization. The proposed methods are based on ap-
plying the conjugate-gradient method to the doubly augmented system (1.4), which
is positive definite if the underlying optimization problem satisfies the second-order
sufficient conditions for optimality. An advantage of the doubly augmented system is
that it is positive definite with respect to all of the variables.

We also have proposed a class of constraint preconditioners for the doubly aug-
mented system. In particular, we have analyzed two ways of using an estimate of the
active set to reduce the cost of applying the preconditioner when there are many in-
equality constraints. As the solution of the optimization problem is approached, these
active-set preconditioners have theoretical performance comparable to constraint pre-
conditioners that include all the constraints. An advantage of using preconditioning
in conjunction with the doubly augmented system is that the linear equations used
to apply the preconditioner need not be solved exactly. Future work will consider the
analysis associated with these approximate preconditioners.

The focus of this paper has been on the formulation and analysis of constraint pre-
conditioners. The next step is to consider “full” preconditioners based on estimating
the matrix H in the (1, 1) block of the KKT equations. For example, a preconditioner
may be defined using an incomplete inertia-controlling factorization of the KKT sys-
tem (1.2). For more details on the inertia-controlling factorization for augmented
systems in interior methods, see Forsgren and Gill [16] and Forsgren [18].

Appendix. Linear algebra. Here we review two results from linear algebra.
The first gives the structure of the inverse of B(ν) and may be verified by direct
multiplication.

Lemma A.1. Given a nonsingular symmetric matrix D, consider the matrix

B(ν) =

(
H + (1 + ν)ATD−1A νAT

νA νD

)
,

where ν is a scalar. Then B(ν) may be factored in the form

B(ν) =

(
I ATD−1

I

)(
H + ATD−1A

νD

)(
I

D−1A I

)
.

Moreover, if H + ATD−1A is nonsingular and ν �= 0, then B(ν) is nonsingular, with
inverse

B(ν)−1 =

(
(H + ATD−1A)−1 −(H + ATD−1A)−1ATD−1

−D−1A(H + ATD−1A)−1 1
νD

−1 + D−1A(H + ATD−1A)−1ATD−1

)

=

(
I

−D−1A I

)(
(H + ATD−1A)−1

1
νD

−1

)(
I −ATD−1

I

)
.

The second result provides bounds on the perturbation of the eigenvalues of
M−1

1 M3 when M1 is perturbed by a positive-semidefinite matrix M2.
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Lemma A.2. Let M1, M2, and M3 be n×n symmetric matrices with M1 positive
definite and M2 positive semidefinite. Let {λi} and {λ̃i} denote the eigenvalues of
M−1

1 M3 and (M1 +M2)
−1M3, respectively. Assume that the {λi} are ordered so that

λ1 ≥ λ2 ≥ · · · ≥ λn, with the same ordering for {λ̃i}. Then

0 ≤ λi − λ̃i ≤ ‖M−1/2
1 M2M

−1/2
1 ‖λ̃i for all i such that λi ≥ 0,

0 ≤ λ̃i − λi ≤ −‖M−1/2
1 M2M

−1/2
1 ‖λ̃i for all i such that λi < 0.

Proof. Let M , M̃ , and Ĩ be defined such that

M = M
−1/2
1 M3M

−1/2
1 , Ĩ = I + M

−1/2
1 M2M

−1/2
1 , and M̃ = Ĩ−1/2MĨ−1/2.

Then M , Ĩ, and M̃ are symmetric with Ĩ positive definite. A similarity transformation

gives eig(M−1
1 M3) = eig(M

−1/2
1 M3M

−1/2
1 ) = eig(M), which means that M has eigen-

values λi, i = 1 :n. Similarly, we have

(M1 + M2)
−1M3 = M

−1/2
1 (I + M

−1/2
1 M2M

−1/2
1 )−1M

−1/2
1 M3

= M
−1/2
1 Ĩ−1MM

1/2
1 .(A.1)

Successive similarity transformations of (A.1) with M
1/2
1 and Ĩ1/2 give

eig
(
(M1 + M2)

−1M3

)
= eig(Ĩ−1M) = eig(Ĩ−1/2MĨ−1/2) = eig(M̃),

which means that M̃ has eigenvalues λ̃i, i = 1 :n.
Now we relate λi to λ̃i. First, consider the case λi ≥ 0. Since λi is an eigenvalue

of M and λ̃i is an eigenvalue of M̃ , with M̃ = Ĩ−1/2MĨ−1/2, the Courant–Fischer
min-max theorem gives

(A.2)
1

‖Ĩ−1‖
λ̃i ≤ λi ≤ ‖Ĩ‖λ̃i;

see, e.g., Golub and Van Loan [28, pp. 403–404]. Since Ĩ = I +M
−1/2
1 M2M

−1/2
1 with

M2 positive semidefinite, it follows that ‖Ĩ−1‖ ≤ 1 and ‖Ĩ‖ ≤ 1+‖M−1/2
1 M2M

−1/2
1 ‖.

Hence, (A.2) gives

λ̃i ≤ λi ≤ (1 + ‖M−1/2
1 M2M

−1/2
1 ‖)λ̃i,

which is equivalent to the desired result when λi ≥ 0,

0 ≤ λi − λ̃i ≤ ‖M−1/2
1 M2M

−1/2
1 ‖λ̃i.

For the case λi < 0, we apply the analysis above to the matrices −M̃ and −M . Then,
since −λi is a positive eigenvalue of −M and −λ̃i is an eigenvalue of −M̃ , we conclude
that

0 ≤ −λi + λ̃i ≤ −‖M−1/2
1 M2M

−1/2
1 ‖λ̃i,

as required.
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[36] L. Lukšan and J. Vlček, Indefinitely preconditioned inexact Newton method for large sparse

equality constrained non-linear programming problems, Numer. Linear Algebra Appl., 5
(1998), pp. 219–247.

[37] Y. Notay, Flexible conjugate gradients, SIAM J. Sci. Comput., 22 (2000), pp. 1444–1460.
[38] A. R. L. Oliveira and D. C. Sorensen, A new class of preconditioners for large-scale linear

systems from interior point methods for linear programming, Linear Algebra Appl., 394
(2005), pp. 1–24.

[39] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[40] I. Perugia and V. Simoncini, Block-diagonal and indefinite symmetric preconditioners for
mixed finite element formulations, Numer. Linear Algebra Appl., 7 (2000), pp. 585–616.

[41] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14
(1993), pp. 461–469.

[42] M. A. Saunders and J. A. Tomlin, Solving Regularized Linear Programs Using Barrier Meth-
ods and KKT Systems, Report SOL 96-4, Department of EESOR, Stanford University,
Stanford, CA, 1996.

[43] V. Simoncini and D. B. Szyld, Flexible inner-outer Krylov subspace methods, SIAM J. Numer.
Anal., 40 (2003), pp. 2219–2239.

[44] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

[45] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in
Sparse Matrices and Their Uses, I. S. Duff, ed., Academic Press, London, New York, 1981,
pp. 57–88.

[46] R. J. Vanderbei and T. J. Carpenter, Symmetric indefinite systems for interior point meth-
ods, Math. Program., 58 (1993), pp. 1–32.

[47] R. J. Vanderbei and D. F. Shanno, An interior-point algorithm for nonconvex nonlinear
programming, Comput. Optim. Appl., 13 (1999), pp. 231–252.

[48] S. J. Wright and D. Orban, Properties of the log-barrier function on degenerate nonlinear
programs, Math. Oper. Res., 27 (2002), pp. 585–613.

[49] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1997.


