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Abstract

SNOPT is a general-purpose system for constrained optimization. It minimizes a
linear or nonlinear function subject to bounds on the variables and sparse linear or
nonlinear constraints. It is suitable for large-scale linear and quadratic programming
and for linearly constrained optimization, as well as for general nonlinear programs.

SNOPT finds solutions that are locally optimal, and ideally any nonlinear functions
should be smooth and users should provide gradients. It is often more widely useful.
For example, local optima are often global solutions, and discontinuities in the function
gradients can often be tolerated if they are not too close to an optimum. Unknown
gradients are estimated by finite differences.

SNOPT uses a sequential quadratic programming (SQP) algorithm. Search di-
rections are obtained from QP subproblems that minimize a quadratic model of the
Lagrangian function subject to linearized constraints. An augmented Lagrangian merit
function is reduced along each search direction to ensure convergence from any starting
point.

On large problems, SNOPT is most efficient if only some of the variables enter
nonlinearly, or there are relatively few degrees of freedom at a solution (i.e., many
constraints are active). SNOPT requires relatively few evaluations of the problem
functions. Hence it is especially effective if the objective or constraint functions (and
their gradients) are expensive to evaluate.

The source code is re-entrant and suitable for any machine with a Fortran compiler.
SNOPT may be called from a driver program in Fortran, Matlab, or C/C++ with the
new interface based on the Fortran 2003 standard on Fortran-C interoperability. A f2c

translation of SNOPT to the C language is still provided, although this feature will be
discontinued in the future (users should migrate to the new C/C++ interface).
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1. Introduction

SNOPT is a general-purpose system for constrained optimization. It minimizes a linear
or nonlinear function subject to bounds on the variables and sparse linear or nonlinear
constraints. It is suitable for large-scale linear and quadratic programming and for linearly
constrained optimization, as well as for general nonlinear programs of the form

NP minimize
x

f0(x)

subject to l ≤

 x
f(x)
ALx

 ≤ u,
where x is an n-vector of variables, l and u are constant lower and upper bounds, f0(x) is
a smooth scalar objective function, AL is a sparse matrix, and f(x) is a vector of smooth
nonlinear constraint functions {fi(x)}. An optional parameter Maximize may specify that
f0(x) should be maximized instead of minimized.

Ideally, the first derivatives (gradients) of f0(x) and fi(x) should be known and coded
by the user. If only some of the gradients are known, SNOPT estimates the missing ones by
finite differences.

Upper and lower bounds are specified for all variables and constraints. The jth constraint
may be defined as an equality by setting lj = uj . If certain bounds are not present, the
associated elements of l or u may be set to special values that are treated as −∞ or +∞.
Free variables and free constraints (“free rows”) have both bounds infinite.

1.1. Problem types

If f0(x) is linear and f(x) is absent, NP is a linear program (LP) and SNOPT applies the
primal simplex method [2]. Sparse basis factors are maintained by LUSOL [12] as in MINOS

[18].

If only the objective is nonlinear, the problem is linearly constrained (LC) and tends to
solve more easily than the general case with nonlinear constraints (NC). For both nonlinear
cases, SNOPT applies a sparse sequential quadratic programming (SQP) method [8], using
limited-memory quasi-Newton approximations to the Hessian of the Lagrangian. The merit
function for steplength control is an augmented Lagrangian, as in the dense SQP solver
NPSOL [11, 14].

In general, SNOPT requires less matrix computation than NPSOL and fewer evaluations
of the functions than the nonlinear algorithms in MINOS [16, 17]. It is suitable for nonlinear
problems with thousands of constraints and variables, and is most efficient if only some of
the variables enter nonlinearly, or there are relatively few degrees of freedom at a solution
(i.e., many constraints are active). However, unlike previous versions of SNOPT, there is no
limit on the number of degrees of freedom.

1.2. Implementation

SNOPT is implemented as a library of Fortran 77 subroutines. The source code is compatible
with all known Fortran 77, 90, and 95 compilers, and can be converted to C code by the
f2c translator [4] included with the distribution.

All routines in SNOPT are intended to be re-entrant (as long as the compiler allocates
local variables dynamically). Hence they may be used in a parallel or multi-threaded envi-
ronment. They may also be called recursively.
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1.3. The SNOPT interfaces

SNOPT contains several interfaces between the user and the underlying solver, allowing
problems to be specified in various formats.

New users are encouraged to use the snOptA interface. This allows linear and nonlinear
constraints and variables to be entered in arbitrary order, and allows all nonlinear functions
to be defined in one user routine. It may also be used with SnadiOpt [7], which provides
gradients by automatic differentiation of the problem functions.

For efficiency reasons, the solver routines require nonlinear variables and constraints to
come before linear variables and constraints, and they treat nonlinear objective functions
separately from nonlinear constraints. snOptB (the basic interface) imposes these distinc-
tions and was used by all versions of SNOPT prior to Version 6.

In some applications, the objective and constraint functions share data and computation.
The snOptC interface allows the functions to be combined in one user routine.

Finally, npOpt is an interface that accepts problem data written in the same format as
the dense SQP code NPSOL. It permits NPSOL users to upgrade with minimum effort.

A summary of the SNOPT interfaces follows:

snOptA (Section 3) is recommended for new users of SNOPT. The variables and constraints
may be coded in any order. Nonlinear objective and constraint functions are defined
by one user routine. May use SnadiOpt to compute gradients.

snOptB (Section 4) is the basic interface to the underlying solver. Nonlinear constraints
and variables must appear first. A nonlinear objective is defined separately from
any nonlinear constraints.

snOptC (Section 5) is the same as snOptB except the user combines the nonlinear objective
and constraints into one routine.

npOpt (Section 6) accepts the same problem format as NPSOL. It is intended for moderate-
sized dense problems (as is NPSOL!).

1.4. Files

Every SNOPT interface reads or creates some of the following files:

Print file (Section 8) is a detailed iteration log with error messages and perhaps listings
of the options and the final solution.

Summary file (Section 8.9) is a brief iteration log with error messages and the final
solution status. Intended for screen output in an interactive environment.

Specs file (Section 7) is a set of run-time options, input by snSpec.

Solution file (Sections 8.7–8.8) keeps a separate copy of the final solution listing.

Basis files (Section 9) allow restarts.

Unit numbers for the Specs, Print, and Summary files are defined by inputs to subroutines
snInit and snSpec. The other SNOPT files are described in Sections 8 and 9.
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1.5. Overview of the package

SNOPT is normally accessed via a sequence of subroutine calls. For example, the interface
snOptA is invoked by the statements

call snInit( iPrint, iSumm, ... )

call snSpec( iSpecs, ... )

call snoptA( Start, nF, n, ... )

where snSpec reads a file of run-time options (if any). Also, individual run-time options
may be “hard-wired” by calls to snSet, snSeti and snSetr.

1.6. Subroutine snInit

Subroutine snInit must be called before any other SNOPT routine. It defines the Print and
Summary files, prints a title on both files, and sets all user options to be undefined. (Each
SNOPT interface will later check the options and set undefined ones to default values.)

subroutine snInit

& ( iPrint, iSumm, cw, lencw, iw, leniw, rw, lenrw )

integer

& iPrint, iSumm, lencw, leniw, lenrw, iw(leniw)

character

& cw(lencw)*8

double precision

& rw(lenrw)

On entry:

iPrint defines a unit number for the Print file. Typically iPrint = 9.

On some systems, the file may need to be opened before snInit is called.
If iPrint ≤ 0, there will be no Print file output.

iSumm defines a unit number for the Summary file. Typically iSumm = 6.
(In an interactive environment, this usually denotes the screen.)

On some systems, the file may need to be opened before snInit is called.
If iSumm ≤ 0, there will be no Summary file output.

cw(lencw), iw(leniw), rw(lenrw) must be the same arrays that are passed to other
SNOPT routines. They must all have length 500 or more.

On exit:

Some elements of cw, iw, rw are given values to indicate that most optional parameters are
undefined.
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2. Description of the SQP method

Here we summarize the main features of the SQP algorithm used in SNOPT and introduce
some terminology used in the description of the library routines and their arguments. The
SQP algorithm is fully described by Gill, Murray and Saunders [9].

2.1. Constraints and slack variables

Problem NP contains n variables in x. Let m be the number of components of f(x) and ALx
combined. The upper and lower bounds on those terms define the general constraints of the
problem. SNOPT converts the general constraints to equalities by introducing a set of slack
variables s = (s1, s2, . . . , sm)T . For example, the linear constraint 5 ≤ 2x1 + 3x2 ≤ +∞ is
replaced by 2x1 + 3x2 − s1 = 0 together with the bounded slack 5 ≤ s1 ≤ +∞. Problem
NP can be written in the equivalent form

minimize
x,s

f0(x)

subject to

(
f(x)
ALx

)
− s = 0, l ≤

(
x
s

)
≤ u.

The general constraints become the equalities f(x) − sN = 0 and ALx − sL = 0, where sL
and sN are the linear and nonlinear slacks.

2.2. Major iterations

The basic structure of the SQP algorithm involves major and minor iterations. The major
iterations generate a sequence of iterates {xk} that satisfy the linear constraints and converge
to a point that satisfies the nonlinear constraints and the first-order conditions for optimality.
At each xk a QP subproblem is used to generate a search direction toward what will be the
next iterate xk+1. The constraints of the subproblem are formed from the linear constraints
ALx− sL = 0 and the linearized constraint

f(xk) + f ′(xk)(x− xk)− sN = 0,

where f ′(xk) denotes the Jacobian matrix, whose elements are the first derivatives of f(x)
evaluated at xk. The QP constraints therefore comprise the m linear constraints

f ′(xk)x− sN = −f(xk) + f ′(xk)xk,

ALx − sL = 0,

where x and s are bounded above and below by u and l as before. If the m × n matrix A
and m-vector b are defined as

A =

(
f ′(xk)
AL

)
and b =

(
−f(xk) + f ′(xk)xk

0

)
,

then the QP subproblem can be written as

QPk minimize
x,s

q(x, xk) = gTk(x− xk) + 1
2 (x− xk)THk(x− xk)

subject to Ax− s = b, l ≤
(
x
s

)
≤ u,

where q(x, xk) is a quadratic approximation to a modified Lagrangian function [8]. The
matrix Hk is a quasi-Newton approximation to the Hessian of the Lagrangian. A BFGS
update is applied after each major iteration. If some of the variables enter the Lagrangian
linearly the Hessian will have some zero rows and columns. If the nonlinear variables appear
first, then only the leading n1 rows and columns of the Hessian need be approximated, where
n1 is the number of nonlinear variables.
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2.3. Minor iterations

Solving the QP subproblem is itself an iterative procedure. Here, the iterations of the QP
solver SQOPT [10] form the minor iterations of the SQP method.

SQOPT uses a reduced-Hessian active-set method implemented as a reduced-gradient
method similar to that in MINOS [16].

At each minor iteration, the constraints Ax− s = b are partitioned into the form

BxB + SxS +NxN = b,

where the basis matrix B is square and nonsingular, and the matrices S, N are the remaining
columns of

(
A −I

)
. The vectors xB, xS, xN are the associated basic, superbasic, and

nonbasic variables components of (x, s).
The term active-set method arises because the nonbasic variables xN are temporarily

frozen at their upper or lower bounds, and their bounds are considered to be active. Since
the general constraints are satisfied also, the set of active constraints takes the form(

B S N
I

)xB

xS

xN

 =

(
b
xN

)
,

where xN represents the current values of the nonbasic variables. (In practice, nonbasic vari-
ables are sometimes frozen at values strictly between their bounds.) The reduced-gradient
method chooses to move the superbasic variables in a direction that will improve the objec-
tive function. The basic variables “tag along” to keep Ax−s = b satisfied, and the nonbasic
variables remain unaltered until one of them is chosen to become superbasic.

At a nonoptimal feasible point (x, s) we seek a search direction p such that (x, s) + p
remains on the set of active constraints yet improves the QP objective. If the new point is
to be feasible, we must have BpB + SpS +NpN = 0 and pN = 0. Once pS is specified, pB is
uniquely determined from the system BpB = −SpS. It follows that the superbasic variables
may be regarded as independent variables that are free to move in any desired direction.
The number of superbasic variables (nS say) therefore indicates the number of degrees of
freedom remaining after the constraints have been satisfied. In broad terms, nS is a measure
of how nonlinear the problem is. In particular, nS need not be more than one for linear
problems.

2.4. The reduced Hessian and reduced gradient

The dependence of p on pS may be expressed compactly as p = ZpS, where Z is a matrix
that spans the null space of the active constraints:

Z = P

−B−1S
I
0

 (2.1)

where P permutes the columns of
(
A −I

)
into the order

(
B S N

)
. Minimizing q(x, xk)

with respect to pS now involves a quadratic function of pS:

gTZpS + 1
2p

T
SZ

THZpS,

where g and H are expanded forms of gk and Hk defined for all variables (x, s). This is a
quadratic with Hessian ZTHZ (the reduced Hessian) and constant vector ZTg (the reduced
gradient). If the reduced Hessian is nonsingular, pS is computed from the system

ZTHZpS = −ZTg. (2.2)
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The matrix Z is used only as an operator, i.e., it is not stored explicitly. Products of the
form Zv or ZTg are obtained by solving with B or BT . The package LUSOL [12] is used to
maintain sparse LU factors of B as the BSN partition changes. From the definition of Z,
we see that the reduced gradient can be computed from

BTπ = gB, ZTg = gS − STπ,

where π is an estimate of the dual variables associated with the m equality constraints
Ax− s = b, and gB is the basic part of g.

By analogy with the elements of ZTg, we define a vector of reduced gradients (or reduced
costs) for all variables in (x, s):

d = g −
(
AT

−I

)
π, so that dS = ZTg.

At a feasible point, the reduced gradients for the slacks s are the dual variables π.
The optimality conditions for subproblem QPk may be written in terms of d. The current

point is optimal if dj ≥ 0 for all nonbasic variables at their lower bounds, dj ≤ 0 for all
nonbasic variables at their upper bounds, and dj = 0 for all superbasic variables (dS = 0).
In practice, SNOPT requests an approximate QP solution (x̂k, ŝk, π̂k) with slightly relaxed
conditions on dj .

If dS = 0, no improvement can be made with the current BSN partition, and a nonbasic
variable with non-optimal reduced gradient is selected to be added to S. The iteration is
then repeated with nS increased by one. At all stages, if the step (x, s) + p would cause a
basic or superbasic variable to violate one of its bounds, a shorter step (x, s) + αp is taken,
one of the variables is made nonbasic, and nS is decreased by one.

The process of computing and testing reduced gradients dN is known as pricing (a term
introduced in the context of the simplex method for linear programming). Pricing the jth
variable means computing dj = gj − aTj π, where aj is the jth column of

(
A −I

)
. If

there are significantly more variables than general constraints (i.e., n� m), pricing can be
computationally expensive. In this case, a strategy known as partial pricing can be used to
compute and test only a subset of dN .

Solving the reduced Hessian system (2.2) is sometimes expensive. With the option
QPSolver Cholesky, an upper-triangular matrix R is maintained satisfying RTR = ZTHZ.
Normally, R is computed from ZTHZ at the start of phase 2 and is then updated as the BSN
sets change. For efficiency the dimension of R should not be excessive (say, nS ≤ 1000).
This is guaranteed if the number of nonlinear variables is “moderate”. Other QPSolver

options are available for problems with many degrees of freedom.

2.5. The merit function

After a QP subproblem has been solved, new estimates of the NP solution are computed
using a linesearch on the augmented Lagrangian merit function

M(x, s, π) = f0(x)− πT
(
f(x)− sN

)
+ 1

2

(
f(x)− sN

)T
D
(
f(x)− sN

)
, (2.3)

where D is a diagonal matrix of penalty parameters (Dii ≥ 0), and π now refers to dual
variables for the nonlinear constraints in NP. If (xk, sk, πk) denotes the current solution
estimate and (x̂k, ŝk, π̂k) denotes the QP solution, the linesearch determines a step αk

(0 < αk ≤ 1) such that the new pointxk+1

sk+1

πk+1

 =

xksk
πk

+ αk

x̂k − xkŝk − sk
π̂k − πk

 (2.4)
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gives a sufficient decrease in the merit function (2.3). When necessary, the penalties in D
are increased by the minimum-norm perturbation that ensures descent for M [14]. As in
NPSOL, sN is adjusted to minimize the merit function as a function of s prior to the solution
of the QP subproblem. For more details, see [11, 3].

2.6. Treatment of constraint infeasibilities

SNOPT makes explicit allowance for infeasible constraints. First, infeasible linear constraints
are detected by solving the linear program

FP minimize
x,v,w

eT (v + w)

subject to l ≤
(

x
ALx− v + w

)
≤ u, v ≥ 0, w ≥ 0,

where e is a vector of ones, and the nonlinear constraint bounds are temporarily excluded
from l and u. This is equivalent to minimizing the sum of the general linear constraint
violations subject to the bounds on x. (The sum is the `1-norm of the linear constraint
violations. In the linear programming literature, the approach is called elastic programming.)

The linear constraints are infeasible if the optimal solution of FP has v 6= 0 or w 6= 0.
SNOPT then terminates without computing the nonlinear functions.

Otherwise, all subsequent iterates satisfy the linear constraints. (Such a strategy allows
linear constraints to be used to define a region in which the functions can be safely eval-
uated.) SNOPT proceeds to solve NP as given, using search directions obtained from the
sequence of subproblems QPk.

If a QP subproblem proves to be infeasible or unbounded (or if the dual variables π for
the nonlinear constraints become large), SNOPT enters “elastic” mode and thereafter solves
the problem

NP(γ) minimize
x,v,w

f0(x) + γeT (v + w)

subject to l ≤

 x
f(x)− v + w

ALx

 ≤ u, v ≥ 0, w ≥ 0,

where γ is a nonnegative parameter (the elastic weight), and f0(x) + γeT (v+w) is called a
composite objective (the `1 penalty function for the nonlinear constraints).

The value of γ may increase automatically by multiples of 10 if the optimal v and w
continue to be nonzero. If γ is sufficiently large, this is equivalent to minimizing the sum of
the nonlinear constraint violations subject to the linear constraints and bounds. A similar
`1 formulation of NP is fundamental to the S`1QP algorithm of Fletcher [5]. See also Conn
[1].

The initial value of γ is controlled by the optional parameter Elastic weight (p. 72).
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3. The snOptA interface

The snOptA interface accepts a format that allows the constraints and variables to be defined
in any order. The optimization problem is assumed to be in the form

NPA minimize
x

Fobj(x)

subject to lx ≤ x ≤ ux, lF ≤ F (x) ≤ uF ,

where the upper and lower bounds are constant, F (x) is a vector of smooth linear and
nonlinear constraint functions {Fi(x)}, and Fobj(x) is one of the components of F to be
minimized, as specified by the input parameter ObjRow. (The option Maximize specifies
that Fobj(x) should be maximized instead of minimized.) snOptA reorders the variables and
constraints so that the problem is in the form NP (Section 1).

Ideally, the first derivatives (gradients) of Fi should be known and coded by the user. If
only some gradients are known, snOptA estimates the missing ones by finite differences.

Note that upper and lower bounds are specified for all variables and functions. This
form allows full generality in specifying various types of constraint. Special values are used
to indicate absent bounds (lj = −∞ or uj = +∞ for appropriate j). Free variables and free
constraints (“free rows”) have both bounds infinite. Fixed variables and equality constraints
have lj = uj .

In general, the components of F are structured in the sense that they are formed from
sums of linear and nonlinear functions of just some of the variables. This structure can be
exploited by snOptA (see Section 3.3).

3.1. Subroutines associated with snOptA

snOptA is accessed via the following routines:

snInit (Section 1.6) must be called before any other snOptA routines.

snSpec (Section 7.4) may be called to input a Specs file (a list of run-time options).

snSet, snSeti, snSetr (Section 7.5) may be called to specify a single option.

snGet, snGetc, snGeti, snGetr (Section 7.6) may be called to obtain an option’s current
value.

snOptA (Section 3.4) is the main solver.

snJac (Section 3.5) may be called to find the sparsity structure of the Jacobian.

usrfun (Section 3.6) is supplied by the user and called by snOptA to define the functions
Fi(x) and ideally their gradients. (This routine has a fixed parameter list but may
have any convenient name. It is passed to snOptA as a parameter.)

snMemA (Section 3.8) computes the size of the workspace arrays cw, iw, rw required for
given problem dimensions. Intended for Fortran 90 and C drivers that reallocate
workspace if necessary.
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3.2. Getting Started

Consider the following nonlinear optimization problem with two variables x = (x1, x2) and
three inequality constraints:

minimize
x1,x2

x2

subject to x21 + 4x22 ≤ 4,

(x1 − 2)2 + x22 ≤ 5,

x1 ≥ 0.

(3.1)

In the format of problem NPA, we have lx ≤ x ≤ ux and lF ≤ F (x) ≤ uF as follows:

lx =

(
0

−∞

)
≤

(
x1

x2

)
≤

(
+∞
+∞

)
= ux,

lF =

 −∞−∞
−∞

 ≤
 x2

x21 + 4x22
(x1 − 2)2 + x22

 ≤
 +∞

4

5

 = uF .

Let G(x) be the Jacobian matrix of partial derivatives, so that Gij(x) = ∂Fi(x)/∂xj gives
the gradients of Fi(x) as the ith row of G:

F (x) =

 x2

x21 + 4x22
(x1 − 2)2 + x22

 and G(x) =

 0 1

2x1 8x2

2(x1 − 2) 2x2

 .

Now we must provide snOptA the following information:

1. The index of the objective row. Here, ObjRow = 1.

2. The upper and lower bounds on x. The vectors lx and ux are input as arrays:

infBnd = 1.1d+20

xlow(1) = 0.0

xlow(2) = -infBnd

xupp(1) = infBnd

xupp(2) = infBnd

where infBnd represents “infinity”. It must be at least as large as the Infinite

Bound (default value 1020).

3. The upper and lower bounds on F (x). The vectors lF and uF are also in arrays:

Flow(1) = -infBnd

Flow(2) = -infBnd

Flow(3) = -infBnd

Fupp(1) = infBnd

Fupp(2) = 4.0

Fupp(3) = 5.0

Note that the objective row must have infinite bounds to make it a “free” row.
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4. A subroutine usrfun that computes F (x). For this example, usrfun would contain
the assignments

F(1) = x(2) ! The objective row

F(2) = x(1)**2 + 4.0*x(2)**2

F(3) = (x(1) - 2.0)**2 + x(2)**2

5. As many elements of G(x) as possible. Ideally, Derivative option 1 should be spec-
ified and subroutine usrfun should compute all derivatives of F (x). Elements that
are identically zero may be omitted.

Here, usrfun could include the following additional assignments. They compute all
Gij row-wise, excluding G11 ≡ 0:

G(1) = 1.0 ! G(1,2)

G(2) = 2.0* x(1) ! G(2,1)

G(3) = 8.0*x(2) ! G(2,2)

G(4) = 2.0*(x(1) - 2.0) ! G(3,1)

G(5) = 2.0*x(2) ! G(3,2)

The elements of G may be stored in any order (row-wise, column-wise, or more ran-
domly). The ordering implies a list of coordinates {(i, j)}, in this case

(1, 2) (2, 1) (2, 2) (3, 1) (3, 2).

This list must match the integer arrays iGfun and jGvar below.

If Derivative option 0 is specified, some or all of the gradient elements need not be
assigned values in G. snOptA will estimate them by finite differences.

6. The pattern of nonzero elements of the Jacobian G. This is a list of coordinates
{(i, j)} of the nonzero elements Gij , held in two integer arrays. If i = iGfun(k) and
j = jGvar(k), then G(k) holds Gij . In the example, the program calling snOptA

would include the following:

iGfun(1) = 1 ! row coordinate of G(1) = 1.0

jGvar(1) = 2 ! col coordinate of G(1)

iGfun(2) = 2 ! row coordinate of G(2) = 2.0* x(1)

jGvar(2) = 1 ! col coordinate of G(2)

iGfun(3) = 2 ! row coordinate of G(3) = 8.0* x(2)

jGvar(3) = 2 ! col coordinate of G(3)

iGfun(4) = 3 ! row coordinate of G(4) = 2.0*(x(1) - 2.0)

jGvar(4) = 1 ! col coordinate of G(4)

iGfun(5) = 3 ! row coordinate of G(5) = 2.0* x(2)

jGvar(5) = 2 ! col coordinate of G(5)

If Derivative option 0 is specified, iGfun and jGvar may be defined automatically
by subroutine snJac (p. 21).
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3.3. Exploiting problem structure

In many cases, the vector F (x) is a sum of linear and nonlinear functions. snOptA allows
these terms to be specified separately, so that the linear part is defined just once by the
input arguments iAfun, jAvar, and A. Only the nonlinear part is recomputed at each x.

Suppose that each component of F (x) is of the form

Fi(x) = fi(x) +

n∑
j=1

Aijxj ,

where fi(x) is a nonlinear function (possibly zero) and the elements Aij are constant. The
nF×n Jacobian of F (x) is the sum of two sparse matrices of the same size: F ′(x) = G(x)+A,
where G(x) = f ′(x) and A is the matrix with elements {Aij}. The two matrices must be
non-overlapping in the sense that every element of the Jacobian F ′(x) = G(x) + A is an
element of G(x) or an element of A, but not both.

For example, the function

F (x) =

 3x1 + ex2x4 + x22 + 4x4 − x3 + x5

x2 + x23 + sin x4 − 3x5

x1 − x3


can be written as

F (x) = f(x) +Ax =

 ex2x4 + x22 + 4x4

x23 + sin x4

0

+

 3x1 − x3 + x5

x2 − 3x5

x1 − x3

 ,

in which case

F ′(x) =

 3 ex2x4 + 2x2 −1 ex2 + 4 1

0 1 2x3 cos x4 −3

1 0 0 0 0


can be written as F ′(x) = f ′(x) +A = G(x) +A, where

G(x) =

 0 ex2x4 + 2x2 0 ex2 + 4 0

0 0 2x3 cos x4 0

0 0 0 0 0

 , A =

 3 0 −1 0 1

0 1 0 0 −3

1 0 −1 0 0

 .

The nonzero elements of A and G are provided to snOptA in coordinate form. The
elements of A are entered as triples (i, j, Aij) in the arrays iAfun, jAvar, A. The sparsity
pattern of G is entered as pairs (i, j) in the arrays iGfun, jGvar. The corresponding entries
Gij (any that are known) are assigned to appropriate array elements G(k) in the user’s
subroutine usrfun.

The elements of A and G may be stored in any order. Duplicate entries are ignored.
As mentioned, iGfun and jGvar may be defined automatically by subroutine snJac (p. 21)
when Derivative option 0 is specified and usrfun does not provide any gradients.
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3.4. Subroutine snOptA

Problem NPA is solved by a call to subroutine snOptA, whose parameters are defined here.
Note that most machines use double precision declarations as shown, but some machines
use real. The same applies to the function routine usrfun and all other routines.

subroutine snOptA

& ( Start, nF, n, nxname, nFname,

& ObjAdd, ObjRow, Prob, usrfun,

& iAfun, jAvar, lenA, neA, A,

& iGfun, jGvar, lenG, neG,

& xlow, xupp, xnames, Flow, Fupp, Fnames,

& x, xstate, xmul, F, Fstate, Fmul,

& INFO, mincw, miniw, minrw,

& nS, nInf, sInf,

& cu, lencu, iu, leniu, ru, lenru,

& cw, lencw, iw, leniw, rw, lenrw )

external

& usrfun

integer

& INFO, lenA, lencu, lencw, lenG, leniu, leniw, lenru, lenrw,

& mincw, miniw, minrw, n, neA, neG, nF, nFname, nInf, nS,

& nxname, ObjRow, Start, iAfun(lenA), iGfun(lenG), iu(leniu),

& iw(leniw), jAvar(lenA), jGvar(lenG), xstate(n), Fstate(nF)

double precision

& ObjAdd, sInf, A(lenA), F(nF), Fmul(nF), Flow(nF), Fupp(nF),

& ru(lenru), rw(lenrw), x(n), xlow(n), xmul(n), xupp(n)

character

& Prob*8, cu(lencu)*8, cw(lencw)*8,

& Fnames(nFname)*8, xnames(nxname)*8

On entry:

Start is an integer that specifies how a starting point is to be obtained.

Start = 0 (Cold start) requests that the CRASH procedure be used, unless an
Old basis, Insert, or Load file is specified.

Start = 1 is the same as 0 but more meaningful when a basis file is given.

Start = 2 (Warm start) means that xstate and Fstate define a valid starting
point (perhaps from an earlier call, though not necessarily).

nF is the number of problem functions in F (x), including the objective function (if
any) and the linear and nonlinear constraints. Upper and lower bounds on x can
be defined via xLow and xUpp (below) and should not be included in F . (nF > 0)

nF is the dimension of the function vector F. Since F includes the objective (if any)
and all the general linear and nonlinear constraints, there must be at least one row
for the problem to be meaningful.

n is n, the number of variables. This is the number of columns of G and A. (n > 0)
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iAfun(lenA), jAvar(lenA), A(lenA) define the coordinates (i, j) and values Aij of the
nonzero elements of the linear part A of the function F (x) = f(x) + Ax. The first
neA entries are valid. (0 ≤ neA ≤ lenA and lenA ≥ 1)

The entries may define the elements of A in any order.

lenA is the dimension of the arrays iAfun, jAvar, A that hold (i, j, Aij). (lenA ≥ 1)

neA is the number of nonzeros in A such that F (x) = f(x) +Ax. (0 ≤ neA ≤ lenA)

iGfun(lenG), jGvar(lenG) define the coordinates (i, j) of Gij , the nonzero elements of
the nonlinear part of the derivatives G(x) + A of the function F (x) = f(x) + Ax.
The first neG entries are valid. (0 ≤ neG ≤ lenG and lenG ≥ 1)

The entries may define the elements of G in any order, but subroutine usrfun must
define the values of G in exactly the same order.

lenG is the dimension of the coordinate arrays iGfun, jGvar. (lenG ≥ 1)

neG is the number of nonzero entries in G. (neG ≥ 0)

nxname, nFname give the number of variable and constraint names provided in the character
arrays xname and Fname. If nxname = 1 and nFname = 1, no names are provided.
(Generic names will be used in the printed solution.) Otherwise, the values must
be nxname = n and nFname = nF and all names must be provided in xnames and
Fnames (below).

ObjAdd is a constant that will be added to the objective row F(Objrow) for printing pur-
poses. Typically, ObjAdd = 0.0d+0.

ObjRow says which row of F (x) is to act as the objective function. If there is no such row,
set ObjRow = 0. Then snOptA will seek a feasible point such that lF ≤ F (x) ≤ uF

and lx ≤ x ≤ ux. (0 ≤ ObjRow ≤ nF)

Prob is an 8-character name for the problem. Prob is used in the printed solution and in
some routines that output basis files. A blank name may be used.

usrfun (Section 3.6) is the name of a subroutine that calculates the nonlinear portion f(x)
of the vector of problem functions F (x) = f(x) +Ax, and (optionally) its Jacobian
G(x) for a given vector x. usrfun must be declared external in the routine that
calls snOptA.

xlow(n), xupp(n) contain the lower and upper bounds lx and ux on the variables x.

To specify non-existent bounds, set xlow(j) ≤ −infBnd or xupp(j) ≥ infBnd,
where infBnd is the Infinite Bound size (default value 1020).
To fix the jth variable at xj = β, set xlow(j) = xupp(j) = β (with |β| < infBnd).

Flow(nF), Fupp(nF) contain the lower and upper bounds lF and uF on F (x).

To specify non-existent bounds, set Flow(j) ≤ −infBnd or Fupp(j) ≥ infBnd.
To make the ith constraint an equality, Fi(x) = β, set Flow(i) = Fupp(i) = β.

xnames(nxname), Fnames(nFname) sometimes contain 8-character names for the variables
and problem functions. If nxname = 1 or nFname = 1, then names are not used. The
printed solution will use generic names for the columns and rows. If nxname = n and
nFname = nF, the elements xnames(j) and Fnames(i) should contain the 8-character
names of the jth variable and ith row of F .

x(n) usually contains a set of initial values for x. See next.

xstate(n) usually contains a set of initial states for each variable x.
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1. For Cold starts (Start = 0 or 1 with no basis file provided), xstate and x

must be defined.

If there is no wish to provide special information, you may set xstate(j) = 0,
x(j) = 0.0 for all j = 1 : n. All variables will be eligible for the initial basis.

Less trivially, to say that the optimal value of xj will probably be one of
its bounds, set xstate(j) = 4 and x(j) = xlow(j) or xstate(j) = 5 and
x(j) = xupp(j) as appropriate.

A CRASH procedure is used to select an initial basis. The initial basis matrix
will be triangular (ignoring certain small entries in each column). The values
xstate(j) = 0, 1, 2, 3, 4, 5 have the following meaning:

xstate(j) State of variable j during CRASH

{0, 1, 3} Eligible for the basis. 3 is given preference

{2, 4, 5} Ignored

After CRASH, variables for which xstate(j) = 2 are made superbasic. Other
variables not selected for the basis are made nonbasic at the value x(j) (or the
closest value inside their bounds). See the description of xstate below (on
exit).

2. If Start = 0 or 1 and a basis file is provided, xstate and x need not be set.

3. For Warm starts (Start = 2), xstate and x must be defined, and all xstate(j)
must be 0, 1, 2 or 3 (perhaps from a previous call).

F(nF) sometimes contains a set of initial values for the functions F (x). See next.

Fstate(nF) sometimes contains a set of initial states for the problem functions F .

1. For Cold starts (Start = 0 or 1 with no basis file provided), Fstate and F

must be defined.

If there is no wish to provide special information, you may set Fstate(i) = 0,
F(i) = 0.0 for all i = 1 : nF. All rows will be eligible for the initial basis.

Less trivially, to say that the optimal value of row i will probably be one
of its bounds, set Fstate(i) = 4 and F(i) = Flow(i) or Fstate(i) = 5 and
F(i) = Fupp(i) as appropriate.

During CRASH, the values Fstate(i) = 0, 1, 2, 3, 4, 5 have the following mean-
ing:

Fstate(i) State of row i during CRASH

{0, 1, 3} Eligible for the basis. 3 is given preference

{2, 4, 5} Ignored

After CRASH, rows for which Fstate(i) = 2 are made superbasic. Other rows
not selected for the basis are made nonbasic at the value F(i) (or the closest
value inside their bounds). See the description of Fstate below (on exit).

2. If Start = 0 or 1 and a basis file is provided, Fstate and F need not be set.

3. For Warm starts (Start = 2), Fstate(1 : nF) must be 0, 1, 2 or 3 (perhaps
from a previous call).

Fmul(nF) contains an estimate of λ, the vector of Lagrange multipliers (shadow prices) for
the constraints lF ≤ F (x) ≤ uF . All nF components must be defined. If nothing is
known about λ, set all Fmul(i) = 0.0.
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nS need not be specified for Cold starts, but should retain its value from a previous
call when a Warm start is used.

cu(lencu), iu(leniu), ru(lenru) are 8-character, integer and real arrays of user work-
space. They may be used to pass data or workspace to your function routine usrfun
(which has the same parameters). They are not touched by snOptA.

If usrfun doesn’t reference these parameters, you may use any arrays of the appro-
priate type, such as cw, iw, rw (see next paragraph). Conversely, you should use
the cw, iw, rw arrays if usrfun needs to access snOptA’s workspace.

cw(lencw), iw(leniw), rw(lenrw) are 8-character, integer and real arrays of workspace
for snOptA. Their lengths lencw, leniw, lenrw must all be at least 500.

If variable and function names are specified in xnames and Fnames, then lencw must
be at least 500 + n + nF; otherwise lencw = 500 is appropriate. Arguments leniw

and lenrw should be as large as possible because it is uncertain how much storage
will be needed for the basis factorization. As an estimate, leniw should be about
100(m+ n) or larger, and lenrw should be about 200(m+ n) or larger.

Appropriate values may be obtained from a call to snMemA (Section 3.8), or from a
preliminary run of snOptA with lencw = leniw = lenrw = 500. See mincw, miniw,
minrw below (on exit).

On exit:

x(n) contains the final values of the variables x.

xstate(n) gives the final state of the variables as follows:

xstate(j) State of variable j Usual value of x(j)

0 nonbasic xlow(j)
1 nonbasic xupp(j)
2 superbasic Between xlow(j) and xupp(j)
3 basic Between xlow(j) and xupp(j)

Basic and superbasic variables may be outside their bounds by as much as the Minor
feasibility tolerance. Note that if scaling is specified, the feasibility tolerance
applies to the variables of the scaled problem. In this case, the variables of the
original problem may be as much as 0.1 outside their bounds, but this is unlikely
unless the problem is very badly scaled. Check the “Primal infeasibility” printed
after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as much
as the Minor feasibility tolerance, and there may be some nonbasics for which
x(j) lies strictly between its bounds.

If nInf > 0, some basic and superbasic variables may be outside their bounds by
an arbitrary amount (bounded by sInf if scaling was not used).

xmul(ne) is the vector of dual variables for the bound constraints lx ≤ x ≤ ux.

F(nF) is the final value of the vector of problem functions F (x).

Fmul(nF) is the vector of dual variables (Lagrange multipliers) for the general constraints
lF ≤ F (x) ≤ uF .
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INFO reports the result of the call to snOptA. Here is a summary of possible values.
Further details are in Section 8.6.

Finished successfully
1 optimality conditions satisfied
2 feasible point found
3 requested accuracy could not be achieved
5 elastic objective minimized
6 elastic infeasibilities minimized

The problem appears to be infeasible
11 infeasible linear constraints
12 infeasible linear equality constraints
13 nonlinear infeasibilities minimized
14 linear infeasibilities minimized
15 infeasible linear constraints in QP subproblem
16 infeasible nonelastic constraints

The problem appears to be unbounded
21 unbounded objective
22 constraint violation limit reached

Resource limit error
31 iteration limit reached
32 major iteration limit reached
33 the superbasics limit is too small
34 time limit reached

Terminated after numerical difficulties
41 current point cannot be improved
42 singular basis
43 cannot satisfy the general constraints
44 ill-conditioned null-space basis
45 unable to compute acceptable LU factors

Error in the user-supplied functions
51 incorrect objective derivatives
52 incorrect constraint derivatives

Undefined user-supplied functions
61 undefined function at the first feasible point
62 undefined function at the initial point
63 unable to proceed into undefined region

User requested termination
71 terminated during function evaluation
74 terminated from monitor routine

Insufficient storage allocated
81 work arrays must have at least 500 elements
82 not enough character storage
83 not enough integer storage
84 not enough real storage



20 SNOPT 7.5 User’s Guide

Input arguments out of range
91 invalid input argument
92 basis file dimensions do not match this problem

System error
141 wrong number of basic variables
142 error in basis package

mincw, miniw, minrw say how much character, integer, and real storage is needed to solve
the problem. If Print level > 0, these values are printed. If snOptA terminates
because of insufficient storage (INFO = 82, 83 or 84), the values may be used to
define better values of lencw, leniw or lenrw.

If INFO = 82, the work array cw(lencw) is too small. snOptA may be called again
with lencw = mincw.

If INFO = 83 or 84, the work arrays iw(leniw) or rw(lenrw) are too small. snOptA
may be called again with leniw or lenrw suitably larger than miniw or minrw. (The
bigger the better because it is not certain how much storage the basis factorization
needs.)

nS is the final number of superbasic variables.

nInf, sInf give the number and the sum of the infeasibilities of constraints that lie outside
one of their bounds by more than the Minor feasibility tolerance before the
solution is unscaled.

If any linear constraints are infeasible, x minimizes the sum of the infeasibilities of
the linear constraints subject to the upper and lower bounds being satisfied. In this
case nInf gives the number of variables and linear constraints lying outside their
bounds. The nonlinear constraints are not evaluated.

Otherwise, x minimizes the sum of the infeasibilities of the nonlinear constraints
subject to the linear constraints and upper and lower bounds being satisfied. In
this case nInf gives the number of components of F (x) lying outside their bounds
by more than the Minor feasibility tolerance. Again this is before the solution
is unscaled.
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3.5. Subroutine snJac

If you set Derivative option 0 and your function routine usrfun provides none of the
derivatives in G, you may call subroutine snJac to determine the input arrays iAfun, jAvar,
A, iGfun, jGvar for snOptA. These define the pattern of nonzeros in the Jacobian matrix.
A typical sequence of calls is

call snInit( iPrint, iSumm, ... )

call snJac ( INFO, iPrint, ... )

call snSet ( ’Derivative option = 0’, ... )

call snOptA( Start, nF, n, ... )

(The Derivative option could also be set in the Specs file.)
Subroutine snJac determines the sparsity pattern for the Jacobian and identifies the

constant elements automatically. To do so, snJac approximates F ′(x) at three random
perturbations of the given initial point x. If an element of the approximate Jacobian is
the same at all three points, then it is taken to be constant. If it is zero, it is taken to be
identically zero. Since the random points are not chosen close together, the heuristic will
correctly classify the Jacobian elements in the vast majority of cases.

In general, snJac finds that the Jacobian can be permuted to the form

( G(x) A3

A2 A4

)
,

where A2, A3, A4 are constant. Note that G(x) might contain elements that are also
constant, but snJac must classify them as nonlinear. (This is because snOptA “removes”
linear variables from the calculation of F by setting them to zero before calling usrfun.)
A knowledgeable user would be able to move such elements from usrfun’s F (x) and enter
them as part of iAfun, jAvar, A for snOptA.

subroutine snJac

& ( INFO, iPrint, iSumm, nF, n, usrfun,

& iAfun, jAvar, lenA, neA, A,

& iGfun, jGvar, lenG, neG,

& x, xlow, xupp, mincw, miniw, minrw,

& cu, lencu, iu, leniu, ru, lenru,

& cw, lencw, iw, leniw, rw, lenrw )

external

& usrfun

integer

& INFO, iPrint, iSumm, nF, n, neA, lenA, neG, lenG, mincw,

& miniw, minrw, lencu, lencw, leniu, leniw, lenru, lenrw,

& iAfun(lenA), jAvar(lenA), iGfun(lenG), jGvar(lenG),

& iu(leniu), iw(leniw)

double precision

& A(lenA), x(n), xlow(n), xupp(n), ru(lenru), rw(lenrw)

character

& cu(lencu)*8, cw(lencw)*8

On entry:

Most arguments are identical to those of snOptA.

lenA is the dimension of the arrays iAfun, jAvar, A that hold (i, j, Aij). (lenA ≥ 1).

lenA should be an overestimate of the number of elements in the linear part of the
Jacobian. The value lenA = nF× n is an upper bound on the length of A.
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lenG is the dimension of the coordinate arrays iGfun and jGvar that define the nonlinear
Jacobian elements (i, j, Gij). (lenG ≥ 1).

lenG should be an overestimate of the number of elements in the nonlinear part of
the Jacobian. The value lenG = nF× n is an upper bound on the length of iGfun

and jGvar.

On exit:

iAfun(lenA), jAvar(lenA), A(lenA) define the coordinates (i, j) of the nonzero elements
of the linear part A of the function F (x) = f(x) +Ax.

The first neA entries define the row and column indices i = iAfun(k) and j =
jAvar(k) and elements Aij = A(k) for k = 1 : neA.

neA is the number of nonzeros in A such that F (x) = f(x) +Ax. (neA ≥ 0)

iGfun(lenG), jGvar(lenG) define the coordinates (i, j) of Gij , the nonzero elements of
the nonlinear part of the derivatives G(x) + A of the function F (x) = f(x) + Ax.
The actual elements of G are assigned in subroutine usrfun.

neG is the number of nonzero entries in G. (neG ≥ 0).

INFO reports the result of the call to snJac.

Finished successfully
102 satisfactory coordinates were found

Undefined user-supplied functions
61 user indicates that the functions are undefined at the initial point

User requested termination
71 user requested termination by returning mode < −1 from usrfun

Insufficient storage allocated
82 not enough 8-character workspace to solve the problem
83 not enough integer workspace to solve the problem
84 not enough real workspace to solve the problem

mincw, miniw, minrw say how much character, integer and real storage is needed to build
the arrays (i, j, Aij) and (i, j, Gij). If INFO = 82, 83 or 84, these values may be used
to define better values of lencw, leniw or lenrw.

If INFO = 82, the work array cw(lencw) was too small. snJac may be called again
with lencw = mincw.

If INFO = 83 or 84, the work arrays iw(leniw) or rw(lenrw) are too small. snJac
may be called again with leniw or lenrw suitably larger than miniw or minrw.
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3.6. Subroutine usrfun

Your own version of subroutine usrfun is where you define the nonlinear portion f(x)
of the problem functions F (x) = f(x) + Ax, along with its gradient elements Gij(x) =
∂fi(x)/∂xj . This subroutine is passed to snOptA as the external parameter usrfun. (A
dummy subroutine is needed even if f(x) ≡ 0 and all functions are linear.)

In general, usrfun should return all function and gradient values on every entry except
perhaps the last. This provides maximum reliability and corresponds to the default setting,
Derivative option 1.

The elements ofG(x) are stored in the array G(1:lenG) in the order specified by snOptA’s
input arrays iGFun and jGvar (see Section 3.7).

In practice it is often convenient not to code gradients. snOptA is able to estimate them
by finite differences, using a call to usrfun for each variable xj for which some ∂fi(x)/∂xj
needs to be estimated. However, this reduces the reliability of the optimization algorithm,
and it can be very expensive if there are many such variables xj .

As a compromise, snOptA allows you to code as many gradients as you like. This option
is implemented as follows. Just before the function routine is called, each element of the
derivative array G is initialized to a specific value. On exit, any element retaining that value
must be estimated by finite differences.

Some rules of thumb follow.

1. For maximum reliability, compute all gradients.

2. If the gradients are expensive to compute, specify Nonderivative linesearch and
use the value of the input parameter needG to avoid computing them on certain entries.
(There is no need to compute gradients if needG = 0 on entry to usrfun.)

3. If not all gradients are known, you must specify Derivative option 0. You should
still compute as many gradients as you can. (It often happens that some of them are
constant or even zero.)

4. Again, if the known gradients are expensive, don’t compute them if needG = 0 on
entry to usrfun.

5. Use the input parameter Status to test for special actions on the first or last entries.

6. While usrfun is being developed, use the Verify option to check the computation of
gradients that are supposedly known.

7. usrfun is not called until the linear constraints and bounds on x are satisfied. This
helps confine x to regions where the functions fi(x) are likely to be defined. However,
be aware of the Minor feasibility tolerance if the functions have singularities on
the constraint boundaries.

8. Set Status = −1 if some of the functions are undefined. The linesearch will shorten
the step and try again.

9. Set Status < −1 if you want snOptA to stop.
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subroutine usrfun

& ( Status, n, x,

& needf, nF, f,

& needG, lenG, G,

& cu, lencu, iu, leniu, ru, lenru )

integer

& lencu, lenG, leniu, lenru, n, needf, needG, nF, Status,

& iu(leniu)

double precision

& f(nF), G(lenG), ru(lenru), x(n)

character

& cu(lencu)*8

On entry:

Status indicates the first and last calls to usrfun.

If Status = 0, there is nothing special about the current call to usrfun.

If Status = 1, snOptA is calling your subroutine for the first time. Some data may
need to be input or computed and saved.

If Status ≥ 2, snOptA is calling your subroutine for the last time. You may wish
to perform some additional computation on the final solution.

In general, the last call is made with Status = 2 + INFO/10, where INFO is the
integer returned by snOptA (see p. 19). In particular,

if Status = 2, the current x is optimal ;
if Status = 3, the problem appears to be infeasible;
if Status = 4, the problem appears to be unbounded;
if Status = 5, an iterations limit was reached.

If the functions are expensive to evaluate, it may be desirable to do nothing on the
last call. The first executable statement could be if (Status .ge. 2) return.

n is n, the number of variables, as defined in the call to snOptA.

x(n) contains the variables x at which the problem functions are to be calculated. The
array x must not be altered.

needf, nF, f(nF) concern the calculation of f(x).
nF is the length of the full vector F (x) = f(x)+Ax as defined in the call to snOptA.
needf indicates if f must be assigned during this call of usrfun:

• If needf = 0, f is not required and is ignored.

• If needf > 0, the components of f(x) corresponding to the nonlinear part of
F (x) must be calculated and assigned to f.

If Fi(x) is linear and completely defined by A′i, then the associated value of
fi(x) is ignored and need not be assigned. However, if Fi(x) has a nonlinear
portion fi that happens to be zero at x, then it is still necessary to set fi(x) = 0.

If the linear part A′i of a nonlinear Fi(x) is provided using the snOptA arrays
(iAFun, jAvar, A), then it must not be computed as part of fi(x).
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To simplify the code, you may ignore the value of needf and compute f(x) on every
entry to usrfun.

needf may also be ignored with Derivative linesearch and Derivative option

1 (both defaults). In this case, needf is always 1, and f must always be assigned.

needG, lenG, G(lenG) concern the calculation of the derivatives of the function f(x).
lenG is the length of the coordinate arrays iGvar and jGfun in the call to snOptA.
needG indicates if G must be assigned during this call of usrfun:

• If needG = 0, G is not required and is ignored.

• If needG > 0, the partial derivatives of f(x) must be calculated and assigned
to G. For each k = 1 : lenG, the value of G(k) should be ∂fi(x)/∂xj , where
i = iGfun(k), j = jGvar(k).

cu(lencu), iu(leniu), ru(lenru) are the character, integer and real arrays of user work-
space provided to snOptA. They may be used to pass information into the function
routine and to preserve data between calls.

In special applications the functions may depend on some of the internal variables
stored in snOptA’s workspace arrays cw, iw, rw. For example, the 8-character prob-
lem name Prob is stored in cw(51), and the dual variables are stored in rw(lFMul)

onward, where lFMul = iw(329). These will be accessible to usrfun if snOptA is
called with parameters cu, iu, ru the same as cw, iw, rw.

If you still require workspace, elements rw(501:maxru) and rw(maxrw+1:lenru)

are set aside for this purpose, where maxru = iw(2). Similarly for workspace in cw

and rw. (See the Total and User workspace options.)

On exit:

Status may be used to indicate that you are unable to evaluate f or its gradients at the
current x. (For example, the problem functions may not be defined there.)

During the linesearch, f(x) is evaluated at points x = xk+αpk for various steplengths
α, where f(xk) has already been evaluated satisfactorily. For any such x, if you set
Status = −1, snOptA will reduce α and evaluate f again (closer to xk, where it is
more likely to be defined).

If for some reason you wish to terminate the current problem, set Status ≤ −2.

f(nF) contains the computed functions f(x) (except perhaps if needf = 0).

G(neG) contains the computed derivatives G(x) (except perhaps if needG = 0).

These derivative elements must be stored in G in exactly the same positions as
implied by the definitions of snOptA’s arrays iGfun, jGvar. There is no internal
check for consistency (except indirectly via the Verify option), so great care is
essential.
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3.7. Example usrfun

Here we give subroutine usrfun for the problem

minimize 3x1 + 5x2 + (x1 + x3 + x4)2

subject to x1 + x23 + x24 = 2

2x3 + 4x4 ≥ 0

x2 + x44 = 4

plus bounds on x. This problem has 4 variables, a nonlinear objective function, 2 nonlinear
constraints, and 1 linear constraint. The vector of functions is

F (x) =


3x1 + 5x2 + (x1 + x3 + x4)2

x1 + x23 + x24

2x3 + 4x4

x2 + x44

 .

The Jacobian of F is the matrix

F ′(x) =


3 + 2(x1 + x3 + x4) 5 2(x1 + x3 + x4) 2(x1 + x3 + x4)

1 0 2x3 2x4
0 0 2 4
0 1 4x34

 .

We can write F (x) = f(x) +Ax and F ′(x) = f ′(x) +A = G(x) +A, where

f(x) =


3x1 + (x1 + x3 + x4)2

x23 + x24
0
x44

 , A =


0 5 0 0
1 0 0 0
0 0 2 4
0 1 0 0


and G is the non-overlapping matrix

G(x) =


3 + 2(x1 + x3 + x4) 0 2(x1 + x3 + x4) 2(x1 + x3 + x4)

0 0 2x3 2x4
0 0 0 0
0 0 0 4x34

 .

The calling program must assign many parameters for input to snOptA, including

nF = 4, n = 4, ObjRow = 1, neA = 5, neG = 6 lenG = 6 (≥ neG).

Some of these parameters are passed to subroutine usrfun (next page). Note that usrfun

works only with the nonlinear variables (x1, x3, x4) that appear in f and G. The array f is
set to f(x), excluding the term Ax (which is evaluated separately by snOptA). The array G

is set to all nonzero entries of G(x), excluding the matrix A.
For illustration, we test needF and needG to economize on function and gradient eval-

uations (even though they are cheap here). Note that Nonderivative linesearch would
have to be specified, otherwise all entries would have needG = 1. We also test State to
print a message on the first and last entries.
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subroutine usrfun

& ( Status, n, x,

& needF, nF, f,

& needG, lenG, G,

& cu, lencu, iu, leniu, ru, lenru )

integer

& lencu, lenG, leniu, lenru, n, needF, needG, nF, Status,

& iu(leniu)

double precision

& f(nF), G(lenG), x(n), ru(lenru)

character

& cu(lencu)*8

* ==================================================================

* Computes the nonlinear objective and constraint terms for the toy

* problem featured in the SNOPT user’s guide.

* ==================================================================

integer

& neG, Obj, Out

double precision

& sum, x1, x3, x4

* ------------------------------------------------------------------

Out = 15 ! Output unit number

Obj = 1 ! Objective row of F

* --------------------------------------------

* Print something on the first and last entry.

* --------------------------------------------

if (Status .eq. 1) then ! First

if (Out .gt. 0) write(Out, ’(/a)’) ’ This is problem Toy’

else if (Status .ge. 2) then ! Last

if (Out .gt. 0) write(Out, ’(/a)’) ’ Finished problem Toy’

return

end if

x1 = x(1)

x3 = x(3)

x4 = x(4)

sum = x1 + x3 + x4

if (needF .gt. 0) then

f(Obj) = 3.0d0*x1 + sum**2

f(2) = x3**2 + x4**2

*!! f(3) = ! Linear constraint omitted!

f(4) = x4**4

end if

neG = 0

if (needG .gt. 0) then

neG = neG + 1

G(neG) = 2.0d0*sum + 3.0d0

*!! iGfun(neG) = Obj ! Not used, but included for clarity!

*!! jGvar(neG) = 1 ! Not used

neG = neG + 1
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G(neG) = 2.0d0*sum

* iGfun(neG) = Obj

* jGvar(neG) = 3

neG = neG + 1

G(neG) = 2.0d0*sum

* iGfun(neG) = Obj

* jGvar(neG) = 4

neG = neG + 1

G(neG) = 2.0d0*x3

* iGfun(neG) = 2

* jGvar(neG) = 3

neG = neG + 1

G(neG) = 2.0d0*x4

* iGfun(neG) = 2

* jGvar(neG) = 4

neG = neG + 1

G(neG) = 4.0d0*x4**3

* iGfun(neG) = 4

* jGvar(neG) = 4

end if

end ! subroutine usrfun
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3.8. Subroutine snMemA

This routine estimates the size of the workspace arrays cw, iw, rw required to solve an
optimization problem of given dimensions. snMemA is not strictly needed in f77 because all
workspace must be defined explicitly in the driver program at compile time. It is available
for users wishing to allocate storage dynamically in f90 or C.

The actual storage required also depends on the values of the following options:

Hessian full

or Hessian limited memory and Hessian updates

Reduced Hessian dimension

Superbasics limit

If these options have not been set, default values are assumed. Ideally the correct values
should be set before the call to snMemA.

subroutine snMemA

& ( INFO, nF, n, nxname, nFname, neA, neG,

& mincw, miniw, minrw,

& cw, lencw, iw, leniw, rw, lenrw )

integer

& INFO, lencw, leniw, lenrw, mincw, miniw, minrw, n, neA, neG,

& nF, nFname, nxname, iw(leniw)

double precision

& rw(lenrw)

character

& cw(lencw)*8

The arguments nF, n, nxname, nFname, neA, neG define the problem being solved and are
identical to the arguments used in the call to snOptA (see Section 3.4). For a sequence of
problems, snMemA may be called once with overestimates of these quantities.

On entry:

lencw, leniw, lenrw must be of length at least 500.

cw(lencw), iw(leniw), rw(lenrw) are 8-character, integer and real arrays of workspace
for snMemA.

On exit:

INFO reports the result of the call to snMemA. Further details are in Section 8.6.

Insufficient storage allocated
81 work arrays must have at least 500 elements

Finished successfully
104 memory requirements estimated

mincw, miniw, minrw estimate how much character, integer and real storage is needed to
solve the problem.

To use snMemA, the first step is to allocate the work arrays. These may be temporary
arrays tmpcw, tmpiw, tmprw (say) or the snOptA arrays cw, iw, rw, which will be reallocated
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after the storage limits are known. Here we illustrate the use of snMemA using the same
arrays for snMemA and snOptA. Note that the snMemA arrays are used to store the optional
parameters, and so any temporary arrays must be copied into the final cw, iw, rw arrays in
order to retain the options.

The work arrays must have length at least 500, so we define

ltmpcw = 500

ltmpiw = 500

ltmprw = 500

As with all SNOPT routines, snInit must be called to set default options:

call snInit

& ( iPrint, iSumm, cw, ltmpcw, iw, ltmpiw, rw, ltmprw )

This installs ltmpcw, ltmpiw, ltmprw as the default internal upper limits on the snOptA

workspace (see Total real workspace p. 84). They are used to compute the boundaries
of any user-defined workspace in cw, iw, or rw.

The next step is to call snMemA to obtain mincw, miniw, minrw as estimates of the storage
needed by snOptA:

call snMemA

& ( INFO, nF, n, nxname, nFname, neA, neG,

& mincw, miniw, minrw,

& cw, ltmpcw, iw, ltmpiw, rw, ltmprw )

The output values of mincw, miniw, minrw may now be used to define the lengths of the
snOptA work arrays:

lencw = mincw

leniw = miniw

lenrw = minrw

These values may be used in f90 or C to allocate the final work arrays for the problem.
One last step is needed before snOptA is called. The current upper limits ltmpcw, ltmpiw,

ltmprw must be replaced by the estimates mincw, miniw, minrw. This can be done using
the option setting routine snSeti as follows:

Errors = 0 ! Counts the number of errors

iPrt = 0 ! Suppress print output

iSum = 0 ! Suppress summary output

call snSeti

& ( ’Total character workspace’, lencw, iPrt, iSum, Errors,

& cw, ltmpcw, iw, ltmpiw, rw, ltmprw )

call snSeti

& ( ’Total integer workspace’, leniw, iPrt, iSum, Errors,

& cw, ltmpcw, iw, ltmpiw, rw, ltmprw )

call snSeti

& ( ’Total real workspace’, lenrw, iPrt, iSum, Errors,

& cw, ltmpcw, iw, ltmpiw, rw, ltmprw )

An alternative way is to call snInit again with arguments lencw, leniw, lenrw:

call snInit

& ( iPrint, iSumm, cw, lencw, iw, leniw, rw, lenrw )

However, this has the twin effects of resetting all options to their default values and reprint-
ing the SNOPT banner (unless iPrint = 0 and iSumm = 0 are set for the Print and Summary
files).
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4. The snOptB interface

snOptB is the “basic” user interface with arguments identical to versions of SNOPT up to
Version 5.3-4. The optimization problem is assumed to be in the form NP (p. 4) with the
data ordered so that nonlinear constraints and variables come first. A typical invocation is

call snInit( iPrint, iSumm, ... )

call snSpec( ... )

call snOptB( Start, m, n, ne, ... )

Subroutine snOpt is identical to snOptB, and the analogous call provides compatibility with
previous versions of SNOPT:

call snOpt ( Start, m, n, ne, ... )

4.1. Subroutines used by snOptB

snOptB is accessed via the following routines:

snInit (Section 1.6) must be called before any other snOptB routines.

snSpec (Section 7.4) may be called to input a Specs file (a list of run-time options).

snSet, snSeti, snSetr (Section 7.5) may be called to specify a single option.

snGet, snGetc, snGeti, snGetr (Section 7.6) may be called to obtain an option’s current
value.

snOptB, snOpt (Section 4.4) are the main solvers. They are identical.

funcon, funobj (Sections 4.6–4.7) are supplied by the user and called by snOptB. They
define the constraint and objective functions and ideally their gradients. (They have
a fixed parameter list but may have any convenient name. They are passed to snOptB

and snOpt as parameters.)

snMemB (Section 4.10) computes the size of the workspace arrays cw, iw, rw required for
given problem dimensions. Intended for Fortran 90 and C drivers that reallocate
workspace if necessary.

4.2. Identifying structure in the objective and constraints

Consider the following nonlinear optimization problem with four variables x = (u, v, w, z):

minimize
u,v,w,z

(u+ v + w)2 + 3w + 5z

subject to u2 + v2 + w = 2
v4 + z = 4

2u+ 4v ≥ 0

with bounds w ≥ 0, z ≥ 0. This problem has several characteristics that can be exploited:

• The objective function is the sum of a nonlinear function of the three variables x′ =
(u, v, w) and a linear function of (potentially) all variables x.

• The first two constraints are nonlinear, and the third constraint is linear.

• Each nonlinear constraint involves the sum of a nonlinear function of the two variables
x′′ = (u, v) and a linear function of the remaining variables y′′ = (w, z).
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The nonlinear terms are defined by user-written subroutines funobj and funcon, which
involve only x′ and x′′, the appropriate subsets of variables.

For the objective, we define the function f0(u, v, w) = (u + v + w)2 to include only the
nonlinear terms. The variables x′ = (u, v, w) are known as nonlinear objective variables, and
their dimension n′1 is specified by the snOptB input parameter nnObj (= 3 here). The linear
part 3w+5z of the objective is treated as an additional linear constraint whose row index is
specified by the input parameter iObj. Thus, the full objective has the form f0(x′) + dTx,
where x′ is the first nnObj variables, f0(x′) is defined by subroutine funobj, and d is a
constant vector that forms row iObj of the full Jacobian matrix. Choosing iObj = 4, we
think of the problem as

minimize
u,v,w,z,s4

(u+ v + w)2 + s4

subject to u2 + v2 + w = 2
v4 + z = 4

2u+ 4v ≥ 0
3w + 5z = s4

with bounds w ≥ 0, z ≥ 0, −∞ ≤ s4 ≤ ∞, where s4 is treated implicitly as the 4th
slack variable. (Internal to snOptB, slacks s1, s2 and s3 are associated with the first three
constraints, with s1 and s2 fixed at 0 and 0 ≤ s3 ≤ ∞.)

Similarly for the constraints, we define a vector function f(u, v) to include just the
nonlinear terms. In this example, f1(u, v) = u2 + v2 and f2(u, v) = v4. The number of
nonlinear constraints (the dimension of f) is specified by the input parameter nnCon = 2.
The variables x′′ = (u, v) are known as nonlinear Jacobian variables, with dimension n′′1
specified by nnJac = 2. Thus, the constraint functions and the linear part of the objective
have the form (

f(x′′) +A3y
′′

A2x
′′ +A4y

′′

)
, (4.1)

where x′′ is the first nnJac variables, f(x′′) is defined by subroutine funcon, and y′′ contains
the remaining variables, i.e., y′′ = (w, z) in the example. The full Jacobian is of the form

A =

(
f ′(x′′) A3

A2 A4

)
, (4.2)

with the Jacobian of f always appearing in the top left corner of A. The sparsity pattern of
f ′(x′′) and the constant matrices A2, A3, A4 are input column-wise via the array parameters
Acol, indA, locA. (Elements that are identically zero need not be included.)

The inequalities l1 ≤ f(x′′) + A3y
′′ ≤ u1 and l2 ≤ A2x + A4y

′′ ≤ u2 implied by the
constraint functions (4.1) are known as the nonlinear and linear constraints respectively.
Together, these two sets of inequalities constitute the general constraints.

In general, the vectors x′ and x′′ have different dimensions, but they always overlap,
in the sense that the shorter vector is always the beginning of the other. In the example,
the nonlinear Jacobian variables (u, v) are an ordered subset of the nonlinear objective
variables (u, v, w). In other cases it could be the other way round—whichever is the most
convenient—but the first way keeps f ′(x′′) smaller.

Together the nonlinear objective and nonlinear Jacobian variables comprise the nonlinear
variables. The number of nonlinear variables n1 is therefore the larger of the dimensions of
x′ and x′′, i.e., n1 = max{n′1, n′′1} (= max(nnObj, nnJac)).
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4.3. Problem dimensions

The following picture illustrates the problem structure just described:

m

n

nnCon

nnJac

6

?

� -

nnObj

nnObj

nnObj

The dimensions are all input parameters to subroutine snOptB (see the next section). For
linear programs, nnCon, nnJac, nnObj are all zero. If a linear objective term exists, iObj
points to one of the bottom rows (nnCon < iObj ≤ m).

The dashed boxes indicate that a nonlinear objective function f0(x′) may involve either
a subset or a superset of the variables in the nonlinear constraint functions f(x′′), counting
from the left. Thus, nnObj ≤ nnJac or vice versa.

Sometimes the objective and constraints really involve disjoint sets of nonlinear variables.
We then recommend ordering the variables so that nnObj > nnJac and x′ = (x′′, x′′′), where
the objective is nonlinear in just the last vector x′′′. Subroutine funobj should set g(j) = 0.0
for j = 1 : nnJac. It should then set as many remaining gradients as possible—preferably
all!
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4.4. Subroutine snOptB

Problem NP is solved by a call to subroutine snOptB, whose parameters are defined here.
Note that most machines use double precision declarations as shown, but some machines
use real. The same applies to the user routines funcon and funobj.

subroutine snOptB

& ( Start, m, n, neA, nName,

& nnCon, nnObj, nnJac,

& iObj, ObjAdd, Prob,

& funcon, funobj,

& Acol, indA, locA, bl, bu, Names,

& hs, x, pi, rc,

& INFO, mincw, miniw, minrw,

& nS, nInf, sInf, Obj,

& cu, lencu, iu, leniu, ru, lenru,

& cw, lencw, iw, leniw, rw, lenrw )

external

& funcon, funobj

integer

& INFO, iObj, lencu, lencw, leniu, leniw, lenru, lenrw, m,

& mincw, miniw, minrw, n, neA, nInf, nName, nnCon, nnJac, nnObj,

& nS, hs(n+m), indA(neA), iu(leniu), iw(leniw), locA(n+1)

double precision

& Obj, ObjAdd, sInf, Acol(neA), bl(n+m), bu(n+m), pi(m),

& rc(n+m), ru(lenru), rw(lenrw), x(n+m)

character*(*)

& Start

character

& Prob*8, cu(lencu)*8, cw(lencw)*8, Names(nName)*8

On entry:

Start is a character string that specifies how a starting point is to be obtained.

’Cold’ (Cold start) requests that the CRASH procedure be used, unless an
Old basis, Insert, or Load file is specified.

’Basis file’ is the same as Start = ’Cold’ but more meaningful when a basis
file is given.

’Warm’ (Warm start) means that hs defines a valid starting point (probably
from an earlier call, though not necessarily).

m is m, the number of general constraints. This is the number of rows in the full
matrix A in (4.2). (m > 0)

Note that A must have at least one row. If your problem has no constraints, or only
upper and lower bounds on the variables, then you must include a dummy row with
sufficiently wide upper and lower bounds. See Acol, indA, locA below.

n is n, the number of variables, excluding slacks. This is the number of columns in
A. (n > 0)
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neA is the number of nonzero entries in A (including the Jacobian for any nonlinear
constraints). (neA > 0)

nName is the number of column and row names provided in the character array Names. If
nName = 1, there are no names. Generic names will be used in the printed solution.
Otherwise, nName = n+m and all names must be provided.

nnCon is m1, the number of nonlinear constraints. (nnCon ≥ 0)

nnObj is n′1, the number of nonlinear objective variables. (nnObj ≥ 0)

nnJac is n′′1 , the number of nonlinear Jacobian variables. If nnCon = 0, then nnJac = 0.
If nnCon > 0, then nnJac > 0.

iObj says which row of A is a free row containing a linear objective vector c. If there is
no such row, iObj = 0. Otherwise, this row must come after any nonlinear rows,
so that nnCon < iObj ≤ m.

ObjAdd is a constant that will be added to the objective for printing purposes. Typically
ObjAdd = 0.0d+0.

Prob is an 8-character name for the problem. Prob is used in the printed solution and in
some routines that output basis files. A blank name may be used.

funcon is the name of a subroutine that calculates the vector of nonlinear constraint func-
tions f(x) and (optionally) its Jacobian for a specified vector x (the first nnJac

elements of x(*)). funcon must be declared external in the routine that calls
snOptB. For a detailed description of funcon, see Section 4.6.

funobj is the name of a subroutine that calculates the objective function f0(x) and (op-
tionally) its gradient for a specified vector x (the first nnObj elements of x(*)).
funobj must be declared external in the routine that calls snOptB. For a detailed
description of funobj, see Section 4.7.

Acol(neA), indA(neA), locA(n+1) define the nonzero elements of the constraint matrix
A (4.2), including the Jacobian matrix associated with nonlinear constraints. The
nonzeros are stored column-wise. A pair of values Acol(k), indA(k) contains a
matrix element and its corresponding row index. The array locA(*) is a set of
pointers to the beginning of each column of A within Acol(*) and indA(*). Thus
for j = 1 :n, the entries of column j are held in Acol(k : l) and their corresponding
row indices are in indA(k : l), where k = locA(j) and l = locA(j + 1)− 1,

Note: Every element of Acol(*) must be assigned a value in the calling program.

In general, elements in the nonlinear part of Acol(*) (see the notes below) may be
any dummy value (e.g., zero) because they are initialized at the first point that is
feasible with respect to the linear constraints.

If Derivative level = 2 or 3, the nonlinear part of Acol(*) may be used to define
any constant Jacobian elements. If funcon does not define all entries of gCon(*),
the missing values will be obtained from Acol(*).

1. It is essential that locA(1) = 1 and locA(n+ 1) = neA + 1.

2. The Jacobian f ′(x) forms the top left corner of Acol and indA (see Section 4.2).
If a Jacobian column j (1 ≤ j ≤ nnJac) contains any entries Acol(k), indA(k)
associated with nonlinear constraints (1 ≤ indA(k) ≤ nnCon), those entries
must come before any entries belonging to linear constraints.
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3. The row indices indA(k) for a column may be in any order, subject to Jacobian
entries appearing first. Subroutine funcon must define the Jacobian entries
gCon(*) in the same order (except gCon does not contain elements in linear
constraints).

4. If your problem has no constraints, or just bounds on the variables, you may
include a dummy “free” row with a single (zero) element by setting Acol(1) =
0.0, indA(1) = 1, locA(1) = 1, and locA(j) = 2 for j = 2 :n + 1. This row is
made “free” by setting its bounds to be bl(n+ 1) = −infBnd and bu(n+ 1) =
infBnd, where infBnd is typically 1.0e+20 (see the next paragraph).

bl(n+m), bu(n+m) contain the lower and upper bounds l and u on the variables and slacks
(x, s). The first n entries of bl, bu, hs and x refer to the variables x. The last m
entries refer to the slacks s.

To specify non-existent bounds, set bl(j) ≤ −infBnd or bu(j) ≥ infBnd, where
infBnd is the Infinite Bound size (default value 1020).
To fix the jth variable at xj = β, set bl(j) = bu(j) = β (with |β| < infBnd).
To make the ith constraint an equality, si = β, set bl(n+ i) = bu(n+ i) = β.

For the data to be meaningful, it is required that bl(j) ≤ bu(j) for all j.

Names(nName) sometimes contains 8-character names for the variables and constraints. If
nName = 1, Names is not used. The printed solution will use generic names for the
columns and row. If nName = n+m, Names(j) should contain the 8-character name
of the jth variable (j = 1 :n+m). If j = n+ i, the jth variable is the ith row.

hs(n+m) usually contains a set of initial states for each variable x, or for each variable and
slack (x, s). See next.

x(n+m) usually contains a set of initial values for x or (x, s).

1. For Cold starts (Start = ’Cold’ or ’Basis file’ with no basis file provided),
the first n elements of hs and x must be defined.

If there is no wish to provide special information, you may set hs(j) = 0,
x(j) = 0.0 for all j = 1 :n. All variables will be eligible for the initial basis.

Less trivially, to say that the optimal value of variable j will probably be
equal to one of its bounds, set hs(j) = 4 and x(j) = bl(j) or hs(j) = 5 and
x(j) = bu(j) as appropriate.

A CRASH procedure is used to select an initial basis. The initial basis matrix
will be triangular (ignoring certain small entries in each column). The values
hs(j) = 0, 1, 2, 3, 4, 5 have the following meaning:

hs(j) State of variable j during CRASH

{0, 1, 3} Eligible for the basis. 3 is given preference

{2, 4, 5} Ignored

After CRASH, variables for which hs(j) = 2 are made superbasic. Other entries
not selected for the basis are made nonbasic at the value x(j) (or the closest
value inside their bounds). See the description of hs below (on exit).

2. If Start = ’Cold’ or ’Basis file’ and a basis file is provided, hs and x

need not be set.

3. For Warm starts, all of hs(1 :n+m) must be 0, 1, 2 or 3 and all of x(1 :n+m)
must have values (perhaps from some previous call).
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pi contains an estimate of λ, the vector of Lagrange multipliers (shadow prices) for
the nonlinear constraints. The first nnCon components must be defined. If nothing
is known about λ, set pi(i) = 0.0, i = 1 : nnCon.

nS need not be specified for Cold starts, but should retain its value from a previous
call when a Warm start is used.

cu(lencu), iu(leniu), ru(lenru) are 8-character, integer and real arrays of user work-
space. They may be used to pass data or workspace to your function routines
funcon and funobj (which have the same parameters). They are not touched by
snOptB.

If the function routines don’t reference these parameters, you may use any arrays
of the appropriate type, such as cw, iw, rw (see next paragraph). Conversely,
you should use the latter arrays if funcon and funobj need to access snOptB’s
workspace.

cw(lencw), iw(leniw), rw(lenrw) are 8-character, integer and real arrays of workspace
for snOptB. Their lengths lencw, leniw, lenrw must all be at least 500.

In general, lencw = 500 is appropriate, but leniw and lenrw should be as large
as possible because it is uncertain how much storage will be needed for the basis
factorization. As an estimate, leniw should be about 100(m + n) or larger, and
lenrw should be about 200(m+ n) or larger.

Appropriate values may be obtained from a preliminary run with lencw = leniw =
lenrw = 500. See mincw, miniw, minrw below (on exit).

On exit:

hs(n+m) gives the final state of the variables and slacks as follows:

hs(j) State of variable j Usual value of x(j)

0 nonbasic bl(j)
1 nonbasic bu(j)
2 superbasic Between bl(j) and bu(j)
3 basic Between bl(j) and bu(j)

Basic and superbasic variables may be outside their bounds by as much as the Minor
feasibility tolerance. Note that if scaling is specified, the feasibility tolerance
applies to the variables of the scaled problem. In this case, the variables of the
original problem may be as much as 0.1 outside their bounds, but this is unlikely
unless the problem is very badly scaled. Check the “Primal infeasibility” printed
after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as much
as the Minor feasibility tolerance, and there may be some nonbasics for which
x(j) lies strictly between its bounds.

If nInf > 0, some basic and superbasic variables may be outside their bounds by
an arbitrary amount (bounded by sInf if scaling was not used).

x(n+m) is the final variables and slacks (x, s).

pi(m) is the vector of dual variables π (Lagrange multipliers) for the general constraints.

rc(n+m) is a vector of reduced costs, g −
(
A − I

)T
π, where g is the gradient of the

objective if x is feasible (or the gradient of the phase-1 objective otherwise). The
last m entries are π.
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INFO reports the result of the call to snOptB. Here is a summary of possible values.
Further details are in Section 8.6.

Finished successfully
1 optimality conditions satisfied
2 feasible point found
3 requested accuracy could not be achieved
5 elastic objective minimized
6 elastic infeasibilities minimized

The problem appears to be infeasible
11 infeasible linear constraints
12 infeasible linear equality constraints
13 nonlinear infeasibilities minimized
14 linear infeasibilities minimized
15 infeasible linear constraints in QP subproblem
16 infeasible nonelastic constraints

The problem appears to be unbounded
21 unbounded objective
22 constraint violation limit reached

Resource limit error
31 iteration limit reached
32 major iteration limit reached
33 the superbasics limit is too small
34 time limit reached

Terminated after numerical difficulties
41 current point cannot be improved
42 singular basis
43 cannot satisfy the general constraints
44 ill-conditioned null-space basis
45 unable to compute acceptable LU factors

Error in the user-supplied functions
51 incorrect objective derivatives
52 incorrect constraint derivatives

Undefined user-supplied functions
61 undefined function at the first feasible point
62 undefined function at the initial point
63 unable to proceed into undefined region

User requested termination
72 terminated during constraint evaluation
73 terminated during objective evaluation
74 terminated from monitor routine

Insufficient storage allocated
81 work arrays must have at least 500 elements
82 not enough character storage
83 not enough integer storage
84 not enough real storage
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Input arguments out of range
91 invalid input argument
92 basis file dimensions do not match this problem

System error
141 wrong number of basic variables
142 error in basis package

mincw, miniw, minrw say how much character, integer, and real storage is needed to solve
the problem. If Print level > 0, these values are printed. If snOptB terminates
because of insufficient storage (INFO = 82, 83 or 84), the values may be used to
define better values of lencw, leniw or lenrw.

If INFO = 82, the work array cw(lencw) was too small. snOptB may be called again
with lencw = mincw.

If INFO = 83 or 84, the work arrays iw(leniw) or rw(lenrw) are too small. snOptB
may be called again with leniw or lenrw suitably larger than miniw or minrw. (The
bigger the better because it is not certain how much storage the basis factorization
needs.)

nS is the final number of superbasic variables.

nInf, sInf give the number and the sum of the infeasibilities of constraints that lie outside
their bounds by more than the Minor feasibility tolerance before the solution
is unscaled.

If any linear constraints are infeasible, x minimizes the sum of the infeasibilities of
the linear constraints subject to the upper and lower bounds being satisfied. In this
case nInf gives the number of components of ALx lying outside their bounds. The
nonlinear constraints are not evaluated.

Otherwise, x minimizes the sum of the infeasibilities of the nonlinear constraints
subject to the linear constraints and upper and lower bounds being satisfied. In
this case nInf gives the number of components of f(x) lying outside their bounds
by more than the Minor feasibility tolerance. Again this is before the solution
is unscaled.

Obj is the final value of the nonlinear part of the objective function. If nInf = 0, Obj is
the nonlinear objective, if any. If nInf > 0 but the linear constraints are feasible,
then Obj is the nonlinear objective. If nInf > 0 and the linear constraints are
infeasible, Obj is zero.

Note that Obj does not include contributions from the constant term ObjAdd or the
objective row, if there is one. The final value of the objective being optimized is
ObjAdd + x(n+iObj) + Obj, where iObj is the index of the objective row in A.

4.5. User-supplied routines required by snOptB

The user must provide subroutines to define the nonlinear parts of the objective function
and nonlinear constraints. They are passed to snOptB as external parameters funobj and
funcon. (A dummy subroutine must be provided if the objective or constraints are purely
linear.)

Be careful when coding the call to snOptB: the parameters are ordered alphabetically as
funcon, funobj. The first call to each function routine is also in that order.

In general, these subroutines should return all function and gradient values on every
entry except perhaps the last. This provides maximum reliability and corresponds to the
default setting, Derivative level = 3.
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In practice it is often convenient not to code gradients. snOptB is able to estimate
gradients by finite differences, by making a call to funcon or funobj for each variable xj
whose partial derivatives need to be estimated. However, this reduces the reliability of the
optimization algorithms, and it can be very expensive if there are many such variables xj .

As a compromise, snOptB allows you to code as many gradients as you like. This option
is implemented as follows. Just before a function routine is called, each element of the
gradient array is initialized to a specific value. On exit, any element retaining that value
must be estimated by finite differences.

Some rules of thumb follow.

1. For maximum reliability, compute all function and gradient values.

2. If the gradients are expensive to compute, specify Nonderivative linesearch and
use the input parameter mode to avoid computing them on certain entries. (Don’t
compute gradients if mode = 0.)

3. If not all gradients are known, you must specify Derivative level ≤ 2. You should
still compute as many gradients as you can. (It often happens that some of them are
constant or even zero.)

4. Again, if the known gradients are expensive, don’t compute them if mode = 0.

5. Use the input parameter nState to test for special actions on the first or last entries.

6. While the function routines are being developed, use the Verify option to check the
computation of gradient elements that are supposedly known. The Start and Stop

options may also be helpful.

7. The function routines are not called until the linear constraints and bounds on x are
satisfied. This helps confine x to regions where the nonlinear functions are likely to
be defined. However, be aware of the Minor feasibility tolerance if the functions
have singularities near bounds.

8. Set mode = −1 if some of the functions are undefined. The linesearch will shorten the
step and try again.

9. Set mode ≤ −2 if you want snOptB to stop.
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4.6. Subroutine funcon

This subroutine must compute the nonlinear constraint functions f(x) and (optionally) their
gradients f ′(x), where x is the current value of the Jacobian variables x′′. The jth column
of the Jacobian matrix f ′(x) is the vector ∂f/∂xj .

For small problems (or large dense ones) it is convenient to treat the Jacobian as a
dense matrix and declare gCon as a two-dimensional array gCon(*,*) (stored column-wise
in Fortran). It is then simple to compute the Jacobian by rows or by columns. For sparse
Jacobians, it is essential to use a one-dimensional array gCon(*) to conserve storage.

subroutine funcon

& ( mode, nnCon, nnJac, neJac,

& x, fCon, gCon, nState,

& cu, lencu, iu, leniu, ru, lenru )

integer

& lencu, leniu, lenru, mode, neJac, nnCon, nnJac, nState,

& iu(leniu)

double precision

& fCon(nnCon), ru(lenru), x(nnJac)

character

& cu(lencu)*8

!!! double precision gCon(nnCon,nnJac) ! Dense ! Choose ONE of these

double precision gCon(neJac) ! Sparse

On entry:

mode indicates whether fCon or gCon or both must be assigned during the present call of
funcon (0 ≤ mode ≤ 2).

This parameter can be ignored if Derivative linesearch is selected (the default)
and if Derivative level = 2 or 3. In this case, mode will always have the value
2, and all elements of fCon and gCon must be assigned (except perhaps constant
elements of gCon).

Otherwise, snOptB will call funcon with mode = 0, 1 or 2. You may test mode to
decide what to do:

• If mode = 2, assign fCon and the known components of gCon.

• If mode = 1, assign the known components of gCon. fCon is ignored.

• If mode = 0, only fCon need be assigned; gCon is ignored.

nnCon is the number of nonlinear constraints (nnCon > 0). These must be the first nnCon
constraints in the problem.

nnJac is the number of variables involved in f(x) (0 < nnJac ≤ n). These must be the
first nnJac variables in the problem.

neJac is the number of nonzero elements in gCon. If gCon is stored as a two-dimensional
array, then neJac = nnCon× nnJac.

x(nnJac) contains the nonlinear Jacobian variables x. The array x must not be altered.
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nState indicates the first and last calls to funcon.

If nState = 0, there is nothing special about the current call to funcon.

If nState = 1, snOptB is calling your subroutine for the first time. Some data may
need to be input or computed and saved. Note that if there is a nonlinear objective,
the first call to funcon will occur before the first call to funobj.

If nState ≥ 2, snOptB is calling your subroutine for the last time. You may wish
to perform some additional computation on the final solution. Note again that the
last call to funcon will occur before the last call to funobj.

In general, the last call is made with nState = 2 + INFO/10, where INFO is the
integer returned by snOptB (see p. 38). In particular,

if nState = 2, the current x is optimal ;
if nState = 3, the problem appears to be infeasible;
if nState = 4, the problem appears to be unbounded;
if nState = 5, an iterations limit was reached.

If the functions are expensive to evaluate, it may be desirable to do nothing on the
last call. The first executable statement could be if (nState .ge. 2) return.

cu(lencu), iu(leniu), ru(lenru) are the character, integer and real arrays of user work-
space provided to snOptB. They may be used to pass information into the function
routines and to preserve data between calls.

In special applications the functions may depend on some of the internal variables
stored in snOptB’s workspace arrays cw, iw, rw. For example, the 8-character prob-
lem name Prob is stored in cw(51), and the dual variables are stored in rw(lxMul)

onward, where lxMul = iw(316). These will be accessible to both funcon and
funobj if snOptB is called with parameters cu, iu, ru the same as cw, iw, rw.

If you still require user workspace, elements rw(501:maxru) and rw(maxrw+1:lenru)

are set aside for this purpose, where maxru = iw(2). Similarly for workspace in cw

and rw. (See the Total and User workspace options.)

On exit:

fCon(nnCon) contains the computed constraint vector f(x) (except perhaps if mode = 1).

gCon(nnCon,nnJac) or gCon(neJac) contains the computed Jacobian f ′(x) (except per-
haps if mode = 0). These gradient elements must be stored in gCon consistently
with the arrays Acol, indA, locA that define the sparsity pattern of f(x′′) and A2

in (4.2), excluding the elements of A2. There is no internal check for consistency
(except indirectly via the Verify option), so great care is essential.

mode may be used to indicate that you are unable to evaluate f or its gradients at the
current x. (For example, the problem functions may not be defined there).

During the linesearch, f(x) is evaluated at points x = xk+αpk for various steplengths
α, where f(xk) has already been evaluated satisfactorily. For any such x, if you set
mode = −1, snOptB will reduce α and evaluate f again (closer to xk, where it is
more likely to be defined).

If for some reason you wish to terminate the current problem, set mode ≤ −2.
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4.7. Subroutine funobj

This subroutine must calculate the nonlinear objective function f0(x) and (optionally) its
gradient g(x) = ∂f0(x)/∂x, where x is the current value of the objective variables x′.

subroutine funobj

& ( mode, nnObj,

& x, fObj, gObj, nState,

& cu, lencu, iu, leniu, ru, lenru )

integer

& lencu, leniu, lenru, mode, nnObj, nState, iu(leniu)

double precision

& fObj, gObj(nnObj), ru(lenru), x(nnObj)

character

& cu(lencu)*8

On entry:

mode may be set as in funcon.

nnObj is the number of variables involved in f0(x) (0 < nnObj ≤ n). These must be the
first nnObj variables in the problem.

x(nnObj) contains the nonlinear objective variables x. The array x must not be altered.

nState is used as in funcon.

cu(lencu), iu(leniu), ru(lenru) are the same as in funcon.

On exit:

mode may be set as in funcon to indicate that you are unable to evaluate f0 at x.

If you wish to terminate the solution of the current problem, set mode ≤ −2.

fObj must contain the computed value of f0(x) (except perhaps if mode = 1).

gObj(nnObj) must contain the known components of the gradient vector g(x), i.e., gObj(j)
contains the partial derivative ∂f0/∂xj (except perhaps if mode = 0).

4.8. Example

Here we give the subroutines funobj and funcon for the example of Section 4.2, repeated
here for convenience with generic variables xj :

minimize (x1 + x2 + x3)2 + 3x3 + 5x4

subject to x21 + x22 + x3 = 2
x42 + x4 = 4

2x1 + 4x2 ≥ 0

and x3 ≥ 0, x4 ≥ 0. This problem has 4 variables, 3 nonlinear objective variables, 2
nonlinear Jacobian variables, 2 nonlinear constraints, 1 linear constraint, and two bounded
variables. The objective has some linear terms that we include as an extra “free row” (with
infinite bounds). The calling program must assign the following values:
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m = 4 n = 4 nnCon = 2 nnObj = 3 nnJac = 2 iObj = 4

Subroutine funobj works with the nonlinear objective variables (x1, x2, x3). Since x3
occurs only linearly in the constraints, we have placed it after the Jacobian variables (x1, x2).

For interest, we test mode to economize on gradient evaluations (even though they are
cheap here). Note that Nonderivative linesearch would have to be specified, otherwise
all entries would have mode = 2.

subroutine funobj

& ( mode, nnObj,

& x, fObj, gObj, nState,

& cu, lencu, iu, leniu, ru, lenru )

integer

& mode, nnObj, nState, lencu, leniu, lenru, iu(leniu)

double precision

& fObj, x(nnObj), gObj(nnObj), ru(lenru)

character

& cu(lencu)*8

* ==================================================================

* Toy NLP problem from the SNOPT User’s Guide.

* ==================================================================

double precision sum

sum = x(1) + x(2) + x(3)

if (mode .eq. 0 .or. mode .eq. 2) then

fObj = sum*sum

end if

if (mode .eq. 1 .or. mode .eq. 2) then

sum = 2.0d+0*sum

gObj(1) = sum

gObj(2) = sum

gObj(3) = sum

end if

end ! subroutine funobj
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Subroutine funcon involves only (x1, x2). First we treat the Jacobian as a dense matrix.
In Fortran it is preferable to access two-dimensional arrays column-wise, as shown. Each
column of gCon contains two elements, even though one of them is zero. The Acol, indA,
locA data structure must include these elements, as well as other entries belonging to the
linear constraints.

Since funcon is called before funobj, we test nState for the first and last entries.

subroutine funcon

& ( mode, nnCon, nnJac, neJac,

& x, fCon, gCon, nState,

& cu, lencu, iu, leniu, ru, lenru )

integer

& lencu, leniu, lenru, mode, neJac, nnCon, nnJac, nState,

& iu(leniu)

double precision

& fCon(nnCon), gCon(nnCon,nnJac), ru(lenru), x(nnJac)

character

& cu(lencu)*8

* ==================================================================

* Toy NLP problem with dense Jacobian.

* ==================================================================

integer

& nout

double precision

& x1, x2

nout = 9

x1 = x(1)

x2 = x(2)

if (nState .eq. 1) then ! First entry

if (nout .gt. 0) write(nout, ’(/a)’) ’ This is problem Toy’

end if

if (mode .eq. 0 .or. mode .eq. 2) then

fCon(1) = x1**2 + x2**2

fCon(2) = x2**4

end if

if (mode .ge. 1) then

gCon(1,1) = 2.0d+0*x1 ! Jacobian elements for column 1

gCon(2,1) = 0.0d+0 ! Can’t be omitted

gCon(1,2) = 2.0d+0*x2 ! Jacobian elements for column 2

gCon(2,2) = 4.0d+0*x2**3

end if

if (nState .ge. 2) then ! Last entry

if (nout .gt. 0) write(nout, ’(/a)’) ’ Finished problem Toy’

end if

end ! subroutine funcon
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Now we treat the Jacobian as a sparse matrix, stored column-wise. Note that gCon has
only 3 entries because we intentionally omit the zero entry in column 1. The first column
of the Acol, indA, locA data structure must also have that entry deleted.

subroutine funcon

& ( mode, nnCon, nnJac, neJac,

& x, fCon, gCon, nState,

& cu, lencu, iu, leniu, ru, lenru )

integer

& lencu, leniu, lenru, mode, neJac, nnCon, nnJac, nState,

& iu(leniu)

double precision

& fCon(nnCon), gCon(neJac), ru(lenru), x(nnJac)

character

& cu(lencu)*8

* ==================================================================

* Toy NLP problem with dense Jacobian.

* ==================================================================

integer

& nout

double precision

& x1, x2

nout = 9

x1 = x(1)

x2 = x(2)

if (nState .eq. 1) then ! First entry

if (nout .gt. 0) write(nout, ’(/a)’) ’ This is problem Toy’

end if

if (mode .eq. 0 .or. mode .eq. 2) then

fCon(1) = x1**2 + x2**2

fCon(2) = x2**4

end if

if (mode .ge. 1) then

gCon(1) = 2.0d+0*x1 ! Jacobian elements for column 1

gCon(2) = 2.0d+0*x2 ! Jacobian elements for column 2

gCon(3) = 4.0d+0*x2**3

end if

if (nState .ge. 2) then ! Last entry

if (nout .gt. 0) write(nout, ’(/a)’) ’ Finished problem Toy’

end if

end ! subroutine funcon
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4.9. Constant Jacobian elements

If all constraint gradients (Jacobian elements) are known (Derivative level = 2 or 3),
any constant elements may be given to snOptB in the array Acol if desired. The Jacobian
array gCon is initialized from the appropriate elements of Acol. If any are constant and
have the correct value, funcon need not reassign them in gCon.

Note that constant nonzero elements do affect fCon. Thus, if Jij is assigned correctly in
Acol(*) and is constant, a linear term gCon(i,j)*x(j) or gCon(l)*x(j) must be added to
fCon(i) (depending on whether gCon is a two- or one-dimensional array).

Remember, if Derivative level < 2, unassigned elements of gCon are not treated as
constant—they are estimated by finite differences at significant expense.

4.10. Subroutine snMemB

This routine estimates the size of the workspace arrays cw, iw, rw required to solve an
optimization problem of given dimensions. snMemB is not strictly needed in f77 because all
workspace must be defined explicitly in the driver program at compile time. It is available
for users wishing to allocate storage dynamically in f90 or C.

The actual storage required also depends on the values of the following options:

Hessian full

or Hessian limited memory and Hessian updates

Reduced Hessian dimension

Superbasics limit

If these options have not been set, default values are assumed. Ideally the correct values
should be set before the call to snMemB.

subroutine snMemB

& ( INFO, m, n, neA, negCon,

& nnCon, nnJac, nnObj,

& mincw, miniw, minrw,

& cw, lencw, iw, leniw, rw, lenrw )

integer

& INFO, lencw, leniw, lenrw, m, mincw, miniw, minrw, n, neA,

& negCon, nnCon, nnJac, nnObj, iw(leniw)

double precision

& rw(lenrw)

character

& cw(lencw)*8

The arguments m, n, neA, nnCon, nnJac, nnObj define the problem being solved and are
identical to the arguments used in the call to snOptB (see Section 4.4). For a sequence of
problems, snMemB may be called once with overestimates of these quantities.

On entry:

negCon is the number of nonzeros in the Jacobian gCon (negCon ≤ nnCon ∗ nnJac).

lencw, leniw, lenrw must be of length at least 500.

cw(lencw), iw(leniw), rw(lenrw) are 8-character, integer and real arrays of workspace
for snMemB.



48 SNOPT 7.5 User’s Guide

On exit:

INFO reports the result of the call to snMemB. Further details are in Section 8.6.

Insufficient storage allocated
81 work arrays must have at least 500 elements

Finished successfully
104 memory requirements estimated

mincw, miniw, minrw estimate how much character, integer and real storage is needed to
solve the problem.

To use snMemB, the first step is to allocate the work arrays. These may be temporary
arrays tmpcw, tmpiw, tmprw (say) or the snOptB arrays cw, iw, rw, which will be reallocated
after the storage limits are known. Here we illustrate the use of snMemB using the same
arrays for snMemB and snOptB. Note that the snMemB arrays are used to store the optional
parameters, and so any temporary arrays must be copied into the final cw, iw, rw arrays in
order to retain the options.

The work arrays must have length at least 500, so we define

ltmpcw = 500

ltmpiw = 500

ltmprw = 500

As with all SNOPT routines, snInit must be called to set default options:

call snInit

& ( iPrint, iSumm, cw, ltmpcw, iw, ltmpiw, rw, ltmprw )

This installs ltmpcw, ltmpiw, ltmprw as the default internal upper limits on the snOptB

workspace (see Total real workspace p. 84). They are used to compute the boundaries
of any user-defined workspace in cw, iw or rw.

The next step is to call snMemB to obtain mincw, miniw, minrw as estimates of the storage
needed by snOptB:

call snMemB

& ( INFO, m, n, neA, negCon,

& nnCon, nnJac, nnObj,

& mincw, miniw, minrw,

& cw, ltmpcw, iw, ltmpiw, rw, ltmprw )

The output values of mincw, miniw, minrw may now be used to define the lengths of the
snOptB work arrays:

lencw = mincw

leniw = miniw

lenrw = minrw

These values may be used in f90 or C to allocate the final work arrays for the problem.

One last step is needed before snOptB is called. The current upper limits ltmpcw, ltmpiw,
ltmprw must be replaced by the estimates mincw, miniw, minrw. This can be done using
the option setting routine snSeti as follows:



4. The snOptB interface 49

Errors = 0 ! Counts the number of errors

iPrt = 0 ! Suppress print output

iSum = 0 ! Suppress summary output

call snSeti

& ( ’Total character workspace’, lencw, iPrt, iSum, Errors,

& cw, ltmpcw, iw, ltmpiw, rw, ltmprw )

call snSeti

& ( ’Total integer workspace’, leniw, iPrt, iSum, Errors,

& cw, ltmpcw, iw, ltmpiw, rw, ltmprw )

call snSeti

& ( ’Total real workspace’, lenrw, iPrt, iSum, Errors,

& cw, ltmpcw, iw, ltmpiw, rw, ltmprw )

An alternative way is to call snInit again with arguments lencw, leniw, lenrw:

call snInit

& ( iPrint, iSumm, cw, lencw, iw, leniw, rw, lenrw )

However, this has the twin effects of resetting all options to their default values, and reprint-
ing the SNOPT banner (unless iPrint = 0 and iSumm = 0 are set for the Print and Summary
files).
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5. The snOptC interface

The snOptC interface is identical to snOptB except that both objective and constraint func-
tions are provided in a single routine usrfun instead of being computed separately in funobj

and funcon. This arrangement may be more convenient when the objective and constraint
functions depend on common data that is difficult to share between separate routines.

5.1. Subroutine snOptC

Problem NP is solved by a call to subroutine snOptC, whose parameters are defined here.
Note that most machines use double precision declarations as shown, but some machines
use real. The same applies to the user routine usrfun.

subroutine snOptC

& ( Start, m, n, neA, nName,

& nnCon, nnObj, nnJac,

& iObj, ObjAdd, Prob,

& usrfun,

& Acol, indA, locA, bl, bu, Names,

& hs, x, pi, rc,

& INFO, mincw, miniw, minrw,

& nS, nInf, sInf, Obj,

& cu, lencu, iu, leniu, ru, lenru,

& cw, lencw, iw, leniw, rw, lenrw )

external

& usrfun

integer

& INFO, iObj, lencu, leniu, lenru, lencw, leniw, lenrw,

& mincw, miniw, minrw, m, n, neA, nName, nS, nInf, nnCon,

& nnObj, nnJac, indA(neA), hs(n+m), locA(n+1), iu(leniu),

& iw(leniw)

double precision

& Obj, ObjAdd, sInf, Acol(neA), bl(n+m), bu(n+m), pi(m),

& rc(n+m), ru(lenru), rw(lenrw), x(n+m)

character*(*)

& Start

character

& Prob*8, Names(nName)*8, cu(lencu)*8, cw(lencw)*8

All arguments except usrfun are the same as those for snOptB on p. 34. A description
of usrfun follows.

5.2. Subroutine usrfun

This subroutine must calculate the nonlinear problem functions f0(x) and f(x), and (op-
tionally) their derivatives g(x) and f ′(x).

The objective derivatives are stored in the output array gObj. Constraint derivatives are
stored column-wise in the output array gCon. Recall that f ′(x) is the top left corner of a
larger matrix A that is stored column-wise in snOptB’s input arrays Acol, indA, locA (see
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(4.2) and Sections 4.3, 4.4). Jacobian elements must be stored in gCon in the same order as
the corresponding parts of Acol, indA, locA.

For small problems (or large dense ones) it is convenient to treat the Jacobian as a dense
matrix and declare gCon as a two-dimensional array gCon(*,*) (which is stored column-
wise in Fortran). It is then simple to compute the Jacobian by rows or by columns. For
problems with sparse Jacobians, it is essential to use a one-dimensional array gCon(*) in
order to conserve storage. Thus, funcon should use just one of the declarations

double precision gCon(nnCon,nnJac)

double precision gCon(neJac)

according to convenience.

subroutine usrfun

& ( mode, nnObj, nnCon, nnJac, nnL, neJac,

& x, fObj, gObj, fCon, gCon,

& nState, cu, lencu, iu, leniu, ru, lenru )

integer

& lencu, leniu, lenru, mode, nnObj, nnCon, nnJac, nnL, neJac,

& nState, iu(leniu)

double precision

& fObj, fCon(nnCon), gObj(nnObj), ru(lenru), x(nnL)

character

& cu(lencu)*8

!!! double precision gCon(nnCon,nnJac) ! Dense ! Choose ONE of these

double precision gCon(neJac) ! Sparse

On entry:

mode indicates which combination of fCon, gCon, fObj and gObj, must be assigned during
the present call of usrfun. snOptC will call usrfun with mode = 0, 1 or 2. You
may test mode to decide what to do:

• If mode = 2, assign fObj, fCon and the known components of gObj and gCon.

• If mode = 1, assign the known components of gObj and gCon; fObj and fCon

are not required and are ignored.

• If mode = 0, only fObj and fCon need be assigned; gObj and gCon are ignored.

nnObj is the number of variables involved in f0(x) (0 < nnObj ≤ n). These must be the
first nnObj variables in the problem.

nnCon is the number of nonlinear constraints (nnCon > 0). These must be the first nnCon
constraints in the problem.

nnJac is the number of variables involved in f(x) (0 < nnJac ≤ n). These must be the
first nnJac variables in the problem.

nnL is max{nnObj, nnJac}, the number of nonlinear variables. These must be the first
nnL variables in the problem.

neJac is the number of nonzero elements in gCon. If gCon is stored as a two-dimensional
array, then neJac = nnCon× nnJac.
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x(nnL) contains the nonlinear variables x. The array x must not be altered.

nState indicates the first and last calls to usrfun.

If nState = 0, there is nothing special about the current call to usrfun.

If nState = 1, snOptC is calling your subroutine for the first time. Some data may
need to be input or computed and saved.

If nState ≥ 2, snOptC is calling your subroutine for the last time. You may wish
to perform some additional computation on the final solution.

In general, the last call is made with nState = 2 + INFO, where INFO indicates the
status of the final solution. In particular,

if nState = 2, the current x is optimal ;
if nState = 3, the problem appears to be infeasible;
if nState = 4, the problem appears to be unbounded;
if nState = 5, an iterations limit was reached.

If the functions are expensive to evaluate, it may be desirable to do nothing on the
last call. The first executable statement could be if (nState .ge. 2) return.

cu(lencu), iu(leniu), ru(lenru) are the character, integer and real arrays of user work-
space provided to snOptC. They may be used to pass information into the function
routine and to preserve data between calls.

In special applications the functions may depend on some of the internal variables
stored in snOptC’s workspace arrays cw, iw, rw. For example, the 8-character prob-
lem name Prob is stored in cw(51), and the dual variables are stored in rw(lxMul)

onward, where lxMul = iw(316). These will be accessible to usrfun if snOptC is
called with parameters cu, iu, ru the same as cw, iw, rw.

If you still require user workspace, elements rw(501:maxru) and rw(maxrw+1:lenru)

are set aside for this purpose, where maxru = iw(2). Similarly for workspace in cw

and rw. (See the Total and User workspace options.)

On exit:

mode may be used to indicate that you are unable or unwilling to evaluate the problem
functions at the current x.

During the linesearch, the functions are evaluated at points of the form x = xk+αpk
after they have already been evaluated satisfactorily at xk. For any such x, if you
set mode to −1, snOptC will reduce α and evaluate the functions again (closer to
xk, where they are more likely to be defined).

If for some reason you wish to terminate the current problem, set mode ≤ −2.

fObj must contain the computed value of f0(x) (except perhaps if mode = 1).

gObj(nnObj) must contain the known components of the gradient vector g(x), i.e., gObj(j)
contains the partial derivative ∂f0/∂xj (except perhaps if mode = 0).

fCon(nnCon) contains the computed constraint vector f(x) (except perhaps if mode = 1).

gCon(nnCon,nnJac) or gCon(neJac) contains the computed Jacobian f ′(x) (except per-
haps if mode = 0).

These gradient elements must be stored in gCon in exactly the same positions as
implied by the definitions of snOptC’s arrays Acol, indA, locA. There is no internal
check for consistency (except indirectly via the Verify option), so great care is
essential.
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6. The npOpt interface

The npOpt interface is designed for the solution of small dense problems. The calling se-
quences of npOpt and its associated user-defined functions are designed to be similar to
those of the dense SQP code NPSOL (Gill et al. [11]). For the case of npOpt it is convenient
to restate problem NP with the constraints reordered as follows:

DenseNP minimize
x

f0(x)

subject to l ≤

 x
ALx
f(x)

 ≤ u,
where l and u are constant lower and upper bounds, f0 is a smooth scalar objective function,
AL is a matrix, and f(x) is a vector of smooth nonlinear constraint functions {fi(x)}. The
interface npOpt is designed to handle problems for which the objective and constraint gra-
dients are dense, i.e., they do not have a significant number of elements that are identically
zero.

A typical invocation of npOpt is

call npInit( iPrint, iSumm, ... )

call npSpec( iSpecs, ... )

call npOpt ( n, nclin, ncnln, ... )

where npSpec reads a set of optional parameter definitions from the file with unit number
iSpecs.

Figure 1 illustrates the feasible region for the jth pair of constraints `j ≤ rj(x) ≤ uj . The
quantity δ is the optional parameter Feasibility tolerance. The constraints `j ≤ rj ≤ uj
are considered “satisfied” if rj lies in Regions 2, 3 or 4, and “inactive” if rj lies in Region 3.
The constraint rj ≥ `j is considered “active” in Region 2, and “violated” in Region 1.
Similarly, rj ≤ uj is active in Region 4, and violated in Region 5. For equality constraints
(`j = uj), Regions 2 and 4 are the same and Region 3 is empty.
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Figure 1: Illustration of the constraints `j ≤ rj(x) ≤ uj . The bounds `j and uj are
considered “satisfied” if rj(x) lies in Regions 2, 3 or 4, where δ is the feasibility tolerance.
The constraints rj(x) ≥ `j and rj(x) ≤ uj are both considered “inactive” if rj(x) lies in
Region 3.



54 SNOPT 7.5 User’s Guide

6.1. Subroutines used by npOpt

npOpt is accessed via the following routines:

npInit (Section 1.6) must be called before any other npOpt routines.

npSpec (Section 7.4) may be called to input a Specs file (a list of run-time options).

npSet, npSeti, npSetr (Section 7.5) may be called to specify a single option.

npGet, npGetc, npGeti, npGetr (Section 7.6) may be called to obtain an option’s current
value.

npOpt (Section 6) is the main solver.

funcon, funobj (Section 6.3) are supplied by the user and called by npOpt. They define
the constraint functions f(x) and objective function f0(x) and ideally their gradients.
(They have a fixed parameter list but may have any convenient name. They are
passed to npOpt as parameters.)

npMem (in distribution file np02lib.f) computes the size of the workspace arrays iw and
rw required for given problem dimensions. Intended for Fortran 90 drivers that
reallocate workspace if necessary.

6.2. Subroutine npOpt

In the following specification of npOpt, we define r(x) as the vector of combined constraint
functions r(x) =

(
x ALx f(x)

)
, and use nctotl to denote a variable that holds its

dimension: nctotl = n+ nclin+ ncnln. Note that most machines use double precision

declarations as shown, but some machines use real. The same applies to the user routines
funcon and funobj.

subroutine npOpt

& ( n, nclin, ncnln, ldA, ldg, ldH,

& A, bl, bu, funcon, funobj,

& INFO, majIts, iState,

& fCon, gCon, cMul, fObj, gObj, Hess, x,

& iw, leniw, rw, lenrw )

external

& funcon, funobj

integer

& INFO, ldA, ldg, ldH, leniw, lenrw, majIts, n, nclin,

& ncnln, iState(n+nclin+ncnln), iw(leniw)

double precision

& fObj, A(ldA,*), bl(n+nclin+ncnln), bu(n+nclin+ncnln),

& cMul(n+nclin+ncnln), fCon(*), gCon(ldg,*), gObj(n),

& Hess(ldH,*), rw(lenrw), x(n)

On entry:

n is n, the number of variables in the problem (n > 0).

nclin is mL, the number of general linear constraints (nclin > 0).
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ncnln is mN , the number of nonlinear constraints (ncnln > 0).

ldA is the row dimension of the array A (ldA ≥ 1, ldA ≥ nclin).

ldg is the row dimension of the array gCon (ldg ≥ 1, ldg ≥ ncnln).

ldH is the row dimension of the array Hess (ldH ≥ n).

A is an array of dimension (ldA,k) for some k ≥ n. It contains the matrix AL for
the linear constraints. If nclin = 0, A is not referenced. (In that case, A may be
dimensioned (ldA,1) with ldA = 1, or it could be any convenient array.)

bl(nctotl), bu(nctotl) contain the lower and upper bounds for r(x) in problem DenseNP.

To specify non-existent bounds, set bl(j) ≤ −infBnd or bu(j) ≥ infBnd, where
infBnd is the Infinite Bound size (default value 1020).
To specify an equality constraint (say rj(x) = β), set bl(j) = bu(j) = β, where
|β| < infBnd.

For the data to be meaningful, it is required that bl(j) ≤ bu(j) for all j.

funcon, funobj are the names of subroutines that calculate the nonlinear constraint func-
tions f(x), the objective function f0(x) and (optionally) their gradients for a speci-
fied n-vector x. The arguments funcon and funobj must be declared as external
in the routine that calls npOpt. See Sections 6.3–6.5.

istate(nctotl) is an integer array that need not be initialized if npOpt is called with the
Cold Start option (the default).

For a Warm start, every element of istate must be set. If npOpt has just been
called on a problem with the same dimensions, istate already contains valid values.
Otherwise, istate(j) should indicate whether either of the constraints rj(x) ≥ `j
or rj(x) ≤ uj is expected to be active at a solution of (DenseNP).

The ordering of istate is the same as for bl, bu and r(x), i.e., the first n components
of istate refer to the upper and lower bounds on the variables, the next nclin refer
to the bounds on ALx, and the last ncnln refer to the bounds on f(x). Possible
values for istate(j) follow.

0 Neither rj(x) ≥ `j nor rj(x) ≤ uj is expected to be active.

1 rj(x) ≥ `j is expected to be active.

2 rj(x) ≤ uj is expected to be active.

3 This may be used if `j = uj . Normally an equality constraint rj(x) = `j = uj
is active at a solution.

The values 1, 2 or 3 all have the same effect when bl(j) = bu(j). If necessary,
npOpt will override the user’s specification of istate, so that a poor choice will not
cause the algorithm to fail.

gCon(ldg,*) is an array of dimension (ldg,k) for some k ≥ n. If ncnln = 0, gCon is not
referenced. (In that case, gCon may be dimensioned (ldg,1) with ldg = 1.)

In general, gCon need not be initialized before the call to npOpt. However, if
Derivative level = 3, any constant elements of gCon may be initialized. Such
elements need not be reassigned on subsequent calls to funcon (see Section 6.6).

cMul(nctotl) is an array that need not be initialized if npOpt is called with a Cold start

(the default).



56 SNOPT 7.5 User’s Guide

Otherwise, the ordering of cMul is the same as for bl, bu and istate. For a
Warm start, the components of cMul corresponding to nonlinear constraints must
contain a multiplier estimate. The sign of each multiplier should match istate

as follows. If the ith nonlinear constraint is defined as “inactive” via the initial
value istate(j) = 0, j = n + nclin + i, then cMul(j) should be zero. If the
constraint rj(x) ≥ `j is active (istate(j) = 1), cMul(j) should be non-negative,
and if rj(x) ≤ uj is active (istate(j) = 2), cMul(j) should be non-positive.

If necessary, npOpt will change cMul to match these rules.

Hess(ldH,*) is an array of dimension (ldH,k) for some k ≥ n. Hess need not be initialized
if npOpt is called with a Cold Start (the default), and will be taken as the identity.
For a Warm Start, Hess provides the initial approximation of the Hessian of the
Lagrangian, i.e., H(i, j) ≈ ∂2L(x, λ)/∂xi∂xj , where L(x, λ) = f0(x)− f(x)Tλ and λ
is an estimate of the optimal Lagrange multipliers. Hess must be a positive-definite
matrix.

x(n) is an initial estimate of the solution.

iw(leniw), rw(lenrw) are integer and real arrays of workspace for npOpt.

Both leniw and lenrw must be at least 500. In general, leniw and lenrw should
be as large as possible because it is uncertain how much storage will be needed for
the basis factors. As an estimate, leniw should be about 100(m+n) or larger, and
lenrw should be about 200(m+ n) or larger.

Appropriate values may be obtained from a preliminary run with leniw = lenrw =
500. If Print level is positive, the required amounts of workspace are printed
before npOpt terminates with INFO = 43 or 44.

On exit:

INFO reports the result of the call to npOpt. Here is a summary of possible values. Further
details are in Section 8.6.

Finished successfully
1 optimality conditions satisfied
2 feasible point found
3 requested accuracy could not be achieved
5 elastic objective minimized
6 elastic infeasibilities minimized

The problem appears to be infeasible
11 infeasible linear constraints
12 infeasible linear equality constraints
13 nonlinear infeasibilities minimized
14 linear infeasibilities minimized
15 infeasible linear constraints in QP subproblem
16 infeasible nonelastic constraints

The problem appears to be unbounded
21 unbounded objective
22 constraint violation limit reached
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Resource limit error
31 iteration limit reached
32 major iteration limit reached
33 the superbasics limit is too small
34 time limit reached

Terminated after numerical difficulties
41 current point cannot be improved
42 singular basis
43 cannot satisfy the general constraints
44 ill-conditioned null-space basis
45 unable to compute acceptable LU factors

Error in the user-supplied functions
51 incorrect objective derivatives
52 incorrect constraint derivatives

Undefined user-supplied functions
61 undefined function at the first feasible point
62 undefined function at the initial point
63 unable to proceed into undefined region

User requested termination
71 terminated during function evaluation
74 terminated from monitor routine

Insufficient storage allocated
81 work arrays must have at least 500 elements
82 not enough character storage
83 not enough integer storage
84 not enough real storage

Input arguments out of range
91 invalid input argument
92 basis file dimensions do not match this problem

System error
141 wrong number of basic variables
142 error in basis package

iter is the number of major iterations performed.

istate describes the status of the constraints ` ≤ r(x) ≤ u in problem DenseNP. For the
jth lower or upper bound, j = 1 to nctotl, the possible values of istate(j) are as
follows, where δ is the specified Feasibility tolerance:

−2 (Region 1) The lower bound is violated by more than δ.
−1 (Region 5) The upper bound is violated by more than δ.

0 (Region 3) Both bounds are satisfied by more than δ.
1 (Region 2) The lower bound is active (to within δ).
2 (Region 4) The upper bound is active (to within δ).
3 (Region 2 = Region 4) The bounds are equal and the

equality constraint is satisfied (to within δ).

These values of istate are labeled in the printed solution as follows:



58 SNOPT 7.5 User’s Guide

Region 1 2 3 4 5 2 ≡ 4

istate(j) −2 1 0 2 −1 3
Printed solution -- LL FR UL ++ EQ

fCon is an array of dimension at least ncnln. If ncnln = 0, fCon is not accessed, and
may then be declared to be of dimension (1), or the actual parameter may be any
convenient array. If ncnln > 0, fCon contains the values of the nonlinear constraint
functions fi(x), i = 1: ncnln, at the final iterate.

gCon contains the Jacobian matrix of the nonlinear constraints at the final iterate, i.e.,
gCon(i, j) contains the partial derivative of the ith constraint function with respect
to the jth variable, i = 1: ncnln, j = 1: n. (See the discussion of gCon under
funcon in Section 6.5.)

cMul contains the QP multipliers from the last QP subproblem. cMul(j) should be non-
negative if istate(j) = 1 and non-positive if istate(j) = 2.

fObj is the value of the objective f0(x) at the final iterate.

gObj(n) contains the objective gradient (or its finite-difference approximation) at the final
iterate.

Hess(ldH,*) contains an estimate of H, the Hessian of the Lagrangian at x.

x contains the final estimate of the solution.

6.3. User-supplied subroutines for npOpt

The user must provide subroutines that define the objective function and nonlinear con-
straints. The objective function is defined by subroutine funobj, and the nonlinear con-
straints are defined by subroutine funcon. On every call, these subroutines must return
appropriate values of the objective and nonlinear constraints in fObj and fCon. The user
should also provide the available partial derivatives. Any unspecified derivatives are ap-
proximated by finite differences; see Section 7 for a discussion of the optional parameter
Derivative level. Just before either funobj or funcon is called, each element of the cur-
rent gradient array g or gCon is initialized to a special value. On exit, any element that
retains the given value is estimated by finite differences.

For maximum reliability, it is preferable for the user to provide all partial derivatives
(see Chapter 8 of Gill, Murray and Wright [15] for a detailed discussion). If all gradients
cannot be provided, it is similarly advisable to provide as many as possible. During the
development of subroutines funobj and funcon, the Verify parameter (p. 84) should be
used to check the calculation of any known gradients.



6. The npOpt interface 59

6.4. Subroutine funobj

This subroutine must calculate the objective function f0(x) and (optionally) the gradient
g(x).

subroutine funobj

& ( mode, n, x, fObj, gObj, nState )

integer

& mode, n, nState

double precision

& fObj, x(n), gObj(n)

On entry:

mode is set by npOpt to indicate which values are to be assigned during the call of funobj.
If Derivative level = 1 or Derivative level = 3, then all components of the
objective gradient are defined by the user and mode will always have the value 2. If
some gradient elements are unspecified, npOpt will call funobj with mode = 0, 1 or
2.

• If mode = 2, assign fObj and the known components of gObj.

• If mode = 1, assign all available components of gObj; fObj is not required.

• If mode = 0, only fObj needs to be assigned; gObj is ignored.

n is the number of variables, i.e., the dimension of x. The actual parameter n will
always be the same Fortran variable as that input to npOpt, and must not be altered
by funobj.

x(n) is an array containing the values of the variables x for which f0 must be evaluated.
The array x must not be altered by funobj.

nState allows the user to save computation time if certain data must be read or calculated
only once. If nState = 1, npOpt is calling funobj for the first time. If there
are nonlinear constraints, the first call to funcon will occur before the first call to
funobj.

On exit:

mode may be used to indicate that you are unable or unwilling to evaluate the objective
function at the current x. (Similarly for the constraint functions.)

During the linesearch, the functions are evaluated at points of the form x = xk +αpk
after they have already been evaluated satisfactorily at xk. For any such x, if you set
mode to −1, npOpt will reduce α and evaluate the functions again (closer to xk, where
they are more likely to be defined).

If for some reason you wish to terminate the current problem, set mode ≤ −2.

fObj must contain the computed value of f0(x) (except perhaps if mode = 1).

gObj must contain the assigned components of the gradient vector g(x), i.e., gObj(j) con-
tains the partial derivative ∂f0(x)/∂xj (except perhaps if mode = 0).
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6.5. Subroutine funcon

This subroutine must compute the nonlinear constraint functions {fi(x)} and (optionally)
their derivatives. (A dummy subroutine funcon must be provided if there are no nonlin-
ear constraints.) The ith row of the Jacobian gCon is the vector (∂fi/∂x1, ∂fi/∂x2, . . . ,
∂fi/∂xn).

subroutine funcon

& ( mode, ncnln, n, ldg,

& needc, x, fCon, gCon, nState )

integer

& mode, ncnln, n, ldg, nState, needc(*)

double precision

& x(n), fCon(*), gCon(ldg,*)

On entry:

mode is set by npOpt to request values that must be assigned during each call of funcon.
mode will always have the value 2 if all elements of the Jacobian are available, i.e.,
if Derivative level is either 2 or 3 (see Section 7). If some elements of gCon are
unspecified, npOpt will call funcon with mode = 0, 1, or 2:

• If mode = 2, only the elements of fCon corresponding to positive values of
needc need to be set (and similarly for the known components of gCon).

• If mode = 1, the knowm components of the rows of gCon corresponding to
positive values in needc must be set. Other rows of gCon and the array fCon

will be ignored.

• If mode = 0, the components of fCon corresponding to positive values in needc

must be set. Other components and the array gCon are ignored.

ncnln is the number of nonlinear constraints, i.e., the dimension of fCon. The actual
parameter ncnln is the same Fortran variable as that input to npOpt, and must not
be altered by funcon.

n is the number of variables, i.e., the dimension of x. The actual parameter n is the
same Fortran variable as that input to npOpt, and must not be altered by funcon.

ldg is the leading dimension of the array gCon (ldg ≥ 1 and ldg ≥ ncnln).

needc is an array of dimension at least ncnln containing the indices of the elements of
fCon or gCon that must be evaluated by funcon. needc can be ignored if every
constraint is provided.

x is an array of dimension at least n containing the values of the variables x for which
the constraints must be evaluated. x must not be altered by funcon.

nState has the same meaning as for funobj.
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On exit:

mode may be set as in funobj.

fCon is an array of dimension at least ncnln that contains the appropriate values of the
nonlinear constraint functions. If needc(i) is nonzero and mode = 0 or 2, the value
of the ith constraint at x must be stored in fCon(i). (The other components of
fCon are ignored.)

gCon is an array of declared dimension (ldg,k), where k ≥ n. It contains the appropriate
elements of the Jacobian evaluated at x. (See the discussion of mode and gCon

above.)

mode may be set as in funobj.

6.6. Constant Jacobian elements

If all constraint gradients (Jacobian elements) are known (i.e., Derivative Level = 2 or 3,
any constant elements may be assigned to gCon one time only at the start of the optimization.
An element of gCon that is not subsequently assigned in funcon will retain its initial value
throughout. Constant elements may be loaded into gCon either before the call to npOpt

or during the the first call to funcon (signalled by the value nState = 1). The ability to
preload constants is useful when many Jacobian elements are identically zero, in which case
gCon may be initialized to zero and nonzero elements may be reset by funcon.

Note that constant nonzero elements do affect the values of the constraints. Thus, if
gCon(i, j) is set to a constant value, it need not be reset in subsequent calls to funcon, but
the value gCon(i, j)*x(j) must nonetheless be added to fCon(i).

It must be emphasized that, if Derivative level < 2, unassigned elements of gCon are
not treated as constant; they are estimated by finite differences, at non-trivial expense.
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7. Optional parameters

The performance of each SNOPT interface is controlled by a number of parameters or “op-
tions”. Each option has a default value that should be appropriate for most problems. Other
values may be specified in two ways:

• By calling subroutine snSpec to read a Specs file (Section 7.1).

• By calling the option-setting routines snSet, snSeti, snSetr (Section 7.5).

The current value of an optional parameter may be examined by calling one of the routines
snGet, snGetc, snGeti, snGetr (Section 7.6).

7.1. The SPECS file

The Specs file contains a list of options and values in the following general form:

Begin options

Iterations limit 500

Minor feasibility tolerance 1.0e-7

Solution Yes

End options

We call such data a Specs file because it specifies various options. The file starts with the
keyword Begin and ends with End. The file is in free format. Each line specifies a single
option, using one or more items as follows:

1. A keyword (required for all options).

2. A phrase (one or more words) that qualifies the keyword (only for some options).

3. A number that specifies an integer or real value (only for some options). Such numbers
may be up to 16 contiguous characters in Fortran 77’s I, F, E or D formats, terminated
by a space or new line.

The items may be entered in upper or lower case or a mixture of both. Some of the keywords
have synonyms, and certain abbreviations are allowed, as long as there is no ambiguity.
Blank lines and comments may be used to improve readability. A comment begins with an
asterisk (*) anywhere on a line. All subsequent characters on the line are ignored.

The Begin line is echoed to the Summary file.

7.2. Multiple sets of options in the Specs file

The keyword Skip allows you to collect several sets of options within a single Specs file. In
the following example, only the second set of options will be input.

Skip Begin options

Scale all variables

End options

Begin options 2

Scale linear variables

End options 2

The keyword Endrun prevents subroutine snSpec from reading past that point in the
Specs file while looking for Begin.
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7.3. SPECS file checklist and defaults

The following example Specs file shows all valid keywords and their default values. The
keywords are grouped according to the function they perform.

Some of the default values depend on ε, the relative precision of the machine being used.
The values given here correspond to double-precision arithmetic on most current machines
(ε ≈ 2.22× 10−16).

BEGIN checklist of SPECS file parameters and their default values

* Printing

Major print level 1 * 1-line major iteration log
Minor print level 1 * 1-line minor iteration log
Print file ? * specified by subroutine snInit

Summary file ? * specified by subroutine snInit

Print frequency 100 * minor iterations log on Print file
Summary frequency 100 * minor iterations log on Summary file
Solution Yes * on the Print file

* Suppress options listing * options are normally listed
System information No * Yes prints more system information

* Problem specification

Minimize * (opposite of Maximize)
* Feasible point * (alternative to Max or Min)

Objective row 1 * has precedence over ObjRow (snOptA)
Infinite bound 1.0e+20 *

* Convergence Tolerances

Major feasibility tolerance 1.0e-6 * target nonlinear constraint violation
Major optimality tolerance 1.0e-6 * target complementarity gap
Minor feasibility tolerance 1.0e-6 * for satisfying the QP bounds

* Derivative checking

Verify level 0 * cheap check on gradients
Start objective check at col 1 * NOT ALLOWED IN snOptA

Stop objective check at col n′1 * NOT ALLOWED IN snOptA

Start constraint check at col 1 * NOT ALLOWED IN snOptA

Stop constraint check at col n′′1 * NOT ALLOWED IN snOptA

* Scaling

Scale option 0 * No scaling
Scale tolerance 0.9 *

* Scale Print * default: scales are not printed

* Other Tolerances

Crash tolerance 0.1 *

Linesearch tolerance 0.9 * smaller for more accurate search
Pivot tolerance 3.7e-11 * ε2/3

* QP subproblems

QPSolver Cholesky * default
Crash option 3 * first basis is essentially triangular
Elastic weight 1.0e+4 * used only during elastic mode
Iterations limit 10000 * or 20m if that is more
Partial price 1 * 10 for large LPs
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* SQP method

* Cold start * has precedence over argument start

* Warm start * (alternative to a cold start)
Time limit 0 * no time limit
Major iterations limit 1000 * or m if that is more
Minor iterations limit 500 * or 3m if that is more
Major step limit 2.0 *

Superbasics limit n1 + 1 * n1 = number of nonlinear variables
Derivative level 3 * NOT ALLOWED IN snOptA

Derivative option 1 * ONLY FOR snOptA

Derivative linesearch *

* Nonderivative linesearch *

Function precision 3.0e-13 * ε0.8 (almost full accuracy)
Difference interval 5.5e-7 * (Function precision)1/2

Central difference interval 6.7e-5 * (Function precision)1/3

New superbasics limit 99 * controls early termination of QPs
Objective row ObjRow * row number of objective in F (x)
Penalty parameter 0.0 * initial penalty parameter
Proximal point method 1 * satisfies linear constraints near x0
Reduced Hessian dimension 2000 * or Superbasics limit if that is less
Violation limit 10.0 * unscaled constraint violation limit
Unbounded step size 1.0e+18 *

Unbounded objective 1.0e+15 *

* Hessian approximation

Hessian full memory * default if n1 ≤ 75
Hessian limited memory * default if n1 > 75
Hessian frequency 999999 * for full Hessian (never reset)
Hessian updates 10 * for limited memory Hessian
Hessian flush 999999 * no flushing

* Frequencies

Check frequency 60 * test row residuals ‖Ax− s‖
Expand frequency 10000 * for anti-cycling procedure
Factorization frequency 50 * 100 for LPs
Save frequency 100 * save basis map

* LUSOL options

LU factor tolerance 3.99 * for NP (100.0 for LP)
LU update tolerance 3.99 * for NP ( 10.0 for LP)
LU singularity tolerance 3.2e-11 *

LU partial pivoting * default threshold pivoting strategy
* LU rook pivoting * threshold rook pivoting
* LU complete pivoting * threshold complete pivoting

* Basis files

Old basis file 0 * input basis map
New basis file 0 * output basis map
Backup basis file 0 * output extra basis map
Insert file 0 * input in industry format
Punch file 0 * output Insert data
Load file 0 * input names and values
Dump file 0 * output Load data
Solution file 0 * different from printed solution

* Partitions of cw, iw, rw

Total character workspace lencw *
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Total integer workspace leniw *

Total real workspace lenrw *

User character workspace 500 *

User integer workspace 500 *

User real workspace 500 *

* Miscellaneous

Debug level 0 * for developers

Sticky parameters No * Yes makes parameter values persist

Timing level 3 * print cpu times

End of SPECS file checklist

7.4. Subroutine snSpec

Subroutine snSpec may be called to input a Specs file (to specify options for a subsequent
call of SNOPT).

subroutine snSpec

& ( iSpecs, INFO, cw, lencw, iw, leniw, rw, lenrw )

integer

& iSpecs, INFO, lencw, leniw, lenrw, iw(leniw)

double precision

& rw(lenrw)

character

& cw(lencw)*8

On entry:

iSpecs is a unit number for the Specs file (iSpecs > 0). Typically iSpecs = 4.

On some systems, the file may need to be opened before snSpec is called.

On exit:

cw(lencw), iw(leniw), rw(lenrw) contain the specified options.

INFO reports the result of calling snSpec. Here is a summary of possible values.

Finished successfully

101 Specs file read.

Errors while reading Specs file

131 No Specs file specified (iSpecs ≤ 0 or iSpecs > 99).

132 End-of-file encountered while looking for Specs file. snSpec encountered
end-of-file or Endrun before finding Begin (see Section 7.2). The Specs file
may not be properly assigned.

133 End-of-file encountered before finding End. Lines containing Skip or Endrun
may imply that all options should be ignored.

134 Endrun found before any valid sets of options.

> 134 There were i = INFO− 134 errors while reading the Specs file.
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7.5. Subroutines snSet, snSeti, snSetr

These routines specify an option that might otherwise be defined in one line of a Specs file.

subroutine snSet

& ( buffer, iPrint, iSumm, Errors,

& cw, lencw, iw, leniw, rw, lenrw )

subroutine snSeti

& ( buffer, ivalue, iPrint, iSumm, Errors,

& cw, lencw, iw, leniw, rw, lenrw )

subroutine snSetr

& ( buffer, rvalue, iPrint, iSumm, Errors,

& cw, lencw, iw, leniw, rw, lenrw )

character*(*)

& buffer

integer

& Errors, ivalue, iPrint, iSumm, lencw, leniw, lenrw, iw(leniw)

double precision

& rvalue, rw(lenrw)

character

& cw(lencw)*8

On entry:

buffer is a string to be decoded. Restriction: len(buffer) ≤ 72 (snSet) or ≤ 55 (snSeti,
snSetr). Use snSet if the string contains all relevant data. For example,

call snSet ( ’Iterations 1000’, iPrint, iSumm, Errors, ... )

ivalue is an integer value associated with the keyword in buffer. Use snSeti if it is
convenient to define the value at run time. For example,

itnlim = 1000

if (m .gt. 500) itnlim = 8000

call snSeti( ’Iterations’, itnlim, iPrint, iSumm, Errors, ... )

rvalue is a real value associated with the keyword in buffer. For example,

factol = 100.0d+0

if ( illcon ) factol = 5.0d+0

call snSetr( ’LU factor tol’, factol, iPrint, iSumm, Errors, ... )

iPrint is a file number for printing each line of data, along with any error messages. iPrint
= 0 suppresses this output.

iSumm is a file number for printing any error messages. iSumm = 0 suppresses this output.

Errors is the cumulative number of errors, so it should be 0 before the first call in a group
of calls to the option-setting routines.

On exit:

cw(lencw), iw(leniw), rw(lenrw) hold the specified option.

Errors is the number of errors encountered so far.
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7.6. Subroutines snGet, snGetc, snGeti, snGetr

These routines obtain the current value of a single option or indicate if an option has been
set.

integer function snGet

& ( buffer, Errors, cw, lencw, iw, leniw, rw, lenrw )

subroutine snGetc

& ( buffer, cvalue, Errors, cw, lencw, iw, leniw, rw, lenrw )

subroutine snGeti

& ( buffer, ivalue, Errors, cw, lencw, iw, leniw, rw, lenrw )

subroutine snGetr

& ( buffer, rvalue, Errors, cw, lencw, iw, leniw, rw, lenrw )

character*(*)

& buffer

integer

& Errors, ivalue, lencw, leniw, lenrw, iw(leniw)

character

& cvalue*8, cw(lencw)*8

double precision

& rvalue, rw(lenrw)

On entry:

buffer is a string to be decoded. Restriction: len(buffer) ≤ 72.

Errors is the cumulative number of errors, so it should be 0 before the first call in a group
of calls to option-getting routines.

cw(lencw), iw(leniw), rw(lenrw) contain the current options data.

On exit:

snGet is 1 if the option contained in buffer has been set, otherwise 0. Use snGet to find if
a particular optional parameter has been set. For example: if

i = snGet( ’Hessian limited memory’, Errors, ... )

then i will be 1 if SNOPT is using a limited-memory approximate Hessian.

cvalue is a string associated with the keyword in buffer. Use snGetc to obtain the names
associated with an MPS file. For example, for the name of the bounds section use

call snGetc( ’Bounds’, MyBounds, Errors, ... )

ivalue is an integer value associated with the keyword in buffer. Example:

call snGeti( ’Iterations limit’, itnlim, Errors, ... )

rvalue is a real value associated with the keyword in buffer. Example:

call snGetr( ’LU factor tol’, factol, Errors, ... )

Errors is the number of errors encountered so far.
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7.7. Description of the optional parameters

The following is an alphabetical list of the options that may appear in the Specs file, and
a description of their effect. In the description of the options we use the notation of the
problem format NP to refer to the objective and constraint functions.

Backup basis file f Default = 0

This is intended as a safeguard against losing the results of a long run. Suppose that a New
basis file is being saved every 100 iterations, and that SNOPT is about to save such a basis
at iteration 2000. It is conceivable that the run may be interrupted during the next few
milliseconds (in the middle of the save). In this case the basis file will be corrupted and the
run will have been essentially wasted.

The following example eliminates this risk:

Old basis file 11 (or 0)

Backup basis file 11

New basis file 12

Save frequency 100

The current basis will then be saved every 100 iterations, first on file 12 and then immediately
on file 11. If the run is interrupted at iteration 2000 during the save on file 12, there will
still be a usable basis on file 11 (corresponding to iteration 1900).

Note that a New basis will be saved at the end of a run if it terminates normally, but
there is no need for a further Backup basis. In the above example, if an optimum solution
is found at iteration 2050 (or if the iteration limit is 2050), the final basis on file 12 will
correspond to iteration 2050, but the last basis saved on file 11 will be the one for iteration
2000.

Central difference interval r Default = ε1/3 ≈ 6.0e-6

When Derivative option = 0 with the snOptA interface, or Derivative level < 3)
with snOptB or snOptC, the central-difference interval r is used near an optimal solution to
obtain more accurate (but more expensive) estimates of gradients. Twice as many function
evaluations are required compared to forward differencing. The interval used for the jth
variable is hj = r(1 + |xj |). The resulting derivative estimates should be accurate to O(r2),
unless the functions are badly scaled.

Check frequency k Default = 60

Every kth minor iteration after the most recent basis factorization, a numerical test is made
to see if the current solution x satisfies the general linear constraints (including linearized
nonlinear constraints, if any). The constraints are of the form Ax − s = b, where s is the
set of slack variables. To perform the numerical test, the residual vector r = b − Ax + s
is computed. If the largest component of r is judged to be too large, the current basis is
refactorized and the basic variables are recomputed to satisfy the general constraints more
accurately.

Check frequency 1 is useful for debugging purposes, but otherwise this option should
not be needed.

Cold Start Default = value of input argument start

Requests that the CRASH procedure be used to choose an initial basis, unless a basis file is
provided via Old basis, Insert or Load in the Specs file.
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This parameter has the same effect as the input arguments start = 0 for snOptA, and
start = ’Cold’ for snOptB and snOptC. If specified as an optional parameter, this value
has precedence over the value of the input argument start. This allows the start parameter
to be changed at run-time using the Specs file.

Crash option i Default = 3
Crash tolerance t Default = 0.1

Except on restarts, a CRASH procedure is used to select an initial basis from certain rows
and columns of the constraint matrix AmI. The Crash option i determines which rows
and columns of A are eligible initially, and how many times CRASH is called. Columns of
−I are used to pad the basis where necessary.

i Meaning

0 The initial basis contains only slack variables: B = I.

1 CRASH is called once, looking for a triangular basis in all rows and columns of A.

2 CRASH is called twice (if there are nonlinear constraints). The first call looks for a
triangular basis in linear rows, and the iteration proceeds with simplex iterations until
the linear constraints are satisfied. The Jacobian is then evaluated for the first major
iteration and CRASH is called again to find a triangular basis in the nonlinear rows
(retaining the current basis for linear rows).

3 CRASH is called up to three times (if there are nonlinear constraints). The first two
calls treat linear equalities and linear inequalities separately. As before, the last call
treats nonlinear rows before the first major iteration.

If i ≥ 1, certain slacks on inequality rows are selected for the basis first. (If i ≥ 2,
numerical values are used to exclude slacks that are close to a bound.) CRASH then makes
several passes through the columns of A, searching for a basis matrix that is essentially
triangular. A column is assigned to “pivot” on a particular row if the column contains
a suitably large element in a row that has not yet been assigned. (The pivot elements
ultimately form the diagonals of the triangular basis.) For remaining unassigned rows, slack
variables are inserted to complete the basis.

The Crash tolerance t allows the starting procedure CRASH to ignore certain “small”
nonzeros in each column of A. If amax is the largest element in column j, other nonzeros aij
in the column are ignored if |aij | ≤ amax × t. (To be meaningful, t should be in the range
0 ≤ t < 1.)

When t > 0.0, the basis obtained by CRASH may not be strictly triangular, but it is
likely to be nonsingular and almost triangular. The intention is to obtain a starting basis
containing more columns of A and fewer (arbitrary) slacks. A feasible solution may be
reached sooner on some problems.

For example, suppose the first m columns of A form the matrix shown under LU factor

tolerance; i.e., a tridiagonal matrix with entries −1, 2, −1. To help CRASH choose all m
columns for the initial basis, we would specify Crash tolerance t for some value of t > 0.5.

Derivative level i Default = 3

This keyword is used by the snOptB, snOptC and npOpt interfaces. It should not be used
when calling snOptA. The keyword Derivative level specifies which nonlinear function
gradients are known analytically and will be supplied to SNOPT by the user subroutines
funobj and funcon.
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i Meaning

3 All objective and constraint gradients are known.

2 All constraint gradients are known, but some or all components of the objective gra-
dient are unknown.

1 The objective gradient is known, but some or all of the constraint gradients are un-
known.

0 Some components of the objective gradient are unknown and some of the constraint
gradients are unknown.

The value i = 3 should be used whenever possible. It is the most reliable and will usually
be the most efficient.

If i = 0 or 2, SNOPT will estimate the missing components of the objective gradient,
using finite differences. This may simplify the coding of subroutine funobj. However, it
could increase the total run-time substantially (since a special call to funobj is required
for each missing element), and there is less assurance that an acceptable solution will be
located. If the nonlinear variables are not well scaled, it may be necessary to specify a
nonstandard Difference interval (see below).

If i = 0 or 1, SNOPT will estimate missing elements of the Jacobian. For each column of
the Jacobian, one call to funcon is needed to estimate all missing elements in that column,
if any. If Jacobian = sparse and the sparsity pattern of the Jacobian happens to be

* * *

? ?

* ?

* *


where * indicates known gradients and ? indicates unknown elements, SNOPT will use one
call to funcon to estimate the missing element in column 2, and another call to estimate
both missing elements in column 3. No calls are needed for columns 1 and 4.

At times, central differences are used rather than forward differences. Twice as many
calls to funobj and funcon are then needed. (This is not under the user’s control.)

Derivative linesearch Default
Nonderivative linesearch

At each major iteration a line search is used to improve the merit function. A Derivative

linesearch uses safeguarded cubic interpolation and requires both function and gradient
values to compute estimates of the step αk. If some analytic derivatives are not provided,
or a Nonderivative linesearch is specified, SNOPT employs a line search based upon
safeguarded quadratic interpolation, which does not require gradient evaluations.

A nonderivative line search can be slightly less robust on difficult problems, and it is
recommended that the default be used if the functions and derivatives can be computed at
approximately the same cost. If the gradients are very expensive relative to the functions,
a nonderivative line search may give a significant decrease in computation time.

If Nonderivative linesearch is selected, snOptA signals the evaluation of the line
search by calling usrfun with needG = 0. Once the line search is completed, the problem
functions are called again with needF = 0 and needG = 0. If the potential savings provided
by a nonderivative line search are to be realized, it is essential that usrfun be coded so that
the derivatives are not computed when needG = 0.
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The selection of Nonderivative linesearch for snOptB means that funobj and funcon

are called with mode = 0 in the line search. Once the line search is completed, the problem
functions are called again with mode = 2. If the potential savings provided by a nonderivative
line search are to be realized, it is essential that funobj and funcon be coded so that the
derivatives are not computed when mode = 0.

Derivative option i Default = 1

This option is intended for snOptA only and should not be used with any other interface. The
Derivative option specifies which nonlinear function gradients are known analytically and
will be supplied to snOptA by the user subroutine usrfun.

i Meaning

0 Some problem derivatives are unknown.

1 All problem derivatives are known.

The value i = 1 should be used whenever possible. It is the most reliable and will usually
be the most efficient.

If i = 0 snOptA will estimate the missing components of G(x) using finite differences.
This may simplify the coding of subroutine usrfun. However, it could increase the total run-
time substantially (since a special call to usrfun is required for each column of the Jacobian
that has a missing element), and there is less assurance that an acceptable solution will
be located. If the nonlinear variables are not well scaled, it may be necessary to specify a
nonstandard Difference interval (see below).

For each column of the Jacobian, one call to usrfun is needed to estimate all missing
elements in that column, if any (see the discussion of the option Derivative level).

At times, central differences are used rather than forward differences. Twice as many
calls to usrfun are then needed. (This is not under the user’s control.)

Difference interval h1 Default = ε1/2 ≈ 1.5e-8

This alters the interval h1 that is used to estimate gradients by forward differences in the
following circumstances:

• In the initial (“cheap”) phase of verifying the problem derivatives.

• For verifying the problem derivatives.

• For estimating missing derivatives.

In all cases, a derivative with respect to xj is estimated by perturbing that component of
x to the value xj + h1(1 + |xj |), and then evaluating f0(x) or f(x) at the perturbed point.
The resulting gradient estimates should be accurate to O(h1) unless the functions are badly
scaled. Judicious alteration of h1 may sometimes lead to greater accuracy.

Dump file f Default = 0

If f > 0, the last solution obtained will be output to the file with unit number f in the
format described in Section 9.3. The file will usually have been output previously as a Load
file.
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Elastic weight ω Default = 104

This keyword determines the initial weight γ associated with problem NP(γ) on p. 10.
At major iteration k, if elastic mode has not yet started, a scale factor σk = 1+‖g(xk)‖∞

is defined from the current objective gradient. Elastic mode is then started if the QP
subproblem is infeasible, or the QP dual variables are larger in magnitude than σkω. The
QP is re-solved in elastic mode with γ = σkω.

Thereafter, major iterations continue in elastic mode until they converge to a point that
is optimal for problem NP(γ). If the point is feasible for NP (v = w = 0), it is declared
locally optimal. Otherwise, γ is increased by a factor of 10 and major iterations continue.
If γ has already reached a maximum allowable value, NP is declared locally infeasible.

Expand frequency k Default = 10000

This option is part of the EXPAND anti-cycling procedure [13] designed to make progress
even on highly degenerate problems.

For linear models, the strategy is to force a positive step at every iteration, at the
expense of violating the bounds on the variables by a small amount. Suppose that the
Minor feasibility tolerance is δ. Over a period of k iterations, the tolerance actually
used by SNOPT increases from 1

2δ to δ (in steps of 1
2δ/k).

For nonlinear models, the same procedure is used for iterations in which there is only
one superbasic variable. (Cycling can occur only when the current solution is at a vertex
of the feasible region.) Thus, zero steps are allowed if there is more than one superbasic
variable, but otherwise positive steps are enforced.

Increasing k helps reduce the number of slightly infeasible nonbasic variables (most of
which are eliminated during a resetting procedure). However, it also diminishes the freedom
to choose a large pivot element (see Pivot tolerance).

Factorization frequency k Default = 100 (LP) or 50 (NP)

At most k basis changes will occur between factorizations of the basis matrix.

• With linear programs, the basis factors are usually updated every iteration. The
default k is reasonable for typical problems. Higher values up to k = 100 (say) may
be more efficient on problems that are extremely sparse and well scaled.

• When the objective function is nonlinear, fewer basis updates will occur as an optimum
is approached. The number of iterations between basis factorizations will therefore
increase. During these iterations a test is made regularly (according to the Check

frequency) to ensure that the general constraints are satisfied. If necessary the basis
will be refactorized before the limit of k updates is reached.

Feasible point

see Minimize

Function precision εR Default = ε0.8 ≈ 3.7e-11

The relative function precision εR is intended to be a measure of the relative accuracy
with which the nonlinear functions can be computed. For example, if f(x) is computed as
1000.56789 for some relevant x and if the first 6 significant digits are known to be correct,
the appropriate value for εR would be 1.0e-6.
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(Ideally the functions f(x) or Fi(x) should have magnitude of order 1. If all functions are
substantially less than 1 in magnitude, εR should be the absolute precision. For example,
if f(x) = 1.23456789e-4 at some point and if the first 6 significant digits are known to be
correct, the appropriate value for εR would be 1.0e-10.)

• The default value of εR is appropriate for simple analytic functions.

• In some cases the function values will be the result of extensive computation, possibly
involving an iterative procedure that can provide rather few digits of precision at
reasonable cost. Specifying an appropriate Function precision may lead to savings,
by allowing the linesearch procedure to terminate when the difference between function
values along the search direction becomes as small as the absolute error in the values.

Feasibility tolerance t Default = 1.0e-6

see Minor feasibility tolerance

Hessian dimension i Default = min{2000, n1 + 1}
see Reduced Hessian dimension

Hessian full memory Default = Full if n1 ≤ 75
Hessian limited memory

These options select the method for storing and updating the approximate Hessian. (SNOPT

uses a quasi-Newton approximation to the Hessian of the Lagrangian. A BFGS update is
applied after each major iteration.)

The default value depends on n1, the number of nonlinear variables (see p. 7). For npOpt,
n1 is the number of variables. For snOptB and snOptC, n1 is the larger of nnObj and nnJac,
the number of nonlinear objective and Jacobian variables. For snOptA, n1 is determined by
the implicit values of nnObj and nnJac determined after the constraints and variables are
reordered.

If Hessian full memory is specified, the approximate Hessian is treated as a dense
matrix and the BFGS updates are applied explicitly. This option is most efficient when the
number of nonlinear variables n1 is not too large (say, less than 75). In this case, the storage
requirement is fixed and one can expect Q-superlinear convergence to the solution.

Hessian limited memory should be used on problems where n1 is very large. In this
case a limited-memory procedure is used to update a diagonal Hessian approximation Hr

a limited number of times. (Updates are accumulated as a list of vector pairs. They are
discarded at regular intervals after Hr has been reset to their diagonal.)

Hessian frequency i Default = 999999

If Hessian Full is selected and i BFGS updates have already been carried out, the Hessian
approximation is reset to the identity matrix. (For certain problems, occasional resets may
improve convergence, but in general they should not be necessary.)

Hessian Full memory and Hessian frequency = 10 have a similar effect to Hessian

Limited memory and Hessian updates = 10 (except that the latter retains the current
diagonal during resets).
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Hessian updates i Default = 10

If Hessian Limited memory is selected and i BFGS updates have already been carried out,
all but the diagonal elements of the accumulated updates are discarded and the updating
process starts again.

Broadly speaking, the more updates stored, the better the quality of the approximate
Hessian. However, the more vectors stored, the greater the cost of each QP iteration. The
default value is likely to give a robust algorithm without significant expense, but faster
convergence can sometimes be obtained with significantly fewer updates (e.g., i = 5).

Insert file f Default = 0

If f > 0, this references a file containing basis information in the format of Section 9.2. The
file will usually have been output previously as a Punch file. The file will not be accessed if
an Old basis file is specified.

Infinite bound r Default = 1.0e+20

If r > 0, r defines the “infinite” bound infBnd in the definition of the problem constraints.
Any upper bound greater than or equal to infBnd will be regarded as plus infinity (and
similarly for a lower bound less than or equal to −infBnd). If r ≤ 0, the default value is
used.

Iterations limit i Default = max{10000, 20m}

This is the maximum number of minor iterations allowed (i.e., iterations of the simplex
method or the QP algorithm), summed over all major iterations. (Itns is an alternative
keyword.)

Linesearch tolerance t Default = 0.9

This controls the accuracy with which a steplength will be located along the direction of
search each iteration. At the start of each linesearch a target directional derivative for the
merit function is identified. This parameter determines the accuracy to which this target
value is approximated.

• t must be a real value in the range 0.0 ≤ t ≤ 1.0.

• The default value t = 0.9 requests just moderate accuracy in the linesearch.

• If the nonlinear functions are cheap to evaluate, a more accurate search may be ap-
propriate; try t = 0.1, 0.01 or 0.001. The number of major iterations might decrease.

• If the nonlinear functions are expensive to evaluate, a less accurate search may be
appropriate. If all gradients are known, try t = 0.99. (The number of major iterations
might increase, but the total number of function evaluations may decrease enough to
compensate.)

• If not all gradients are known, a moderately accurate search remains appropriate.
Each search will require only 1–5 function values (typically), but many function calls
will then be needed to estimate missing gradients for the next iteration.
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Load file f Default = 0

If f > 0, this references a file containing basis information in the format of Section 9.3. The
file will usually have been output previously as a Dump file. The file will not be accessed if
an Old basis file or an Insert file is specified.

Log frequency k Default = 100

see Print frequency

LU factor tolerance t1 Default = 100.0 (LP) or 3.99 (NP)
LU update tolerance t2 Default = 10.0 (LP) or 3.99 (NP)

These tolerances affect the stability and sparsity of LUSOL’s basis factors B = LU [12]
during refactorization and updating, respectively. They must satisfy t1, t2 ≥ 1.0. The
matrix L is a product of matrices of the form(

1
µ 1

)
,

where the multipliers µ satisfy |µ| ≤ ti. Smaller values of ti favor stability, while larger
values favor sparsity.

For certain very regular structures (e.g., band matrices) it may be necessary to reduce t1
and/or t2 in order to achieve stability. For example, if the columns of A include a submatrix
of the form 

2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2


,

one should set both t1 and t2 to values in the range 1.0 ≤ ti < 2.0.

LU partial pivoting Default
LU rook pivoting

LU complete pivoting

The LUSOL factorization implements a Markowitz-type search for pivots that locally mini-
mize the fill-in subject to a threshold pivoting stability criterion. The rook and complete

pivoting options are more expensive than partial pivoting but are more stable and bet-
ter at revealing rank, as long as the LU factor tolerance is not too large (say t1 < 2.0).

When numerical difficulties are encountered, SNOPT automatically reduces the LU tol-
erances toward 1.0 and switches (if necessary) to rook pivoting before reverting to the
default or specified options at the next refactorization. (With System information Yes,
relevant messages are output to the Print file.)

LU complete pivoting is the default for the npOpt interface.

LU density tolerance t1 Default = 0.6
LU singularity tolerance t2 Default = ε2/3 ≈ 3.2e-11

The density tolerance t1 is used during LUSOL’s basis factorization B = LU . Columns of
L and rows of U are formed one at a time, and the remaining rows and columns of the



76 SNOPT 7.5 User’s Guide

basis are altered appropriately. At any stage, if the density of the remaining matrix exceeds
t1, the Markowitz strategy for choosing pivots is terminated and the remaining matrix is
factored by a dense LU procedure. Raising t1 towards 1.0 may give slightly sparser factors,
with a slight increase in factorization time.

The singularity tolerance t2 helps guard against ill-conditioned basis matrices. After B
is refactorized, the diagonal elements of U are tested as follows: if |Ujj | ≤ t2 or |Ujj | <
t2 maxi |Uij |, the jth column of the basis is replaced by the corresponding slack variable.
(This is most likely to occur after a restart.)

Major feasibility tolerance εr Default = 1.0e-6

This specifies how accurately the nonlinear constraints should be satisfied. The default value
of 1.0e-6 is appropriate when the linear and nonlinear constraints contain data to about
that accuracy.

Let rowerr be the maximum nonlinear constraint violation, normalized by the size of
the solution. It is required to satisfy

rowerr = max
i

violi/‖x‖ ≤ εr, (7.1)

where violi is the violation of the ith nonlinear constraint (i = 1 : nnCon).
In the major iteration log, rowerr appears as the quantity labeled “Feasibl”. If some

of the problem functions are known to be of low accuracy, a larger Major feasibility

tolerance may be appropriate.

Major iterations limit k Default = max{1000,m}

This is the maximum number of major iterations allowed. It is intended to guard against
an excessive number of linearizations of the constraints. If k = 0, both feasibility and
optimality are checked.

Major optimality tolerance εd Default = 1.0e-6

This specifies the final accuracy of the dual variables. On successful termination, SNOPT

will have computed a solution (x, s, π) such that

maxComp = max
j

Compj/‖π‖ ≤ εd, (7.2)

where Compj is an estimate of the complementarity slackness for variable j (j = 1 :n+m).
The values Compj are computed from the final QP solution using the reduced gradients

dj = gj−πTaj (where gj is the jth component of the objective gradient, aj is the associated
column of the constraint matrix

(
A − I

)
, and π is the set of QP dual variables):

Compj =

{
dj min{xj − lj , 1} if dj ≥ 0;

−dj min{uj − xj , 1} if dj < 0.

In the major iteration log, maxComp appears as the quantity labeled “Optimal”.

Major print level p Default = 00001

This controls the amount of output to the Print and Summary files each major iteration.
Major print level 1 gives normal output for linear and nonlinear problems, and Major
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print level 11 gives addition details of the Jacobian factorization that commences each
major iteration.

In general, the value being specified may be thought of as a binary number of the form

Major print level JFDXbs

where each letter stands for a digit that is either 0 or 1 as follows:

s a single line that gives a summary of each major iteration. (This entry in JFDXbs is
not strictly binary since the summary line is printed whenever JFDXbs ≥ 1).

b BASIS statistics, i.e., information relating to the basis matrix whenever it is refactor-
ized. (This output is always provided if JFDXbs ≥ 10).

X xk, the nonlinear variables involved in the objective function or the constraints.

D πk, the dual variables for the nonlinear constraints.

F F (xk), the values of the nonlinear objective and constraint functions.

J J(xk), the Jacobian matrix.

To obtain output of any items JFDXbs, set the corresponding digit to 1, otherwise to 0.
If J=1, the Jacobian matrix will be output column-wise at the start of each major

iteration. Column j will be preceded by the value of the corresponding variable xj and a
key to indicate whether the variable is basic, superbasic or nonbasic. (Hence if J=1, there
is no reason to specify X=1 unless the objective contains more nonlinear variables than the
Jacobian.) A typical line of output is

3 1.250000D+01 BS 1 1.00000E+00 4 2.00000E+00

which would mean that x3 is basic at value 12.5, and the third column of the Jacobian has
elements of 1.0 and 2.0 in rows 1 and 4.

Major print level 0 suppresses most output, except for error messages.

Major step limit r Default = 2.0

This parameter limits the change in x during a linesearch. It applies to all nonlinear prob-
lems, once a “feasible solution” or “feasible subproblem” has been found.

1. A linesearch determines a step α over the range 0 < α ≤ β, where β is 1 if there are
nonlinear constraints, or the step to the nearest upper or lower bound on x if all the
constraints are linear. Normally, the first steplength tried is α1 = min(1, β).

2. In some cases, such as f(x) = aebx or f(x) = axb, even a moderate change in the
components of x can lead to floating-point overflow. The parameter r is therefore
used to define a limit β̄ = r(1 + ‖x‖)/‖p‖ (where p is the search direction), and the
first evaluation of f(x) is at the potentially smaller steplength α1 = min(1, β̄, β).

3. Wherever possible, upper and lower bounds on x should be used to prevent evalua-
tion of nonlinear functions at meaningless points. The Major step limit provides
an additional safeguard. The default value r = 2.0 should not affect progress on well
behaved problems, but setting r = 0.1 or 0.01 may be helpful when rapidly vary-
ing functions are present. A “good” starting point may be required. An important
application is to the class of nonlinear least-squares problems.

4. In cases where several local optima exist, specifying a small value for r may help locate
an optimum near the starting point.
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Minimize Default

Maximize

Feasible point

The keywords Minimize and Maximize specify the required direction of optimization. It
applies to both linear and nonlinear terms in the objective.

The keyword feasible point means “Ignore the objective function” while finding a
feasible point for the linear and nonlinear constraints. It can be used to check that the
nonlinear constraints are feasible without altering the call to SNOPT.

Minor iterations limit k Default = 500

If the number of minor iterations for the optimality phase of the QP subproblem exceeds k,
then all nonbasic QP variables that have not yet moved are frozen at their current values
and the reduced QP is solved to optimality.

Note that more than k minor iterations may be necessary to solve the reduced QP to
optimality. These extra iterations are necessary to ensure that the terminated point gives a
suitable direction for the linesearch.

In the major iteration log, a t at the end of a line indicates that the corresponding QP
was artificially terminated using the limit k.

Note that Iterations limit defines an independent absolute limit on the total number
of minor iterations (summed over all QP subproblems).

Minor feasibility tolerance t Default = 1.0e-6

SNOPT tries to ensure that all variables eventually satisfy their upper and lower bounds
to within the tolerance t. This includes slack variables. Hence, general linear constraints
should also be satisfied to within t.

Feasibility with respect to nonlinear constraints is judged by the Major feasibility

tolerance (not by t).

• If the bounds and linear constraints cannot be satisfied to within t, the problem is
declared infeasible. Let sInf be the corresponding sum of infeasibilities. If sInf is
quite small, it may be appropriate to raise t by a factor of 10 or 100. Otherwise, some
error in the data should be suspected.

• Nonlinear functions will be evaluated only at points that satisfy the bounds and linear
constraints. If there are regions where a function is undefined, every attempt should
be made to eliminate these regions from the problem.

For example, if f(x) =
√
x1 + log x2, it is essential to place lower bounds on both

variables. If t = 1.0e-6, the bounds x1 ≥ 10−5 and x2 ≥ 10−4 might be appropriate.
(The log singularity is more serious. In general, keep x as far away from singularities
as possible.)

• If Scale option ≥ 1, feasibility is defined in terms of the scaled problem (since it is
then more likely to be meaningful).

• In reality, SNOPT uses t as a feasibility tolerance for satisfying the bounds on x and s
in each QP subproblem. If the sum of infeasibilities cannot be reduced to zero, the QP
subproblem is declared infeasible. SNOPT is then in elastic mode thereafter (with only
the linearized nonlinear constraints defined to be elastic). See the Elastic options.
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Minor print level k Default = 1

This controls the amount of output to the Print and Summary files during solution of the
QP subproblems. The value of k has the following effect:

0 No minor iteration output except error messages.

≥ 1 A single line of output each minor iteration (controlled by Print frequency and
Summary frequency).

≥ 10 Basis factorization statistics generated during the periodic refactorization of the basis
(see Factorization frequency). Statistics for the first factorization each major
iteration are controlled by the Major print level.

New basis file f Default = 0

If f > 0, a basis map will be saved on file f every kth iteration, where k is the Save

frequency. The first line of the file will contain the word PROCEEDING if the run is still
in progress. A basis map will also be saved at the end of a run, with some other word
indicating the final solution status.

New superbasics limit i Default = 99

This option causes early termination of the QP subproblems if the number of free variables
has increased significantly since the first feasible point. If the number of new superbasics is
greater than i the nonbasic variables that have not yet moved are frozen and the resulting
smaller QP is solved to optimality.

In the major iteration log, a “T” at the end of a line indicates that the QP was terminated
early in this way.

Objective Row Default = value of snOptA argument ObjRow

This option is intended for snOptA only and may be used to specify which row of the input
argument F is to act as the objective function. If specified as an optional parameter, this
value takes precedence over the input argument ObjRow. This allows the ObjRow to be
changed at run-time using the Specs file.

Old basis file f Default = 0

If f > 0, the starting point will be obtained from this file in the format of Section 9.1.
The file will usually have been output previously as a New basis file. The file will not be
acceptable if the number of rows or columns in the problem has been altered.

Partial price i Default = 10 (LP) or 1 (NP)

This parameter is recommended for large problems that have significantly more variables
than constraints. It reduces the work required for each “pricing” operation (when a nonbasic
variable is selected to become superbasic).

• When i = 1, all columns of the constraint matrix
(
A −I

)
are searched.

• Otherwise, A and I are partitioned to give i roughly equal segments Aj , Ij (j = 1 to
i). If the previous pricing search was successful on Aj , Ij , the next search begins on
the segments Aj+1, Ij+1. (All subscripts here are modulo i.)
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• If a reduced gradient is found that is larger than some dynamic tolerance, the variable
with the largest such reduced gradient (of appropriate sign) is selected to become
superbasic. If nothing is found, the search continues on the next segments Aj+2, Ij+2,
and so on.

• Partial price T (or T/2 or T/3) may suit time-stage models with T time periods.

Pivot tolerance t Default = ε2/3 ≈ 3.7e-11

During solution of QP subproblems, the pivot tolerance is used to prevent columns entering
the basis if they would cause the basis to become almost singular.

• When x changes to x+αp for some search direction p, a “ratio test” determines which
component of x reaches an upper or lower bound first. The corresponding element of
p is called the pivot element.

• Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller
than the pivot tolerance t.

• It is common for two or more variables to reach a bound at essentially the same time. In
such cases, the Feasibility tolerance provides some freedom to maximize the pivot
element and thereby improve numerical stability. An excessively small Feasibility
tolerance should therefore not be specified.

• To a lesser extent, the Expand frequency also provides some freedom to maximize the
pivot element. Hence, an excessively large Expand frequency should not be specified.

Print file f
Print frequency k Default = 100

If f > 0, the Print file is output to file number f . If Minor print level > 0, a line of the
QP iteration log is output every kth iteration. The default f is obtained from subroutine
snInit’s parameter iPrint. Set f = 0 to suppress output to the Print file.

Proximal point method i Default = 1

i = 1 or 2 specifies minimization of ‖x − x0‖1 or 1
2‖x − x0‖

2
2 when the starting point x0 is

changed to satisfy the linear constraints (where x0 refers to nonlinear variables).

Punch file f Default = 0

If f > 0, the final solution obtained will be output to file f in the format described in
Section 9.2. For linear programs, this format is compatible with various commercial systems.

QPSolver Cholesky Default
QPSolver CG

QPSolver QN

This specifies the method used to solve system (2.2) for the search directions in phase 2 of
the QP subproblem.

QPSolver Cholesky holds the full Cholesky factor R of the reduced Hessian ZTHZ. As
the minor iterations proceed, the dimension of R changes with the number of superbasic
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variables. If the number of superbasic variables needs to increase beyond the value of
Reduced Hessian dimension, the reduced Hessian cannot be stored and the solver switches
to QPSolver CG. The Cholesky solver is reactivated if the number of superbasics stabilizes
at a value less than Reduced Hessian dimension.

QPSolver QN solves the QP using a quasi-Newton method similar to that of MINOS. In
this case, R is the factor of a quasi-Newton approximate Hessian.

QPSolver CG uses an active-set method similar to QPSolver QN, but uses the conjugate-
gradient method to solve all systems involving the reduced Hessian.

• The Cholesky QP solver is the most robust, but may require a significant amount of
computation if the number of superbasics is large.

• The quasi-Newton QP solver does not require the computation of the R at the start of
each QP subproblem. It may be appropriate when the number of superbasics is large
but relatively few major iterations are needed to reach a solution (e.g., if SNOPT is
called with a Warm start).

• The conjugate-gradient QP solver is appropriate for problems with large numbers of
degrees of freedom (say, more than 2000 superbasics).

Reduced Hessian dimension i Default = min{2000, n1 + 1}
same as Hessian dimension

This specifies that an i × i triangular matrix R is to be available for use by the QPSolver

Cholesky option (to define the reduced Hessian according to RTR = ZTHZ). The value of
i affects when QPSolver CG is activated.

Save frequency k Default = 100

If a New basis file has been specified, a basis map describing the current solution will be
saved on the appropriate file every kth iteration. A Backup basis file will also be saved if
specified.

Scale option i Default = 0
Scale tolerance t Default = 0.9
Scale Print

Three scale options are available as follows:

i Meaning

0 No scaling. This is recommended if it is known that x and the constraint matrix (and
Jacobian) never have very large elements (say, larger than 100).

1 Linear constraints and variables are scaled by an iterative procedure that attempts
to make the matrix coefficients as close as possible to 1.0 (see Fourer [6]). This will
sometimes improve the performance of the solution procedures.

2 All constraints and variables are scaled by the iterative procedure. Also, an additional
scaling is performed that takes into account columns of

(
A −I

)
that are fixed or

have positive lower bounds or negative upper bounds.

If nonlinear constraints are present, the scales depend on the Jacobian at the first point
that satisfies the linear constraints. Scale option 2 should therefore be used only if
(a) a good starting point is provided, and (b) the problem is not highly nonlinear.
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Scale tolerance t affects how many passes might be needed through the constraint
matrix. On each pass, the scaling procedure computes the ratio of the largest and smallest
nonzero coefficients in each column:

ρj = max
i
|aij |/min

i
|aij | (aij 6= 0).

If maxj ρj is less than t times its previous value, another scaling pass is performed to adjust
the row and column scales. Raising t from 0.9 to 0.99 (say) usually increases the number of
scaling passes through A. At most 10 passes are made.

Scale Print causes the row-scales r(i) and column-scales c(j) to be printed. The scaled
matrix coefficients are āij = aijc(j)/r(i), and the scaled bounds on the variables and slacks
are l̄j = lj/c(j), ūj = uj/c(j), where c(j) ≡ r(j − n) if j > n.

Solution Yes

Solution No

Solution If Optimal, Infeasible, or Unbounded

Solution file f Default = 0

The first three options determine whether the final solution obtained is to be output to
the Print file. The file option operates independently; if f > 0, the final solution will be
output to file f (whether optimal or not).

• For the Yes and If Optimal options, floating-point numbers are printed in f16.5

format, and “infinite” bounds are denoted by the word None.

• For the file option, all numbers are printed in 1p,e16.6 format, including “infinite”
bounds, which will have magnitude infBnd (default value 1.000000e+20).

• To see more significant digits in the printed solution, it is sometimes useful to make f
refer to the Print file (i.e., the number specified by Print file).

Start Objective Check at Column k Default = 1
Start Constraint Check at Column k Default = 1
Stop Objective Check at Column l Default = n′1
Stop Constraint Check at Column l Default = n′′1

These keywords are not allowed in the snOptA interface. The default values depend on n′1
and n′′1 , the numbers of nonlinear objective variables and Jacobian variables (see p. 32).

If Verify level > 0, these options may be used to abbreviate the verification of in-
dividual derivative elements computed by subroutines funobj, funcon and usrfun. For
example:

• If the first 100 objective gradients appeared to be correct in an earlier run, and if
you have just found a bug in funobj that ought to fix up the 101-th component,
then you might as well specify Start Objective Check at Column 101. Similarly
for columns of the Jacobian.

• If the first 100 variables occur nonlinearly in the constraints, and the remaining vari-
ables are nonlinear only in the objective, then funobj must set the first 100 components
of g(*) to zero, but these hardly need to be verified. The above option would again
be appropriate.
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Sticky parameters No Default
Sticky parameters Yes

User-defined optional parameters may be modified so that they lie in a sensible range. For
example, any tolerance specified as negative or zero will be changed to its positive default
value. Specifying Sticky parameters No will result in the original user-defined parameters
being reloaded into workspace after the run is completed. If a second run is made immediatly
following a call with Sticky parameters Yes (e.g., with the Hot start option) then any
modified parameter values will persist in workspace for the second run.

Summary file f
Summary frequency k Default = 100

If f > 0, the Summary file is output to file f . If Minor print level > 0, a line of the QP
iteration log is output every kth minor iteration. The default f is obtained from subroutine
snInit’s parameter iSumm. Set f = 0 to suppress the Summary file.

Superbasics limit i Default = n1 + 1

This places a limit on the storage allocated for superbasic variables. Ideally, i should be set
slightly larger than the “number of degrees of freedom” expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of freedom.
(The number of variables lying strictly between their bounds is no more than m, the number
of general constraints.) The default value of i is therefore 1.

For nonlinear problems, the number of degrees of freedom is often called the “number
of independent variables”.

Normally, i need not be greater than n1+1, where n1 is the number of nonlinear variables.
For many problems, i may be considerably smaller than n1. This will save storage if n1 is
very large.

Suppress parameters

Normally SNOPT prints the Specs file as it is being read, and then prints a complete list
of the available keywords and their final values. The Suppress Parameters option tells
SNOPT not to print the full list.

System information No Default
System information Yes

The Yes option provides additional information on the progress of the iterations, including
Basis Repair details when ill-conditioned bases are encountered and the LU factorization
parameters are strengthened.

Time limit i Default = 0

This places a limit of i cpu seconds on the time used for solving the problem. The default
value i = 0 implies that no cpu limit is imposed.

Timing level ` Default = 3

` = 0 suppresses output of cpu times. (Intended for installations with dysfunctional timing
routines.)
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Total real workspace maxrw Default = lenrw

Total integer workspace maxiw Default = leniw

Total character workspace maxcw Default = lencw

User real workspace maxru Default = 500
User integer workspace maxiu Default = 500
User character workspace maxcu Default = 500

These options may be used to confine SNOPT to certain parts of its workspace arrays cw,
iw, rw. (The arrays are defined by the last six parameters of SNOPT.)

The Total ... options place an upper limit on SNOPT’s workspace. They may be
useful on machines with virtual memory. For example, some systems allow a very large
array rw(lenrw) to be declared at compile time with no overhead in saving the resulting
object code. At run time, when various problems of different size are to be solved, it may be
sensible to restrict SNOPT to the lower end of rw in order to reduce paging activity slightly.
(However, SNOPT accesses storage contiguously wherever possible, so the benefit may be
slight. In general it is far better to have too much storage than not enough.)

If SNOPT’s “user” parameters ru, lenru happen to be the same as rw, lenrw, the
nonlinear function routines will be free to use ru(maxrw + 1 : lenru) for their own purpose.
Similarly for the other work arrays.

The User ... options place a lower limit on SNOPT’s workspace (not counting the
first 500 elements). Again, if SNOPT’s parameters ru, lenru happen to be the same as
rw, lenrw, the function routines will be free to use ru(501 : maxru) for their own purpose.
Similarly for the other work arrays.

Unbounded objective value fmax Default = 1.0e+15

Unbounded step size αmax Default = 1.0e+18

These parameters are intended to detect unboundedness in nonlinear problems. (They may
not achieve that purpose!) During a linesearch, f0 is evaluated at points of the form x+αp,
where x and p are fixed and α varies. if |f0| exceeds fmax or α exceeds αmax, iterations are
terminated with the exit message Problem is unbounded (or badly scaled).

If singularities are present, unboundedness in f0(x) may be manifested by a floating-
point overflow (during the evaluation of f0(x + αp)), before the test against fmax can be
made.

Unboundedness in x is best avoided by placing finite upper and lower bounds on the
variables.

Verify level l Default = 0

This option refers to finite-difference checks on the derivatives computed by the user-
provided routines. Derivatives are checked at the first point that satisfies all bounds and
linear constraints.

l Meaning

0 Only a “cheap” test will be performed, requiring 2 calls to usrfun for snOptA, and 2
calls to funcon and 3 calls to funobj for snOptB.

1 Individual gradients will be checked (with a more reliable test). A key of the form
“OK” or “Bad?” indicates whether or not each component appears to be correct.

2 Individual columns of the problem Jacobian will be checked.

3 Options 2 and 1 will both occur (in that order).
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−1 Derivative checking is disabled.

Verify level 3 should be specified whenever a new function routine is being developed.
The Start and Stop keywords may be used to limit the number of nonlinear variables
checked. Missing derivatives are not checked, so they result in no overhead.

Violation limit τ Default = 10

This keyword defines an absolute limit on the magnitude of the maximum constraint viola-
tion after the linesearch. On completion of the linesearch, the new iterate xk+1 satisfies the
condition

vi(xk+1) ≤ τ max{10, vi(x0)}, (7.3)

where x0 is the point at which the nonlinear constraints are first evaluated and vi(x) is the
ith nonlinear constraint violation vi(x) = max(0, li − fi(x), fi(x)− ui).

The effect of this violation limit is to restrict the iterates to lie in an expanded feasible
region whose size depends on the magnitude of τ . This makes it possible to keep the iterates
within a region where the objective is expected to be well-defined and bounded below. If the
objective is bounded below for all values of the variables, then τ may be any large positive
value.

Warm start Default = value of input argument start

This parameter indicates that a basis is already specified via the input arrays for SNOPT.
This option has the same effect as the input arguments start = 2 for snOptA, and start

= ’Warm’ for snOptB and snOptC. If specified as an optional parameter, this value has
precedence over the value of the input argument start. This allows the start parameter
to be changed at run-time using the Specs file.
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8. Output

Subroutine snInit specifies unit numbers for the Print and Summary files described in this
section. The files can be redirected with the Print file and Summary file options (or
suppressed).

8.1. The PRINT file

If Print file > 0, the following information is output to the Print file during the solution
process. All printed lines are less than 131 characters.

• A listing of the Specs file, if any.

• A listing of the options that were or could have been set in the Specs file.

• An estimate of the working storage needed and the amount available.

• Some statistics about the problem being solved.

• The storage available for the LU factors of the basis matrix.

• A summary of the scaling procedure, if Scale option > 0.

• Notes about the initial basis resulting from a CRASH procedure or a basis file.

• The major iteration log.

• The minor iteration log.

• Basis factorization statistics.

• The EXIT condition and some statistics about the solution obtained.

• The printed solution, if requested.

The last five items are described in the following sections.

8.2. The major iteration log

If Major print level > 0, one line of information is output to the Print file every kth
minor iteration, where k is the specified Print frequency (default k = 1).

Label Description

Itns The cumulative number of minor iterations.

Major The current major iteration number.

Minors is the number of iterations required by both the feasibility and optimality phases
of the QP subproblem. Generally, Minors will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 2).

Step The step length α taken along the current search direction p. The variables x
have just been changed to x + αp. On reasonably well-behaved problems, the
unit step will be taken as the solution is approached.

nCon The number of times subroutines usrfun or funcon have been called to evaluate
the nonlinear problem functions. Evaluations needed for the estimation of the
derivatives by finite differences are not included. nCon is printed as a guide to
the amount of work required for the linesearch.

Feasible is the value of rowerr, the maximum component of the scaled nonlinear con-
straint residual (7.1). The solution is regarded as acceptably feasible if Feasible
is less than the Major feasibility tolerance. In this case, the entry is con-
tained in parenthesis.
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If the constraints are linear, all iterates are feasible and this entry is not printed.

Optimal is the value of maxgap, the maximum complementarity gap (7.2). It is an estimate
of the degree of nonoptimality of the reduced costs. Both Feasbl and Optimal

are small in the neighborhood of a solution.

MeritFunction is the value of the augmented Lagrangian merit function (see (2.3)). This
function will decrease at each iteration unless it was necessary to increase the
penalty parameters (see Section 2). As the solution is approached, Merit will
converge to the value of the objective at the solution.

In elastic mode, the merit function is a composite function involving the con-
straint violations weighted by the elastic weight.

If the constraints are linear, this item is labeled Objective, the value of the
objective function. It will decrease monotonically to its optimal value.

L+U The number of nonzeros representing the basis factors L and U on completion of
the QP subproblem.

If nonlinear constraints are present, the basis factorization B = LU is computed
at the start of the first minor iteration. At this stage, LU = lenL + lenU, where
lenL, the number of subdiagonal elements in the columns of a lower triangular
matrix and lenU is the number of diagonal and superdiagonal elements in the
rows of an upper-triangular matrix.

As columns of B are replaced during the minor iterations, LU may fluctuate up
or down but in general will tend to increase. As the solution is approached and
the minor iterations decrease towards zero, LU will reflect the number of nonzeros
in the LU factors at the start of the QP subproblem.

If the constraints are linear, refactorization is subject only to the Factorize

frequency, and LU will tend to increase between factorizations.

BSwap The number of columns of the basis matrix B that were swapped with columns
of S to improve the condition of B. The swaps are determined by an LU fac-

torization of the rectangular matrix BS =
(
B S

)T
with stability being favored

more than sparsity.

nS The current number of superbasic variables.

CondHz An estimate of the condition number of RTR, an estimate of ZTHZ, the reduced
Hessian of the Lagrangian. It is the square of the ratio of the largest and small-
est diagonals of the upper triangular matrix R (which is a lower bound on the
condition number of RTR). Cond Hz gives a rough indication of whether or not
the optimization procedure is having difficulty. If ε is the relative precision of
the machine being used, the SQP algorithm will make slow progress if Cond Hz

becomes as large as ε−1/2 ≈ 108, and will probably fail to find a better solution
if Cond Hz reaches ε−3/4 ≈ 1012.

To guard against high values of Cond Hz, attention should be given to the scaling
of the variables and the constraints. In some cases it may be necessary to add
upper or lower bounds to certain variables to keep them a reasonable distance
from singularities in the nonlinear functions or their derivatives.

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if there are no nonlinear constraints).

The summary line may include additional code characters that indicate what happened
during the course of the major iteration.
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Code Meaning

c Central differences have been used to compute the unknown components of the
objective and constraint gradients. A switch to central differences is made if either
the linesearch gives a small step, or x is close to being optimal. In some cases,
it may be necessary to re-solve the QP subproblem with the central-difference
gradient and Jacobian.

d During the linesearch it was necessary to decrease the step in order to obtain a
maximum constraint violation conforming to the value of Violation limit.

l The norm-wise change in the variables was limited by the value of the Major

step limit. If this output occurs repeatedly during later iterations, it may be
worthwhile increasing the value of Major step limit.

i If SNOPT is not in elastic mode, an “i” signifies that the QP subproblem is
infeasible. This event triggers the start of nonlinear elastic mode, which remains
in effect for all subsequent iterations. Once in elastic mode, the QP subproblems
are associated with the elastic problem NP(γ).

If SNOPT is already in elastic mode, an “i” indicates that the minimizer of the
elastic subproblem does not satisfy the linearized constraints. (In this case, a
feasible point for the usual QP subproblem may or may not exist.)

M An extra evaluation of the problem functions was needed to define an acceptable
positive-definite quasi-Newton update to the Lagrangian Hessian. This modifica-
tion is only done when there are nonlinear constraints.

m This is the same as “M” except that it was also necessary to modify the update to
include an augmented Lagrangian term.

n No positive-definite BFGS update could be found. The approximate Hessian is
unchanged from the previous iteration.

R The approximate Hessian has been reset by discarding all but the diagonal el-
ements. This reset will be forced periodically by the Hessian frequency and
Hessian updates keywords. However, it may also be necessary to reset an ill-
conditioned Hessian from time to time.

r The approximate Hessian was reset after ten consecutive major iterations in which
no BFGS update could be made. The diagonals of the approximate Hessian are
retained if at least one update has been done since the last reset. Otherwise, the
approximate Hessian is reset to the identity matrix.

s A self-scaled BFGS update was performed. This update is used when the Hessian
approximation is diagonal, and hence always follows a Hessian reset.

t The minor iterations were terminated because of the Minor iterations limit.

T The minor iterations were terminated because of the New superbasics limit.

u The QP subproblem was unbounded.

w A weak solution of the QP subproblem was found.

z The Superbasics limit was reached.
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8.3. The minor iteration log

If Minor print level > 0, one line of information is output to the Print file every kth minor
iteration, where k is the specified Minor print frequency (default k = 1). A heading is
printed before the first such line following a basis factorization. The heading contains the
items described below. In this description, a PRICE operation is the process by which a
nonbasic variable (denoted by jq) is selected to become superbasic, in addition to those
already in the superbasic set. If the problem is purely linear, variable jq usually becomes
basic immediately (unless it should happen to reach its opposite bound and return to the
nonbasic set). If Partial price is in effect, variable jq is selected from App or Ipp, the
ppth segments of the constraint matrix

(
A −I

)
.

Label Description

Itn The current iteration number.

LPmult,QPmult This is the reduced cost (or reduced gradient) of the variable jq selected by
PRICE at the start of the present iteration. Algebraically, dj is dj = gj −πTaj for
j = jq, where gj is the gradient of the current objective function, π is the vector
of dual variables for the QP subproblem, and aj is the jth column of

(
A −I

)
.

Note that dj is the 1-norm of the reduced-gradient vector at the start of the
iteration, just after the PRICE operation.

LPstep,QPstep The step length α taken along the current search direction p. The variables
x have just been changed to x + αp. If a variable is made superbasic during the
current iteration (+SBS > 0), Step will be the step to the nearest bound. During
Phase 2, the step can be greater than one only if the reduced Hessian is not positive
definite.

nInf The number of infeasibilities after the present iteration. This number will not
increase unless the iterations are in elastic mode.

SumInf If nInf > 0, this is sInf, the sum of infeasibilities after the present iteration. It
usually decreases at each nonzero Step, but if nInf decreases by 2 or more, SumInf
may occasionally increase.

In elastic mode, the heading is changed to Composite Obj, and the value printed
decreases monotonically.

rgNorm The norm of the reduced-gradient vector at the start of the iteration. (It is the
norm of the vector with elements dj for variables j in the superbasic set.) During
Phase 2 this norm will be approximately zero after a unit step.

(The heading is not printed if the problem is linear.)

LPobjective,QPobjective,Elastic QPobj The QP objective function after the present
iteration. In elastic mode, the heading is changed to Elastic QPobj. In either
case, the value printed decreases monotonically.

+SBS The variable jq selected by PRICE to be added to the superbasic set.

-SBS The superbasic variable chosen to become nonbasic.

-BS The variable removed from the basis (if any) to become nonbasic.

Pivot If column aq replaces the rth column of the basis B, Pivot is the rth element of a
vector y satisfying By = aq. Wherever possible, Step is chosen to avoid extremely
small values of Pivot (since they cause the basis to be nearly singular). In rare
cases, it may be necessary to increase the Pivot tolerance to exclude very small
elements of y from consideration during the computation of Step.
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L+U The number of nonzeros representing the basis factors L and U . Immediately
after a basis factorization B = LU , this is lenL+lenU, the number of subdiagonal
elements in the columns of a lower triangular matrix and the number of diagonal
and superdiagonal elements in the rows of an upper-triangular matrix. Further
nonzeros are added to L when various columns of B are later replaced. As columns
of B are replaced, the matrix U is maintained explicitly (in sparse form). The value
of L will steadily increase, whereas the value of U may fluctuate up or down. Thus,
in general, the value of L+U may fluctuate up or down; in general it will tend to
increase.)

ncp The number of compressions required to recover storage in the data structure for
U . This includes the number of compressions needed during the previous basis
factorization. Normally ncp should increase very slowly. If not, the amount of
integer and real workspace available to SNOPT should be increased by a significant
amount. As a suggestion, the work arrays iw(*) and rw(*) should be extended
by L + U elements.

nS The current number of superbasic variables. (The heading is not printed if the
problem is linear.)

cond Hz See the major iteration log. (The heading is not printed if the problem is linear.)

8.4. Basis factorization statistics

If Major print level ≥ 10, the following items are output to the Print file whenever

LUSOL [12] factorizes the basis B or the rectangular matrix BS =
(
B S

)T
before solution

of the next QP subproblem. Gaussian elimination is used to compute sparse factors L and
U , where PLPT and PUQ are lower and upper triangular matrices for some permutation
matrices P and Q. Stability is ensured as described under the LU options (page 75).

If Minor print level ≥ 10, the same items are printed during the QP solution whenever
the current B is factorized.

Label Description

Factorize The number of factorizations since the start of the run.

Demand A code giving the reason for the present factorization.

0 First LU factorization.

1 The number of updates reached the Factorization frequency.

2 The nonzeros in the updated factors have increased significantly.

7 Not enough storage to update factors.

10 Row residuals too large (see the description of Check frequency).

11 Ill-conditioning has caused inconsistent results.

Itn The current minor iteration number.

Nonlin The number of nonlinear variables in the current basis B.

Linear The number of linear variables in B.

Slacks The number of slack variables in B.

B BR BS or BT factorize The type of LU factorization.

B Periodic factorization of the basis B.
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BR More careful rank-revealing factorization of B using threshold rook pivot-
ing. This occurs mainly at the start, if the first basis factors seem singular
or ill-conditioned. Followed by a normal B factorize.

BS BS is factorized to choose a well-conditioned B from the current
(
B S

)
.

Followed by a normal B factorize.

BT Same as BS except the current B is tried first and accepted if it appears to
be not much more ill-conditioned than after the previous BS factorize.

m The number of rows in B or BS.

n The number of columns in B or BS. Preceded by “=” or “>” respectively.

Elems The number of nonzero elements in B or BS.

Amax The largest nonzero in B or BS.

Density The percentage nonzero density of B or BS.

Merit The average Markowitz merit count for the elements chosen to be the diagonals
of PUQ. Each merit count is defined to be (c− 1)(r− 1) where c and r are the
number of nonzeros in the column and row containing the element at the time it
is selected to be the next diagonal. Merit is the average of n such quantities. It
gives an indication of how much work was required to preserve sparsity during
the factorization.

lenL The number of nonzeros in L.

Cmpressns The number of times the data structure holding the partially factored matrix
needed to be compressed to recover unused storage. Ideally this number should
be zero. If it is more than 3 or 4, the amount of workspace available to SNOPT

should be increased for efficiency.

Incres The percentage increase in the number of nonzeros in L and U relative to the
number of nonzeros in B or BS.

Utri is the number of triangular rows of B or BS at the top of U .

lenU The number of nonzeros in U , including its diagonals.

Ltol The largest subdiagonal element allowed in L. This is the specified LU factor

tolerance or a smaller value currently being used for greater stability.

Umax The largest nonzero element in U .

Ugrwth The ratio Umax/Amax, which ideally should not be substantially larger than 10.0
or 100.0. If it is orders of magnitude larger, it may be advisable to reduce the
LU factor tolerance to 5.0, 4.0, 3.0 or 2.0, say (but bigger than 1.0).

As long as Lmax is not large (say 5.0 or less), max{Amax, Umax} / DUmin gives
an estimate of the condition number of B. If this is extremely large, the basis
is nearly singular. Slacks are used to replace suspect columns of B and the
modified basis is refactored.

Ltri The number of triangular columns of B or BS at the left of L.

dense1 The number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

Lmax The actual maximum subdiagonal element in L (bounded by Ltol).
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Akmax The largest nonzero generated at any stage of the LU factorization. (Values
much larger than Amax indicate instability.)

growth The ratio Akmax/Amax. Values much larger than 100 (say) indicate instability.

bump The size of the block to be factorized nontrivially after the triangular rows and
columns of B or BS have been removed.

dense2 The number of columns remaining when the density of the basis matrix being
factorized reached 0.6. (The Markowitz pivot strategy searches fewer columns
at that stage.)

DUmax The largest diagonal of PUQ.

DUmin The smallest diagonal of PUQ.

condU The ratio DUmax/DUmin, which estimates the condition number of U (and of B
if Ltol is less than 5.0, say).

8.5. Crash statistics

If Major print level ≥ 10, the following items are output to the Print file when Start =
’Cold’ and no basis file is loaded. They refer to the number of columns that the CRASH

procedure selects during several passes through A while searching for a triangular basis
matrix.

Label Description

Slacks The number of slacks selected initially.

Free cols The number of free columns in the basis.

Preferred The number of “preferred” columns in the basis (i.e., hs(j) = 3 for some j ≤ n).

Unit The number of unit columns in the basis.

Double The number of double columns in the basis.

Triangle The number of triangular columns in the basis.

Pad The number of slacks used to pad the basis.
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8.6. EXIT conditions

When any solver or auxliliary routine in the SNOPT package terminates, a message of the
following form is output to the Print and Summary files:

SOLVER EXIT e -- exit condition

SOLVER INFO i -- informational message

where e is an integer that labels a generic exit condition, and i labels one of several alternative
informational messages. For example, SNOPT may output

SNOPTA EXIT 20 -- the problem appears to be unbounded

SNOPTA INFO 21 -- unbounded objective

where the exit condition gives a broad definition of what happened, while the informational
message is more specific about the cause of the termination. The integer i is the value of
the output argument INFO. The integer e may be recovered from INFO by changing the least
significant digit to zero. Possible exit conditions for SNOPT follow:

0 Finished successfully
10 The problem appears to be infeasible
20 The problem appears to be unbounded
30 Resource limit error
40 Terminated after numerical difficulties
50 Error in the user-supplied functions
60 Undefined user-supplied functions
70 User requested termination
80 Insufficient storage allocated
90 Input arguments out of range

100 Finished successfully (associated with SNOPT auxiliary routines)
110 Errors while processing MPS data
120 Errors while estimating Jacobian structure
130 Errors while reading the Specs file
140 System error

Exit conditions 0–20 arise when a solution exists (though it may not be optimal). A
basis file may be saved, and the solution is output to the Print or Solution files if requested.

If exit conditions 80–100 occur during the first basis factorization, the primal and dual
variables x and pi will have their original input values. Basis files are saved if requested,
but certain values in the printed solution will not be meaningful.

We describe each exit message from SNOPT and suggest possible courses of action.

EXIT -- 0 finished successfully

INFO -- 1 optimality conditions satisfied

INFO -- 2 feasible point found (from option Feasible point only)

INFO -- 3 requested accuracy could not be achieved

These messages usually indicate a successful run. Basis files are saved, and the solution
is printed and/or saved on the Solution file.

For INFO 1 the final point seems to be a solution of NP. This means that x is feasible
(it satisfies the constraints to the accuracy requested by the Feasibility tolerance), the
reduced gradient is negligible, the reduced costs are optimal, and R is nonsingular.

In all cases, some caution should be exercised. For example, if the objective value is
much better than expected, SNOPT may have obtained an optimal solution to the wrong
problem! Almost any item of data could have that effect if it has the wrong value. Verifying
that the problem has been defined correctly is one of the more difficult tasks for a model
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builder. It is good practice in the function subroutines to print any data that is input during
the first entry.

If nonlinearities exist, one must always ask the question: could there be more than one
local optimum? When the constraints are linear and the objective is known to be convex
(e.g., a sum of squares) then all will be well if we are minimizing the objective: a local
minimum is a global minimum in the sense that no other point has a lower function value.
(However, many points could have the same objective value, particularly if the objective is
largely linear.) Conversely, if we are maximizing a convex function, a local maximum cannot
be expected to be global, unless there are sufficient constraints to confine the feasible region.

Similar statements could be made about nonlinear constraints defining convex or concave
regions. However, the functions of a problem are more likely to be neither convex nor
concave. Our advice is always to specify a starting point that is as good an estimate
as possible, and to include reasonable upper and lower bounds on all variables, in order to
confine the solution to the specific region of interest. We expect modelers to know something
about their problem, and to make use of that knowledge as they themselves know best.

One other caution about “Optimality conditions satisfied”. Some of the variables
or slacks may lie outside their bounds more than desired, especially if scaling was requested.
Some information concerning the run can be obtained from the short summary given at the
end of the print and summary files. Here is an example from the problem Toy discussed in
Section 3.2.

SNOPTA EXIT 0 -- finished successfully

SNOPTA INFO 1 -- optimality conditions satisfied

Problem name Toy1

No. of iterations 7 Objective value -1.0000000008E+00

No. of major iterations 7 Linear objective 0.0000000000E+00

Penalty parameter 3.253E-02 Nonlinear objective -1.0000000008E+00

No. of calls to funobj 9 No. of calls to funcon 9

No. of degenerate steps 0 Percentage 0.00

Max x 2 1.0E+00 Max pi 1 1.2E-01

Max Primal infeas 0 0.0E+00 Max Dual infeas 2 8.0E-10

Nonlinear constraint violn 6.4E-09

Max Primal infeas refers to the largest bound infeasibility and which variable is in-
volved. If it is too large, consider restarting with a smaller Minor feasibility tolerance

(say 10 times smaller) and perhaps Scale option 0.
Similarly, Max Dual infeas indicates which variable is most likely to be at a non-optimal

value. Broadly speaking, if

Max Dual infeas/Max pi = 10−d,

then the objective function would probably change in the dth significant digit if optimiza-
tion could be continued. If d seems too large, consider restarting with a smaller Major

optimality tolerance.
Finally, Nonlinear constraint violn shows the maximum infeasibility for nonlin-

ear rows. If it seems too large, consider restarting with a smaller Major feasibility

tolerance.
If the requested accuracy could not be achieved, a feasible solution has been found,

but the requested accuracy in the dual infeasibilities could not be achieved. An abnormal
termination has occurred, but SNOPT is within 10−2 of satisfying the Major optimality

tolerance. Check that the Major optimality tolerance is not too small.
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EXIT -- 10 The problem appears to be infeasible

INFO -- 11 infeasible linear constraints

INFO -- 12 infeasible linear equalities

INFO -- 13 nonlinear infeasibilities minimized

INFO -- 14 infeasibilities minimized

This exit occurs if SNOPT is unable to find a point satisfying the constraints.

When the constraints are linear, the output messages are based on a relatively reliable
indicator of infeasibility. Feasibility is measured with respect to the upper and lower bounds
on the variables and slacks. Among all the points satisfying the general constraints Ax−s =
0, there is apparently no point that satisfies the bounds on x and s. Violations as small
as the Minor feasibility tolerance are ignored, but at least one component of x or s
violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize cor-
rectly. Even if a feasible solution exists, the current linearization of the constraints may not
contain a feasible point. In an attempt to deal with this situation, when solving each QP
subproblem, SNOPT is prepared to relax the bounds on the slacks associated with nonlinear
rows.

If a QP subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier
estimates for the nonlinear constraints become large), SNOPT enters so-called “nonlinear
elastic” mode. The subproblem includes the original QP objective and the sum of the
infeasibilities—suitably weighted using the Elastic weight parameter. In elastic mode,
some of the bounds on the nonlinear rows “elastic”—i.e., they are allowed to violate their
specified bounds. Variables subject to elastic bounds are known as elastic variables. An
elastic variable is free to violate one or both of its original upper or lower bounds. If
the original problem has a feasible solution and the elastic weight is sufficiently large, a
feasible point eventually will be obtained for the perturbed constraints, and optimization
can continue on the subproblem. If the nonlinear problem has no feasible solution, SNOPT

will tend to determine a “good” infeasible point if the elastic weight is sufficiently large.
(If the elastic weight were infinite, SNOPT would locally minimize the nonlinear constraint
violations subject to the linear constraints and bounds.)

Unfortunately, even though SNOPT locally minimizes the nonlinear constraint violations,
there may still exist other regions in which the nonlinear constraints are satisfied. Wherever
possible, nonlinear constraints should be defined in such a way that feasible points are known
to exist when the constraints are linearized.

EXIT -- 20 The problem appears to be unbounded

INFO -- 21 unbounded objective

INFO -- 22 constraint violation limit reached

For linear problems, unboundedness is detected by the simplex method when a nonbasic
variable can be increased or decreased by an arbitrary amount without causing a basic
variable to violate a bound. A message prior to the EXIT message will give the index of
the nonbasic variable. Consider adding an upper or lower bound to the variable. Also,
examine the constraints that have nonzeros in the associated column, to see if they have
been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give
an erroneous indication of unboundedness. Consider using the Scale option.

For nonlinear problems, SNOPT monitors both the size of the current objective function
and the size of the change in the variables at each step. If either of these is very large
(as judged by the Unbounded parameters—see Section 7.7), the problem is terminated and
declared unbounded. To avoid large function values, it may be necessary to impose bounds
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on some of the variables in order to keep them away from singularities in the nonlinear
functions.

The second informational message indicates an abnormal termination while enforcing
the limit on the constraint violations. This exit implies that the objective is not bounded
below in the feasible region defined by expanding the bounds by the value of the Violation

limit.

EXIT -- 30 Resource limit error

INFO -- 31 iteration limit reached

INFO -- 32 major iteration limit reached

INFO -- 33 the superbasics limit is too small

Some limit was exceeded before the required solution could be found. Check the iteration
log to be sure that progress was being made. If so, restart the run using a basis file that
was saved (or should have been saved!) at the end of the run.

If the superbasics limit is too small, then the problem appears to be more nonlinear
than anticipated. The current set of basic and superbasic variables have been optimized
as much as possible and a PRICE operation is necessary to continue, but there are already
Superbasics limit superbasics (and no room for any more).

In general, raise the Superbasics limit s by a reasonable amount, bearing in mind
the storage needed for the reduced Hessian. (The Reducd Hessian dimension h will also
increase to s unless specified otherwise, and the associated storage will be about 1

2s
2 words.)

In some cases you may have to set h < s to conserve storage. The QPSolver CG option will
be invoked and the rate of convergence will probably fall off severely.

EXIT -- 40 Terminated after numerical difficulties

INFO -- 41 current point cannot be improved

INFO -- 42 singular basis

INFO -- 43 cannot satisfy the general constraints

INFO -- 44 ill-conditioned null-space basis

These conditions arise only after the LU factorization options have been strengthened
(automatically) as much as possible.

For INFO 41, SNOPT was unable to improve on a non-optimal point.

1. Subroutines usrfun, funobj or funcon may be returning accurate function values but
inaccurate gradients (or vice versa). This is the most likely cause. Study the comments
given for INFO 51 and 52, and check that the coding of the problem functions is correct.

2. The function and gradient values could be consistent, but their precision could be too
low. For example, accidental use of a real data type when double precision was
intended would lead to a relative function precision of about 10−6 instead of something
like 10−15. The default Major optimality tolerance of 10−6 would need to be raised
to about 10−3 for optimality to be declared (at a rather suboptimal point). Of course,
it is better to revise the function coding to obtain as much precision as economically
possible.

3. If function values are obtained from an expensive iterative process, they may be ac-
curate to rather few significant figures, and gradients will probably not be available.
One should specify

Function precision t

Major optimality tolerance
√
t
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but even then, if t is as large as 10−5 or 10−6 (only 5 or 6 significant figures), the same
exit condition may occur. At present the only remedy is to increase the accuracy of
the function calculation.

For INFO 42, the first factorization attempt found the basis to be structurally or nu-
merically singular. (Some diagonals of the triangular matrix U were deemed too small.)
The associated variables were replaced by slacks and the modified basis refactorized, but
singularity persisted.

For INFO 43, the basic variables xB have been recomputed, given the present values of
the superbasic and nonbasic variables. A step of “iterative refinement” has also been applied
to increase the accuracy of xB, but a row check has revealed that the resulting solution does
not satisfy the QP constraints Ax− s = b sufficiently well.

For INFO 44, during computation of the reduced Hessian ZTHZ, some column(s) of Z
continued to contain very large values.

In all cases, the problem must be badly scaled (or the basis must be pathologically ill-
conditioned without containing any large entries). Try Scale option 2 if it has not yet
been used.

EXIT -- 50 Error in the user-supplied functions

INFO -- 51 incorrect objective derivatives

INFO -- 52 incorrect constraint derivatives

There may be errors in the subroutines that define the problem objective and constraints.
If the objective derivatives appear to incorrect, a check has been made on some individual
elements of the objective gradient array at the first point that satisfies the linear constraints.
At least one component (G(k) or gObj(j) ) is being set to a value that disagrees markedly
with its associated forward-difference estimate ∂f0/∂xj . (The relative difference between
the computed and estimated values is 1.0 or more.) This exit is a safeguard because SNOPT

will usually fail to make progress when the computed gradients are seriously inaccurate. In
the process it may expend considerable effort before terminating with INFO 41 above.

For INFO 51 Check the function and gradient computation very carefully in usrfun

or funobj. A simple omission (such as forgetting to divide f0 by 2) could explain the
discrepancy. If f0 or a component ∂f0/∂xj is very large, then give serious thought to
scaling the function or the nonlinear variables.

If you feel certain that the computed gObj(j) is correct (and that the forward-difference
estimate is therefore wrong), you can specify Verify level 0 to prevent individual elements
from being checked. However, the optimization procedure may have difficulty.

For INFO 52, at least one of the computed constraint derivatives is significantly different
from an estimate obtained by forward-differencing the constraint vector f(x) of problem
NP. Follow the advice for INFO 51, trying to ensure that the arrays F and G are being set
correctly in usrfun or funcon.

EXIT -- 60 Undefined user-supplied functions

INFO -- 61 undefined function at the first feasible point

INFO -- 62 undefined function at the initial point

INFO -- 63 unable to proceed into undefined region

The parameter Status (snOptA) or mode (snOptB, snOptC, npOpt) was assigned the
value −1 in one of the user-defined routines usrfun, funobj or funcon. This value is
used to indicate that the functions are undefined at the current point. SNOPT attempts to
evaluate the problem functions closer to a point at which the functions have already been
computed.
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For INFO 61 and 62, SNOPT was unable to proceed because the functions are undefined
at the initial point or the first feasible point.

For INFO 63, repeated attempts to move into a region where the functions are not defined
resulted in the change in variables being unacceptably small. At the final point, it appears
that the only way to decrease the merit function is to move into a region where the problem
functions are not defined.

EXIT -- 70 User requested termination

INFO -- 71 terminated during function evaluation

INFO -- 72 terminated during constraint evaluation

INFO -- 73 terminated during objective evaluation

INFO -- 74 terminated from monitor routine

These exits occur when Status < −1 is set during some call to the user-defined routines.
SNOPT assumes that you want the problem to be abandoned immediately.

EXIT -- 80 Insufficient storage allocated

INFO -- 81 work arrays must have at least 500 elements

INFO -- 82 not enough character storage

INFO -- 83 not enough integer storage

INFO -- 84 not enough real storage

SNOPT cannot start to solve a problem unless the character, integer, and real work
arrays are at least 500 elements.

If the storage arrays cw(*), iw(*), rw(*) are not large enough for the current problem,
an estimate of the additional storage required is given in messages preceding the exit. The
routine declaring cw, iw, rw should be recompiled with larger dimensions lencw, leniw,
lenrw.

If rw(*) is not large enough, be sure that the Reduced Hessian dimension is not
unreasonably large.

EXIT -- 90 Input arguments out of range

INFO -- 91 invalid input argument

INFO -- 92 basis file dimensions do not match this problem

These conditions occur if some data associated with the problem is out of range.

For INFO 91, at least one input argument for the interface is invalid. The Print and
Summary files provide more detail about which arguments must be modified.

For INFO 92, an Old basis file could not be loaded properly. (In this situation, new basis
files cannot be saved, and there is no solution to print.) On the first line of the Old basis
file, the dimensions m and n are different from those associated with the problem that has
just been defined. You have probably loaded a file that belongs to another problem.

If you are using snOptA and you have added elements to A(*), iAfun(*), and jAvar(*)

or iGfun(*), and jGvar(*), you will have to alter m and n and the map beginning on the
third line (a hazardous operation). It may be easier to restart with a Punch or Dump file
from an earlier version of the problem.

The basis file state vector will not match the current problem if, for some reason, the
Old basis file is incompatible with the present problem, or is not consistent within itself.
The number of basic entries in the state vector (i.e., the number of 3’s in the map) is not
the same as m on the first line, or some of the 2’s in the map did not have a corresponding
“j xj” entry following the map.
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EXIT -- 140 System error

INFO -- 141 wrong number of basic variables

INFO -- 142 error in basis package

These conditions may arise while the basis is being factorized.
INFO 141 should not happen. The wrong SNOPT source files may have been compiled,

or arguments of incorrect type may be used in the call to the SNOPT interface. Check that
all integer variables and arrays are declared integer in your calling program, and that all
“real” variables and arrays are declared consistently. They should be double precision

on most machines.
For INFO 142, a preceding message describes the error in more detail. One such message

says that the current basis has more than one element in row i and column j. This could
be caused by an error in the input parameters, i.e., the arrays A(*), iAfun(*), jAvar(*),
iGfun(*), and jGvar(*) for snOptA, or indA, Acol and locA for snOptB and snOptC.

8.7. Solution output

At the end of a run, the final solution is output to the Print file in accordance with the
Solution keyword. Some header information appears first to identify the problem and the
final state of the optimization procedure. A CONSTRAINTS section and a VARIABLES
section then follow, giving one line of information for each row and column. The format
used is similar to certain commercial systems, though there is no industry standard.

An example of the printed solution is given in Section 8. In general, numerical values
are output with format f16.5. The maximum record length is 111 characters, including the
first (carriage-control) character.

To reduce clutter, a dot “.” is printed for any numerical value that is exactly zero. The
values ±1 are also printed specially as 1.0 and -1.0. Infinite bounds (±1020 or larger) are
printed as None.

Note: If two problems are the same except that one minimizes an objective f0(x) and the
other maximizes −f0(x), their solutions will be the same but the signs of the dual variables
πi and the reduced gradients dj will be reversed.

The CONSTRAINTS section

General linear constraints take the form l ≤ Ax ≤ u. The ith constraint is therefore of the
form

α ≤ aTx ≤ β,

and the value of aTx is called the constraint value. Internally, the linear constraints take
the form Ax − s = 0, where the slack variables s should satisfy the bounds l ≤ s ≤ u. For
the ith “constraint”, it is the slack variable si that is directly available, and it is sometimes
convenient to refer to its state.

Nonlinear constraints α ≤ fi(x) + aTx ≤ β are treated similarly, except that the con-
straint value and degree of infeasibility are computed directly from fi(x) + aTx rather than
si.

Label Description

Number The value n + i. This is the internal number used to refer to the ith slack in the
iteration log.

Row The name of the ith constraint.
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State The state of the ith row relative to the bounds α and β. The various states possible
are as follows.

LL The row is at its lower limit, α.

UL The row is at its upper limit, β.

EQ The limits are the same (α = β).

BS The constraint is not binding. si is basic.

A key is sometimes printed before the State to give some additional information
about the state of the slack variable.

A Alternative optimum possible. The slack is nonbasic, but its reduced gradient
is essentially zero. This means that if the slack were allowed to start moving
from its current value, there would be no change in the objective function. The
values of the basic and superbasic variables might change, giving a genuine
alternative solution. The values of the dual variables might also change.

D Degenerate. The slack is basic, but it is equal to (or very close to) one of its
bounds.

I Infeasible. The slack is basic and is currently violating one of its bounds by
more than the Feasibility tolerance.

N Not precisely optimal. The slack is nonbasic. Its reduced gradient is larger
than the Major optimality tolerance .

Note: If Scale option > 0, the tests for assigning A, D, I, N are made on the scaled
problem because the keys are then more likely to be meaningful.

Value The constraint value aTx (or fi(x) + aTx for nonlinear constraints).

Slack value The amount by which the constraint value differs from its nearest bound.
(For free rows, it is taken to be minus the Value.)

Lower limit α, the lower bound on the row.

Upper limit β, the upper bound on the row.

Dual variable The value of the dual variable πi, often called the shadow price (or simplex
multiplier) for the ith constraint. The full vector π always satisfies BTπ = gB ,
where B is the current basis matrix and gB contains the associated gradients for
the current objective function.

I The constraint number, i.

The VARIABLES section

Here we talk about the “variables” xj , j = 1: n. We assume that a typical variable has
bounds α ≤ xj ≤ β.

Label Description

Number The column number, j. This is the internal number used to refer to xj in the
iteration log.

Column The name of xj .

State The state of xj relative to the bounds α and β. The various states possible are as
follows.
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LL xj is nonbasic at its lower limit, α.

UL xj is nonbasic at its upper limit, β.

EQ xj is nonbasic and fixed at the value α = β.

FR xj is nonbasic at some value strictly between its bounds: α < xj < β.

BS xj is basic. Usually α < xj < β.

SBS xj is superbasic. Usually α < xj < β.

A key is sometimes printed before the State to give some additional information
about the state of xj .

A Alternative optimum possible. The variable is nonbasic, but its reduced gradi-
ent is essentially zero. This means that if xj were allowed to start moving from
its current value, there would be no change in the objective function. The
values of the basic and superbasic variables might change, giving a genuine
alternative solution. The values of the dual variables might also change.

D Degenerate. xj is basic, but it is equal to (or very close to) one of its bounds.

I Infeasible. xj is basic and is currently violating one of its bounds by more than
the Feasibility tolerance.

N Not precisely optimal. xj is nonbasic. Its reduced gradient is larger than the
Major optimality tolerance.

Note: If Scale option > 0, the tests for assigning A, D, I, N are made on the scaled
problem because the keys are then more likely to be meaningful.

Value The value of the variable xj .

Obj Gradient gj , the jth component of the gradient of the (linear or nonlinear) objective
function. (If any xj is infeasible, gj is the gradient of the sum of infeasibilities.)

Lower limit α, the lower bound on xj .

Upper limit β, the upper bound on xj .

Dual variable The dual variable is the reduced gradient dj = gj − πTaj , where aj is the
jth column of the constraint matrix (or the jth column of the Jacobian at the start
of the final major iteration).

M+J The value m+ j.

Note: If two problems are the same except that one minimizes f0(x) and the other
maximizes −f0(x), their solutions will be the same but the signs of the constraint dual
variables πi and the reduced gradients dj will be reversed.

8.8. The SOLUTION file

The information in a printed solution (Section 8.7) may be output as a Solution file, accord-
ing to the Solution file option (which may refer to the Print file if so desired). Infinite
bounds appear as ±1020 rather than None. Other numerical values are output with format
1p, e16.6.

A Solution file is intended to be read from disk by a self-contained program that extracts
and saves certain values as required for possible further computation. Typically the first 14
records would be ignored. Each subsequent record may be read using

format(i8, 2x, 2a4, 1x, a1, 1x, a3, 5e16.6, i7)



102 SNOPT 7.5 User’s Guide

adapted to suit the occasion. The end of the CONSTRAINTS section is marked by a record
that starts with a 1 and is otherwise blank. If this and the next 4 records are skipped, the
VARIABLES section can then be read under the same format. (There should be no need
for backspace statements.)

8.9. The SUMMARY file

If Summary file > 0, the following information is output to the Summary file. (It is a brief
form of the Print file.) All output lines are less than 72 characters.

• The Begin line from the Specs file, if any.

• The basis file loaded, if any.

• A brief Major iteration log.

• A brief Minor iteration log.

• The EXIT condition and a summary of the final solution.

The following Summary file is from the example of Section 3.2, using Major print level

1 and Minor print level 0.

==============================

S N O P T 7.5-1.4 (Dec 2015)

==============================

Nonzero derivs Jij 5

Non-constant Jij’s 4 Constant Jij’s 1

SNJAC EXIT 100 -- finished successfully

SNJAC INFO 102 -- Jacobian structure estimated

Nonlinear constraints 2 Linear constraints 1

Nonlinear variables 2 Linear variables 0

Jacobian variables 2 Objective variables 0

Total constraints 3 Total variables 2

The user has defined 0 out of 4 first derivatives

Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty

0 2 1 1.0E+00 1.0E+00 1.0000000E+00 2 r

1 1 1.0E+00 2 (0.0E+00) 1.0E+00 -9.0016883E-13 2 rl

2 2 1.0E+00 4 1.0E+00 2.5E-01 -1.0000000E+00 sm l

3 0 1.0E+00 5 9.4E-01 1.8E-02 -9.7904716E-01 2.6E-02

4 0 1.0E+00 6 5.5E-02 6.3E-03 -1.0005949E+00 2.6E-02

5 0 1.0E+00 7 1.9E-04 2.4E-05 -1.0000000E+00 4.1E-01

6 0 1.0E+00 8 (2.2E-09)(2.7E-10)-1.0000000E+00 8.7E-01

SNOPTA EXIT 0 -- finished successfully

SNOPTA INFO 1 -- optimality conditions satisfied

Problem name sntoya

No. of iterations 5 Objective -1.0000000003E+00

No. of major iterations 6 Linear obj. term -1.0000000003E+00

Penalty parameter 8.708E-01 Nonlinear obj. term 0.0000000000E+00

User function calls (total) 36 Calls with modes 1,2 (known g) 8

Calls for forward differencing 16 Calls for central differencing 0

No. of degenerate steps 0 Percentage 0.00

Max x 2 1.0E+00 Max pi 3 1.0E+00

Max Primal infeas 0 0.0E+00 Max Dual infeas 2 2.7E-10

Nonlinear constraint violn 2.2E-09
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9. Basis files

A basis file may be saved at the end of a run, in order to restart the run if necessary, or to
provide a good starting point for some closely related problem. Three formats are available.
They are invoked by options of the following form:

New basis file 10

Backup file 11

Punch file 20

Dump file 30

The file numbers should be in the range 1–99, or zero for files that are not wanted.

New basis and Backup basis files are saved in that order every kth iteration, where k is
the Save frequency.

New basis, Punch, and Dump files are saved at the end of a run, in that order. They
may be re-loaded using options of the following form:

Old basis file 10

Insert file 20

Load file 30

Only one such file will actually be loaded, with the order of precedence as shown. If no basis
files are specified, one of the Crash options takes effect.

Figures 2–4 illustrate the data formats used for basis files. 80-character fixed-length
records are suitable in all cases. (36-character records would be adequate for Punch and
Dump files.) The files shown correspond to the optimal solution for the economic-growth
model MANNE, which is problem t4manne in the SNOPT distribution. (The problem has
10 nonlinear constraints, 10 linear constraints, and 30 variables.) Selected column numbers
are included to define significant data fields.

9.1. New and Old basis files

These files may be called basis maps. They contain the most compact representation of
the state of each variable. They are intended for restarting the solution of a problem at a
point that was reached by an earlier run on the same problem or a related problem with
the same dimensions. (Perhaps the Iterations limit was previously too small, or some
other objective row is to be used, or the bounds are different.)

As illustrated in Figure 2, the following information is recorded in a New basis file.

1. A line containing the problem name, the iteration number when the file was created,
the status of the solution (Optimal Soln, Infeasible, Unbounded, Excess Itns,
Error Condn, or Proceeding), the number of infeasibilities, and the current objective
value (or the sum of infeasibilities).

2. A line containing the OBJECTIVE, RHS, RANGES and BOUNDS names, M = m, the number
of rows in the constraint matrix, N = n, the number of columns in the constraint
matrix, and SB = the number of superbasic variables. Any undefined names will be
printed with a blank entry.

3. A set of (n+m−1)/80+1 lines indicating the state of the n column variables and the
m slack variables in that order. One character hs(j) is recorded for each j = 1 : n+m
as follows, written with format(80i1):



104 SNOPT 7.5 User’s Guide

Manne 10 ITN 30 Optimal Soln NINF 0 OBJ -2.670098627178E+00

OBJ= RHS= RNG= BND= M= 20 N= 30 SB= 7

03222222230333333333333333333100000000001111111111

3 3.21442990995402E+00

6 3.48787725533622E+00

8 3.67642838933707E+00

4 3.30400385655585E+00

9 3.77158182629954E+00

5 3.39521914186007E+00

7 3.58172235348761E+00

1 3.05000000000000E+00

2 3.12665036215043E+00

10 3.86666666666656E+00

0

Figure 2: Format of New and Old basis files for example t4manne

hs(j) State of the jth variable

0 Nonbasic at lower bound
1 Nonbasic at upper bound
2 Superbasic
3 Basic

If variable j is nonbasic, it may be fixed (lower bound = upper bound), or free (infinite
bounds), or it may be strictly between its bounds. In such cases, hs(j) = 0. (Free
variables will almost always be basic.)

4. A set of lines of the form

j xj

written with format(i8, 1p, e24.14) and terminated by an entry with j = 0, where
j denotes the jth variable and xj is a real value. The jth variable is either the jth
column or the (j − n)th slack, if j > n. Typically, hs(j) = 2 (superbasic). The list
includes nonbasic variables that lie strictly between their bounds.

Loading a New basis file

A file that has been saved as an Old basis file may be input at the beginning of a later run
as a New basis file. The following notes are relevant:

1. The first line is input and printed but otherwise not used.

2. The values labeled M and N on the second line must agree with m and n for the problem
that has just been defined. The value labeled SB is input and printed but is not used.

3. The next set of lines must contain exactly m values hs(j) = 3, denoting the basic
variables.

4. The list of j and xj values must include an entry for every variable whose state is
hs(j) = 2 (the superbasic variables).

5. Further j and xj values may be included, in any order.

6. For any j in this list, the value xj is recorded but the state is unaltered.
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9.2. Punch and Insert files

These files provide compatibility with commercial mathematical programming systems. The
Punch file from a previous run may be used as an Insert file for a later run on the same
problem. It may also be possible to modify the Insert file and/or problem and still obtain
a useful advanced basis.

The standard MPS format has been slightly generalized to allow the saving and reloading
of nonbasic solutions. It is illustrated in Figure 3. Apart from the first and last line, each
entry has the following form:

Columns 2–3 5–12 15–22 25–36
Contents Key Name1 Name2 Value

The various keys are best defined in terms of the action they cause on input. It is assumed
that the basis is initially set to be the full set of slack variables, and that column variables
are initially at their smallest bound in absolute magnitude, or zero for free variables.

Key Action to be taken during Insert

XL Make variable Name1 basic and slack Name2 nonbasic at its lower bound.
XU Make variable Name1 basic and slack Name2 nonbasic at its upper bound.
LL Make variable Name1 nonbasic at its lower bound.
UL Make variable Name1 nonbasic at its upper bound.
SB Make variable Name1 superbasic at the specified Value.

Note that Name1 may be a column name or a row name, but on XL and XU lines, Name2
must be a row name. In all cases, row names indicate the associated slack variable, and
Value is recorded in x. The key SB is an addition to the standard MPS format to allow for
nonbasic solutions.

Notes on Punch Data

1. Variables are output in natural order. For example, on the first XL or XU line, Name1
will be the first basic column and Name2 will be the first row whose slack is not basic.
(The slack could be nonbasic or superbasic.)

2. LL lines are not output for nonbasic variables whose lower bound is zero.

3. Superbasic slacks are output last.

Notes on Insert Data

1. Before an Insert file is read, column variables are made nonbasic at their smallest
bound in absolute magnitude, and the slack variables are made basic.

2. Preferably an Insert file should be an unmodified Punch file from an earlier run on the
same problem. If some rows have been added to the problem, the Insert file need not
be altered. (The slacks for the new rows will be in the basis.)

3. Entries will be ignored if Name1 is already basic or superbasic. XL and XU lines will
be ignored if Name2 is not basic.

4. SB lines may be added before the ENDATA line, to specify additional superbasic columns
or slacks.

5. An SB line will not alter the status of Name1 if the Superbasics limit has been
reached. However, the associated Value will be retained.
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9.3. Dump and Load files

These files are similar to Punch and Insert files, but they record solution information in a
manner that is more direct and more easily modified. In particular, no distinction is made
between columns and slacks. Apart from the first and last line, each entry has the form

Columns 2–3 5–12 25–36

Contents Key Name Value

as illustrated in Figure 4. The keys LL, UL, BS and SB mean Lower Limit, Upper Limit,
Basic, and Superbasic respectively.

Notes on Dump data

1. A line is output for every variable: columns followed by slacks.

2. Nonbasic free variables (strictly between their bounds) are output with key LL.

Notes on Load data

1. Before a Load file is read, all columns and slacks are made nonbasic at their smallest
bound in absolute magnitude. The basis is initially empty.

2. BS causes Name to become basic.

3. SB causes Name to become superbasic at the specified Value.

4. LL or UL cause Name to be nonbasic at the specified Value.

5. An entry will be ignored if Name is already basic or superbasic. (Thus, only the first
BS or SB line takes effect for any given Name.)

6. An SB line will not alter the status of Name if the Superbasics limit has been
reached, but the associated Value will is retained.

7. (Partial basis) Let m be the number of rows in the problem. If fewer than m variables
are specified to be basic, the first basis factorization will detect singularity and insert
appropriate slacks.

8. (Too many basics or superbasics) If more than m variables are specified basic, or more
than Superbasics limit are specified superbasic, the excess will be made nonbasic
before iterations begin.

9.4. Restarting modified problems

Sections 9.1–9.3 document three distinct starting methods (Old basis, Insert and Load files),
which may be preferable to any of the cold start (CRASH) options. The best choice depends
on the extent to which a problem has been modified, and whether it is more convenient to
specify variables by number or by name. The following notes offer some rules of thumb.

Protection

In general there is no danger of specifying infinite values. For example, if a variable is
specified to be nonbasic at an upper bound that happens to be +∞, it will be made nonbasic
at its lower bound. Conversely if its lower bound is −∞. If the variable is free (both bounds
infinite), it will be made nonbasic at value zero. No warning message will be issued.
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Default Status

If the status of a variable is not explicitly given, it will initially be nonbasic at the bound
that is smallest in absolute magnitude. Ties are broken in favor of lower bounds, and free
variables will again take the value zero.

Restarting with different bounds

Suppose that a problem is to be restarted after the bounds on some variable X have been
altered. Any of the basis files may be used, but the starting point obtained depends on the
status of X at the time the basis is saved.

If X is basic or superbasic, the starting point will be the same as before (all other things
being equal). The value of X may lie outside its new set of bounds, but there will be minimal
loss of feasibility or optimality for the problem as a whole.

If X was previously fixed, it is likely to be nonbasic at its lower bound (which happens
to be the same as its upper bound). Increasing its upper bound will not affect the solution.

In contrast, if X is nonbasic at its upper bound and if that bound is altered, the starting
values for an arbitrary number of basic variables could be changed (since they will be recom-
puted from the nonbasic and superbasic variables). This may not be of great consequence,
but sometimes it may be worthwhile to retain the old solution precisely. To do this, one can
make X superbasic at the original bound value.

For example, if x is nonbasic at an upper bound of 5.0 (which has now been changed),
insert a line of the form

j 5.0

near the end of an Old basis file, or the line

SB X 5.0

near the end of an Insert or Load file. The Superbasics limit must be at least as large
as the number of variables involved, even for purely linear problems.

The same effect can be obtained when calling sqOpt with Warm or Hot Starts. Simply
set hs(j) = 2 for the appropriate j.

Sequences of problems

Whenever practical, a series of related problems should be ordered so that the most tightly
constrained cases are solved first. Their solutions will often provide feasible starting points
for subsequent relaxed problems, as long the above precautions are taken.
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NAME Manne 10 PUNCH/INSERT

LL x 1 3.05000E+00

XL x 2 r 1 3.12665E+00

SB x 3 3.21443E+00

SB x 4 3.30400E+00

SB x 5 3.39521E+00

SB x 6 3.48787E+00

SB x 7 3.58172E+00

SB x 8 3.67642E+00

SB x 9 3.77156E+00

XL x 10 r 2 3.86667E+00

LL x 11 9.50000E-01

XL x 12 r 3 9.68423E-01

XL x 13 r 4 9.97801E-01

XL x 14 r 5 1.02820E+00

XL x 15 r 6 1.05967E+00

XL x 16 r 7 1.09227E+00

XL x 17 r 8 1.12608E+00

XL x 18 r 9 1.16117E+00

XL x 19 r 10 1.19761E+00

XU x 20 r 11 1.21394E+00

XU x 21 r 12 7.66504E-02

XU x 22 r 13 8.77750E-02

XU x 23 r 14 8.95733E-02

XU x 24 r 15 9.12127E-02

XU x 25 r 16 9.26610E-02

XU x 26 r 17 9.38453E-02

XU x 27 r 18 9.47013E-02

XU x 28 r 19 9.51453E-02

XU x 29 r 20 9.51023E-02

UL x 30 1.16000E-01

ENDATA

Figure 3: Format of PUNCH/INSERT
files

NAME Manne 10 DUMP/LOAD

LL x 1 3.05000E+00

BS x 2 3.12665E+00

SB x 3 3.21443E+00

SB x 4 3.30400E+00

SB x 5 3.39521E+00

SB x 6 3.48787E+00

SB x 7 3.58172E+00

SB x 8 3.67642E+00

SB x 9 3.77156E+00

BS x 10 3.86667E+00

LL x 11 9.50000E-01

BS x 12 9.68423E-01

BS x 13 9.97801E-01

BS x 14 1.02820E+00

BS x 15 1.05967E+00

BS x 16 1.09227E+00

BS x 17 1.12608E+00

BS x 18 1.16117E+00

BS x 19 1.19761E+00

BS x 20 1.21394E+00

BS x 21 7.66504E-02

BS x 22 8.77750E-02

BS x 23 8.95733E-02

BS x 24 9.12127E-02

BS x 25 9.26610E-02

BS x 26 9.38453E-02

BS x 27 9.47013E-02

BS x 28 9.51453E-02

BS x 29 9.51023E-02

UL x 30 1.16000E-01

LL r 1 0.00000E+00

LL r 2 0.00000E+00

LL r 3 0.00000E+00

LL r 4 0.00000E+00

LL r 5 0.00000E+00

LL r 6 0.00000E+00

LL r 7 0.00000E+00

LL r 8 0.00000E+00

LL r 9 0.00000E+00

LL r 10 0.00000E+00

UL r 11 0.00000E+00

UL r 12 0.00000E+00

UL r 13 0.00000E+00

UL r 14 0.00000E+00

UL r 15 0.00000E+00

UL r 16 0.00000E+00

UL r 17 0.00000E+00

UL r 18 0.00000E+00

UL r 19 0.00000E+00

UL r 20 0.00000E+00

ENDATA

Figure 4: Format of Dump/Load files
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active constraints
basis for the null space, 8
bounds and general constraints, 8

active-set method, 8
Aird, T., 107
argument list, see parameter list
augmented Lagrangian merit function, 9

Backup basis file, 81
example unit assignment, 103
example usage, 68
purpose, 68

Backup basis file, 68
basic variables, 8
basis, 8

factorization, 75, 76, 89
factorization frequency, 72
factorization statistics, 90–92
ill-conditioning, 76, 83
map, 79
near-triangular form in crash, 69
preferred columns, 92
repair, 83
stability, 75

basis files, 93, 96, 98, 103–107
basis maps, 103
purpose, 5

basis package, see LUSOL package
Begin, 62
Brown, A., 107

calling sequence
funcon

for npOpt, 60
for snOptB, 41

funobj

for npOpt, 59
for snOptB, 43

npOpt, 54
snGet snGetc snGeti snGetr, 67
snInit, 6
snJac, 21
snMemA, 29
snMemB used with snOptB and snOptC, 47
snOptA, 15
snOptB, 34
snOptC, 50
snSet snSeti snSetr, 66
snSpec, 65
usrfun

for snOptA, 24
for snOptC, 51

Central difference interval, 68

Check frequency, 68
for general constraint feasibility, 72

Cholesky method, 80
Cold Start, 68
composite objective, see elastic objective
conjugate-gradient method, 81
Conn, A. R., 10
constraints, see linear constraints
cpu time, 83
Crash option, 69
crash procedure, 69

statistics, 92
Crash tolerance, 69
cu iu ru

equivalence with system workspace, 84
cw iw rw

confining access via options, 84
cycling, see EXPAND anti-cycling procedure

Dantzig, G. B., 4
degeneracy, see EXPAND anti-cycling procedure

degenerate columns marked D, 101
degenerate rows marked D, 100
dual degenerate rows marked A, 100
dual degenerate variables marked A, 101

degrees of freedom, 8, 83
influence on efficiency, 4

denseNP, see problem denseNP
dependent variables, see basic variable
derivative checking, see Verify level

Derivative level, 69
Derivative linesearch, 70
Derivative option, 71
derivatives

checked by differencing, 82
linesearch choice based on cost of, 70
missing values estimated, 70, 71

Difference interval, 71
Drud, A., 107
dual variables

for slacks, 9
Dump file, 71, 75, 106

example format, 108
example unit assignment, 103

Dump file, 71

elastic mode
elastic objective, 10
elastic weight, 10, 72

Elastic weight, 72
Eldersveld, S. K., 10
End, 62
End-of-file encountered, 65
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Endrun, 62
encountered before options, 65

EXIT messages, 93–99
EXPAND anti-cycling procedure, 72

setting the expand frequency, 72
Expand frequency, 72, 80

f2c (Fortran to C translator), 4
Factorization frequency, 72
feasibility phase, see phase 1
Feasibility tolerance, 72, 73
Feasible point, 72
Feldman, S., 4
files

Backup basis file, 68, 81
basis files, 98
Dump file, 71, 75
Insert file, 75
Load file, 71
MPS file, 67
New basis file, 68, 79, 81
Old basis file, 68, 74, 75, 98
Print file, 5, 75, 80, 82, 86–99, 101
Punch file, 74, 80
Solution file, 5, 101–102
Specs file, 5, 62–65, 83
Summary file, 5, 62, 83, 102

Fletcher, R., 10
Fortran

f77, 4
f90, 4
f95, 4
multi-threaded environment, 4
print formats, 62
re-entrant code, 4
translated into C, see f2c

using recursion, 4
Fourer, R., 81
FP, see problem FP
free constraints, see free rows
free rows, 4
free variables, 4
funcon

for npOpt, 54
calling sequence, 60
description, 60–61

for snOptB, 31
calling sequence, 41
description, 41–42
examples, 45–46
undefined constraint value, 40, 42

Function precision, 72
funobj

for npOpt, 54
calling sequence, 59
description, 59

undefined objective value, 59
for snOptB, 31

calling sequence, 43
description, 43
example, 44
undefined objective value, 40, 43

Gay, D., 107
Gay, D. M., 4
general constraints, 7, 32
Gertz, E. M., 5
Gill, P. E., 4–5, 7, 9, 10, 53, 58, 72, 75, 90
gradient checking, see derivative checking

Hessian dimension, see Reduced Hessian dimension,
73

Hessian frequency, 73
Hessian full memory, 73
Hessian limited memory, 73
Hessian updates, 74

independent variables, see superbasic variable, 8
infeasible constraints, see infeasible problem
infeasible problem, 78

infeasible rows marked I, 100
infeasible variables marked I, 101

Infinite bound, 74
Insert file, 75, 105

example unit assignment, 103
Insert file, 74
Iterations limit, 74

example specification, 62
Itns, see Iterations limit

Lagrange multipliers, see dual variables
LC, see linearly constrained optimization
least infeasible point, see elastic mode, problem

NP(γ)
limited-memory quasi-Newton method, 4

optional parameter, 73
linear constraints

position relative to nonlinear constraints, 5
subset of the general constraints, 32
time-stage models, 80

linear program, see problem LP, 4
Linesearch tolerance, 74
Load file, 71, 106

example format, 108
example unit assignment, 103

Load file, 75
Log frequency, see Print frequency

lower bound constraints, see bound constraints
LP, see problem LP
LU complete pivoting, 75
LU density tolerance, 75
LU factor tolerance, 69, 75
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LU partial pivoting, 75
LU rook pivoting, 75
LU singularity tolerance, 75
LU update tolerance, 75
LUSOL package, 9, 75

basis repair, 83
error in basis package, 99
ill-conditioned basis, 76
Markowitz strategy, 76
rectangular factorization, 90
stability vs sparsity, 75
threshold pivoting, 75
use in MINOS, 4

machine precision, 63
Maimone, M. W., 4
Major feasibility tolerance, 76
major iteration log

description, 86–88
major iterations, 7
Major iterations limit, 76
Major optimality tolerance, 76
Major print level, 76
Major step limit, 77
Maximize, 78
Minimize, 78
Minor feasibility tolerance, 78

example specification, 62
minor iteration log

description, 89–90
minor iterations, 7
Minor iterations limit, 78
Minor print level, 79
MINOS (sparse NLP solver), 8

comparison with SNOPT, 4
MPS file, 67
MPS standard format, 105

modification, 105
Muetherig, J., 5
Murray, W., 4, 7, 9, 10, 53, 58, 72, 75, 90
Murtagh, B. A., 4, 8

n1, see nonlinear variables
defined, 32
in default Hessian option, 73
influence on the default Superbasics limit,

83
size of approximate Hessian, 7

n′1, see nonlinear objective variables
example, 32
in default derivative check option, 82
in default Hessian option, 73

n′′1 , see nonlinear Jacobian variables
example, 32
in default derivative check option, 82
in default Hessian option, 73

Nelson, R. L., 107
New basis file, 79, 81

example format, 104
example unit assignment, 103
example usage, 68
interrupted save, 68
loading a, 104
recorded information, 103

New basis file, 79
New superbasics limit, 79
nonbasic variables, 8

viewed as variables active at a bound, 8
Nonderivative linesearch, 70
nonlinear constraints

position relative to linear constraints, 5
subset of the general constraints, 32

nonlinear Jacobian variables, 32
disjoint from objective variables, 33
number of, see n′′1

nonlinear objective variables, 32
disjoint from Jacobian variables, 33
number of, see n′1

nonlinear program, see problem NP
nonlinear variables

number of, see n1

NP, see problem NP
problem format for option definitions, 68

NPOPT interface, 53–61
summary, 5
undefined user-supplied functions, 59

NPA, see problem NPA
example, 12–13
example exploiting sparsity, 14

NP(γ), see problem NP(γ)
npGet npGetc npGeti npGetr

used with npOpt, 54
npMem

user-called auxiliary for npOpt, 54
npOpt

calling sequence, 54
typical invocation, 53
undefined user-supplied functions, 59
user-supplied routines, 58–61

npSet npSeti npSetr

used with npOpt, 54
NPSOL (dense SQP solver)

as a precursor of NPOPT, 5
comparison with SNOPT, 4

npSpec, see Specs file
used with npOpt, 54

Objective Row, 79
ObjRow

example, 12
Old basis file, 74, 75, 98

example format, 104



INDEX 113

example unit assignment, 103
example usage, 68

Old basis file, 79, 98
optimality phase, see phase 2
optional parameters, 62–85

Backup basis file, 68
Central difference interval, 68
Check frequency, 68
Cold Start, 68
Crash option, 69
Crash tolerance, 69
Derivative level, 69
Derivative linesearch, 70
Derivative option, 71
Difference interval, 71
Dump file, 71
Elastic weight, 72
Expand frequency, 72
Factorization frequency, 72
Feasibility tolerance, 73
Feasible point, 72
Function precision, 72
Hessian dimension, 73
Hessian frequency, 73
Hessian full memory, 73
Hessian limited memory, 73
Hessian updates, 74
Infinite bound, 74
Insert file, 74
Iterations limit, 74
LU complete pivoting, 75
LU density tolerance, 75
LU factor tolerance, 75
LU partial pivoting, 75
LU rook pivoting, 75
LU singularity tolerance, 75
LU update tolerance, 75
Linesearch tolerance, 74
Load file, 75
Major feasibility tolerance, 76
Major iterations limit, 76
Major optimality tolerance, 76
Major print level, 76
Major step limit, 77
Maximize, 78
Minimize, 78
Minor feasibility tolerance, 78
Minor iterations limit, 78
Minor print level, 79
New basis file, 79
New superbasics limit, 79
Nonderivative linesearch, 70
Objective Row, 79
Old basis file, 79
Partial price, 79

Pivot tolerance, 80
Print file, 80
Print frequency, 80
Proximal point method, 80
Punch file, 80
QPSolver, 80
Reduced Hessian dimension, 81
Save frequency, 81
Scale Print, 81
Scale option, 81
Scale tolerance, 81
Solution file, 82
Solution, 82
Start Constraint Check, 82
Start Objective Check, 82
Sticky parameters, 83
Stop Constraint Check, 82
Stop Objective Check, 82
Summary file, 83
Summary frequency, 83
Superbasics limit, 83
Suppress parameters, 83
System information, 83
Time limit, 83
Timing level, 83
Total character workspace, 84
Total integer workspace, 84
Total real workspace, 84
Unbounded objective value, 84
Unbounded step size, 84
User character workspace, 84
User integer workspace, 84
User real workspace, 84
Verify level, 84
Violation limit, 85
Warm start, 85

options
defined in a Specs file, 62
inline specification, 66
multiple sets of, 62

Partial price, 79
partial pricing, see pricing, 9, 79, 89
penalty parameters

in the merit function, 9
pi (π), see dual variables
pivot element, 80
Pivot tolerance, 80

effect on numerical stability, 80
interaction with Expand frequency, 72
interaction with feasibility tolerance, 80

pricing, see partial pricing, 9, 79, 89
Print file

choosing absent value of, 6
description, 86–99, 101
for system information, 75
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maximum record length, 86
purpose, 5
solution output, 82
typical value, 6
unit number, 5, 6
unit number set via an option, 80

Print file, 80
Print frequency

Print frequency

of the iteration log, 89
Print frequency, 80
problem DenseNP, 53
problem LP, see linear program
problem NP, 4

generic problem, 4
slack variable form, 7

problem NP(γ)
defined, 10
initial γ, see Elastic weight, 72
QP subproblem, 88

Proximal point method, 80
Punch file, 74, 80, 105

example unit assignment, 103
Punch file, 80

QP, see problem QP
QP subproblem

solution of reduced Hessian system, 80
QPSolver, 80

CG, 80
Cholesky, 80
QN, 80

quadratic program, see problem QP
quasi-Newton

approximation of the Lagrangian Hessian,
4, 7

limited-memory approximation, 4
limited-memory option, 73
rate of convergence, 73

quasi-Newton method
for the QP subproblem, 81

reduced costs, see reduced gradient
reduced gradient, 8
reduced Hessian, 8, 80
Reduced Hessian dimension, 81

effect on the QP solver, 81
relative machine precision, see machine precision
restarting, see Basis files
Ringertz, U., 107

Saunders, M. A., 4, 7–10, 53, 72, 75, 90
Save frequency, 79, 81

used with basis backup, 68
Scale option, 81
Scale Print, 81

Scale tolerance, 81
Schryer, N., 4
screen output, see Summary file
sequences of problems, 107
Skip, see Endrun

for multiple sets of options, 62
slack variables, 78

limiting basic slacks in a crash, 69
linear slacks, 7
minimized in the merit function, 10
nonlinear slacks, 7

SNOPT package
comparison with previous versions, 4
files, 5
package overview, 6
restrictions imposed by Version 6, 5

SNOPTA interface, 11–30
summary, 5
undefined user-supplied functions, 23, 25

SNOPTB interface, 31–49
equivalence to SNOPT 1–5, 31
role as principal interface, 5
summary, 5
undefined user-supplied functions, 40

SNOPTC interface, 50–52
summary, 5

SNADIOPT (automatic derivatives for SNOPT),
5

snGet snGetc snGeti snGetr, 62
calling sequences, 67

snInit

calling sequence, 6
example invocation, 6

snJac

calling sequence, 21
user-called auxiliary for snOptA, 11

snMemA

calling sequence, 29
used with snOptA, 29–30
user-called auxiliary for snOptA, 11

snMemB

calling sequence, 47
user-called auxiliary for snOptB and snOptC,

31
snOptA

calling sequence, 15
constant Jacobian elements, 14
example invocation, 6
sample usrfun, 26–28
undefined user-supplied functions, 23, 25
user-supplied routines, 23–28

snOptB

calling sequence, 34
constant Jacobian elements, 35, 47, 61
sample funobj and funcon, 43–46
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typical invocation, 31
undefined user-supplied functions, 40, 42
user-supplied routines, 39–47

snOptC

calling sequence, 50
user-supplied routine, 50–52

snSet snSeti snSetr

calling sequences, 66
snSet snSeti snSetr

used to replace workspace estimates, 30
snSpec, see Specs file

calling sequence, 65
example invocation, 6

Solution, 82
example specification, 62

Solution file
printed after a successful run, 93
purpose, 5

Solution file, 82
solution output, 99–101

CONSTRAINTS section, 99–100
VARIABLES section, 100, 101
getting more significant digits, 82
to the Solution file, 82, 101–102

solving a modified problem, 106–107
Specs file, see snSpec, 62–65

calling sequence, 65
checklist and defaults, 63
encountered Endrun before options, 65
example, 62
purpose, 5
suppress keyword printing, 83
time limit, 83
unit number, 5
with multiple sets of options, 62

SQOPT (sparse QP solver), 8
SQP method, 4
Start Constraint Check, 82
Start Objective Check, 82
Sticky parameters, 83
Stop Constraint Check, 82
Stop Objective Check, 82
subroutine arguments, see calling sequences
sum of infeasibilities, 78

effects of scaling, 78
Summary file

Begin line echoing, 62
brief output, 102
example, 102
purpose, 5
supressing output, 83
unit number

defined, 5
typical value, 6

Summary file, 83

Summary frequency, 83
superbasic variables, 8

limit reached, 96
number of (nS), 8

Superbasics limit, 83
effect of n1, 83

Suppress parameters, 83
System information, 75, 83

Time limit, 83
Timing level, 83
Total character workspace, 84
Total integer workspace, 84
Total real workspace, 84

Unbounded objective value, 84
Unbounded step size, 84
undefined user-supplied functions

on exit, 97
while running snOptA, 23
while running snOptB, 40

upper bound constraints, see bound constraints
User character workspace, 84
User integer workspace, 84
User real workspace, 84
usrfun

for snOptA, 11
calling sequence, 24
description, 23–25
examples, 13, 26–28
undefined problem functions, 23, 25

for snOptC, 50
calling sequence, 51
description, 50–52
undefined problem functions, 52

Verify level, 84
Violation limit, 85

Warm start, 85
choice of QP solver, 81

workspace arrays
system, 84
user, 84

Wright, M. H., 4, 9, 10, 53, 58, 72, 75, 90
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