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Abstract. Sequential quadratic programming (SQP) methods have proved highly effective for
solving constrained optimization problems with smooth nonlinear functions in the objective and
constraints. Here we consider problems with general inequality constraints (linear and nonlinear).
We assume that first derivatives are available and that the constraint gradients are sparse.

We discuss an SQP algorithm that uses a smooth augmented Lagrangian merit function and
makes explicit provision for infeasibility in the original problem and the QP subproblems. SNOPT is a
particular implementation that makes use of a semidefinite QP solver. It is based on a limited-memory
quasi-Newton approximation to the Hessian of the Lagrangian and uses a reduced-Hessian algorithm
(SQOPT) for solving the QP subproblems. It is designed for problems with many thousands of
constraints and variables but a moderate number of degrees of freedom (say, up to 2000). An
important application is to trajectory optimization in the aerospace industry. Numerical results are
given for most problems in the CUTE and COPS test collections (about 900 examples).
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1. Introduction. We present a sequential quadratic programming (SQP) meth-
od for large-scale optimization problems involving general linear and nonlinear con-
straints. SQP methods have proved reliable and efficient for many such problems.
For example, under mild conditions the general-purpose solvers NLPQL [70], NPSOL

[44, 47], and DONLP [73] typically find a (local) optimum from an arbitrary start-
ing point, and they require relatively few evaluations of the problem functions and
gradients compared to traditional solvers such as MINOS [58, 59, 60] and CONOPT

[26].

1.1. The optimization problem. The algorithm we describe applies to con-
strained optimization problems of the form

(NP) minimize
x∈Rn

f(x)

subject to l ≤

 x

c(x)
Ax

 ≤ u,

where f(x) is a linear or nonlinear objective function, c(x) is a vector of nonlinear
constraint functions ci(x) with sparse derivatives, A is a sparse matrix, and l and u
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are vectors of lower and upper bounds.
We assume that the nonlinear functions are smooth and that their first derivatives

are available (and possibly expensive to evaluate). For the present implementation
we further assume that the number of active constraints at a solution is reasonably
close to n. In other words, the number of degrees of freedom is not too large (say, less
than 2000).

Important examples are control problems such as those arising in optimal trajec-
tory calculations. For many years, the optimal trajectory system OTIS (Hargraves
and Paris [51]) has been applied successfully within the aerospace industry, using
NPSOL to solve the associated optimization problems. NPSOL is a transformed Hes-
sian method that treats the Jacobian of the general constraints as a dense matrix and
updates an explicit quasi-Newton approximation to QT

k HkQk, the transformed Hes-
sian of the Lagrangian, where Qk is orthogonal. The QP (quadratic programming)
subproblem is solved using a linearly constrained linear least-squares method that
exploits the properties of the transformed Hessian.

Although NPSOL has solved OTIS examples with two thousand constraints and
over a thousand variables, the need to handle increasingly large models has provided
strong motivation for the development of new sparse SQP algorithms. Our aim is to
describe a new SQP method that has the favorable theoretical properties of the NPSOL

algorithm but is suitable for a broad class of large problems, including those arising
in trajectory optimization. The implementation is called SNOPT (sparse nonlinear
optimizer) [41]. Extensive numerical results are given in section 6.

The method of SNOPT exploits sparsity in the constraint Jacobian and maintains
a limited-memory quasi-Newton approximation to Hk (not a full transformed Hessian
QT

k HkQk). A new method is used to update Hk in the presence of negative curvature.
The QP subproblems are solved using an inertia-controlling reduced-Hessian active-
set method that allows for variables to appear linearly in the objective and constraint
functions. (The limited-memory Hessian is then semidefinite.) Other features include
the treatment of infeasible nonlinear constraints using elastic programming, use of a
well-conditioned nonorthogonal basis for the null-space of the QP working set, and
early termination of the QP subproblems.

1.2. Infeasible constraints. SNOPT deals with infeasibility using `1 penalty
functions. First, infeasible linear constraints are detected by solving a problem of the
form

(FLP) minimize
x,v,w

eT (v + w)

subject to l ≤

(
x

Ax− v + w

)
≤ u, v ≥ 0, w ≥ 0,

where e is a vector of ones and v and w are handled implicitly. This is equivalent
to minimizing the one-norm of the general linear constraint violations subject to the
simple bounds (often called elastic programming in the linear programming literature
[11]). Elastic programming has long been a feature of the XS system of Brown and
Graves [12]. Other algorithms based on minimizing one-norms of infeasibilities are
given by Conn [21] and Bartels [1].

If the linear constraints are infeasible (v 6= 0 or w 6= 0), SNOPT terminates
without computing the nonlinear functions. Otherwise, all subsequent iterates satisfy
the linear constraints. (Sometimes this feature helps ensure that the functions and
gradients are well defined; see section 5.2.)
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SNOPT then proceeds to solve (NP) as given, using QP subproblems based on
linearizations of the nonlinear constraints. If a QP subproblem proves to be infeasible
or unbounded (or if the Lagrange multiplier estimates for the nonlinear constraints
become large), SNOPT enters “nonlinear elastic” mode and solves the problem

(NP(γ)) minimize
x,v,w

f(x) + γeT (v + w)

subject to l ≤

 x

c(x)− v + w

Ax

 ≤ u, v ≥ 0, w ≥ 0,

where f(x) + γeT (v + w) is called a composite objective, and the penalty parameter γ
(γ ≥ 0) may take a finite sequence of increasing values. If (NP) has a feasible solution
and γ is sufficiently large, the solutions to (NP) and (NP(γ)) are identical. If (NP)
has no feasible solution, (NP(γ)) will tend to determine a “good” infeasible point if
γ is again sufficiently large. (If γ were infinite, the nonlinear constraint violations
would be minimized subject to the linear constraints and bounds.)

A similar `1 formulation of (NP) is used in the SQP method of Tone [76] and
is fundamental to the S`1QP algorithm of Fletcher [30]. See also Conn [20] and
Spellucci [72]. An attractive feature is that only linear terms are added to (NP),
giving no increase in the expected degrees of freedom at each QP solution.

1.3. Other work on large-scale SQP. There has been considerable interest
in extending SQP methods to the large-scale case (sometimes using exact second
derivatives). Some of this work has focused on problems with nonlinear equality
constraints. The method of Lalee, Nocedal, and Plantenga [53], related to the trust-
region method of Byrd [15] and Omojokun [61], uses either the exact Lagrangian
Hessian or a limited-memory quasi-Newton approximation defined by the method
of Zhu et al. [79]. The method of Biegler, Nocedal, and Schmid [3] is in the class
of reduced-Hessian methods, which maintain a dense approximation to the reduced
Hessian, using quasi-Newton updates.

For large problems with general inequality constraints as in problem (NP), SQP
methods have been proposed by Eldersveld [28], Tjoa and Biegler [75], Fletcher and
Leyffer [32], and Betts and Frank [2]. The first three approaches are also reduced-
Hessian methods. Eldersveld forms a full Hessian approximation from the reduced
Hessian, and his implementation LSSQP solves the same class of problems as SNOPT.
In Tjoa and Biegler’s method, the QP subproblems are solved by eliminating variables
using the (linearized) equality constraints, and the remaining variables are optimized
using a dense QP solver. As bounds on the eliminated variables become dense con-
straints in the reduced QP, the method is best suited to problems with many nonlin-
ear equality constraints but few bounds on the variables. The filter-SQP method of
Fletcher and Leyffer uses a reduced Hessian QP-solver in conjunction with an exact
Lagrangian Hessian. This method is also best suited for problems with few degrees
of freedom. In contrast, the method of Betts and Frank employs an exact or finite-
difference Lagrangian Hessian and a QP solver based on sparse KKT factorizations
(see section 7). It is therefore applicable to problems with many degrees of freedom.

Several large-scale methods solve the QP subproblems by an interior method.
They typically require an exact or finite-difference Lagrangian Hessian and can ac-
commodate many degrees of freedom. Examples are Boggs, Kearsley, and Tolle [4, 5]
and Sargent and Ding [69].
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1.4. Other large-scale methods. MINOS and CONOPT are both reduced-
Hessian methods. Like SNOPT, they use first derivatives and are designed for large
problems with few degrees of freedom (again up to 2000, say, although MINOS can
allow for any number; see section 7.1). For nonlinear constraints, MINOS uses a
linearly constrained Lagrangian method, whose subproblems require frequent evalua-
tion of the problem functions. CONOPT uses a generalized reduced gradient method,
which maintains near-feasibility with respect to the nonlinear constraints, again at
the expense of many function evaluations. SNOPT is likely to outperform MINOS

and CONOPT when the functions (and their derivatives) are expensive to evaluate.
Relative to MINOS, an added advantage is the existence of a merit function to en-
sure global convergence. This is especially important when the constraints are highly
nonlinear.

LANCELOT Release A [22] is another widely used package in the area of large-
scale constrained optimization. It uses a bound constrained augmented Lagrangian
method. In general, LANCELOT is recommended for large problems with many de-
grees of freedom. It complements SNOPT and the other methods discussed above. A
comparison between LANCELOT and MINOS has been made in [8, 9].

LOQO [78] and KNITRO [17, 16] are examples of large-scale optimization packages
that treat inequality constraints by a primal-dual interior method. Both packages
require second derivatives but can accommodate many degrees of freedom.

1.5. Notation. Some important quantities follow:

(x, π, s) primal, dual and slack variables for problem (GNP) (see section 2.1),
(x∗, π∗, s∗) optimal variables for problem (GNP),
(xk, πk, sk) the kth estimate of (x∗, π∗, s∗),
fk, gk, ck, Jk functions and gradients evaluated at xk,
(x̂k, π̂k, ŝk) optimal variables for QP subproblem (GQPk) (see section 2.4).

2. The SQP iteration. Here we discuss the main features of an SQP method
for solving a generic nonlinear program. All features are readily specialized to the
more general constraints in problem (NP).

2.1. The generic problem. In this section we take the problem to be

(GNP) minimize
x

f(x)

subject to c(x) ≥ 0,

where x ∈ Rn, c ∈ Rm, and the functions f(x) and ci(x) have continuous second
derivatives. The gradient of f is denoted by the vector g(x), and the gradients of each
element of c form the rows of the Jacobian matrix J(x).

We assume that a KKT point (x∗, π∗) exists for (GNP), satisfying the first-order
optimality conditions:

(2.1) c(x∗) ≥ 0, π∗ ≥ 0, c(x∗)T π∗ = 0, J(x∗)T π∗ = g(x∗).

2.2. Structure of the SQP method. An SQP method obtains search direc-
tions from a sequence of QP subproblems. Each QP subproblem minimizes a quadratic
model of a certain Lagrangian function subject to linearized constraints. Some merit
function is reduced along each search direction to ensure convergence from any start-
ing point.
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The basic structure of an SQP method involves major and minor iterations. The
major iterations generate a sequence of iterates (xk, πk) that converge to (x∗, π∗). At
each iterate a QP subproblem is used to generate a search direction towards the next
iterate (xk+1, πk+1). Solving such a subproblem is itself an iterative procedure, with
the minor iterations of an SQP method being the iterations of the QP method.

For an overview of SQP methods, see, for example, Boggs and Tolle [6], Fletcher
[31], Gill, Murray, and Wright [48], Murray [56], and Powell [66].

2.3. The modified Lagrangian. Let xk and πk be estimates of x∗ and π∗. For
several reasons, our SQP algorithm is based on the modified Lagrangian associated
with (GNP), namely,

(2.2) L(x, xk, πk) = f(x)− πT
k dL(x, xk),

which is defined in terms of the constraint linearization and the departure from lin-
earity :

cL(x, xk) = ck + Jk(x− xk),
dL(x, xk) = c(x)− cL(x, xk);

see Robinson [68] and Van der Hoek [77]. The first and second derivatives of the
modified Lagrangian with respect to x are

∇L(x, xk, πk) = g(x)− (J(x)− Jk)Tπk,

∇2L(x, xk, πk) = ∇2f(x)−
∑

i

(πk)i∇2ci(x).

Observe that ∇2L is independent of xk (and is the same as the Hessian of the con-
ventional Lagrangian). At x = xk, the modified Lagrangian has the same function
and gradient values as the objective: L(xk, xk, πk) = fk, ∇L(xk, xk, πk) = gk.

2.4. The QP subproblem. Let the quadratic approximation to L at xk be

LQ(x, xk, πk) = fk + gT
k(x− xk) + 1

2 (x− xk)T∇2L(xk, xk, πk)(x− xk).

If (xk, πk) = (x∗, π∗), optimality conditions for the QP

(GQP∗) minimize
x

LQ(x, xk, πk)

subject to linearized constraints cL(x, xk) ≥ 0

are identical to those for the original problem (GNP). This suggests that if Hk is
an approximation to ∇2L at the point (xk, πk), an improved estimate of the solution
may be found from (x̂k, π̂k), the solution of the following QP subproblem:

(GQPk) minimize
x

fk + gT
k (x− xk) + 1

2 (x− xk)THk(x− xk)

subject to ck + Jk(x− xk) ≥ 0.

Optimality conditions for (GQPk) may be written as

ck + Jk(x̂k − xk) = ŝk, π̂k ≥ 0, ŝk ≥ 0,

gk + Hk(x̂k − xk) = JT
k π̂k, π̂T

k ŝk = 0,

where ŝk is a vector of slack variables for the linearized constraints. In this form,
(x̂k, π̂k, ŝk) may be regarded as estimates of (x∗, π∗, s∗), where the slack variables s∗
satisfy c(x∗) − s∗ = 0, s∗ ≥ 0. The vector ŝk is needed explicitly for the line search
(section 2.7).
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2.5. The working-set matrix Wk. The working set is an important quantity
for both the major and the minor iterations. It is the current estimate of the set of
constraints that are binding at a solution. More precisely, suppose that (GQPk) has
just been solved. Although we try to regard the QP solver as a “black box,” we expect
it to return an independent set of constraints that are active at the QP solution (even
if the QP constraints are degenerate). This is an optimal working set for subproblem
(GQPk).

The same constraint indices define a working set for (GNP) (and for subproblem
(GQPk+1)). The corresponding gradients form the rows of the working-set matrix
Wk, an nY × n full-rank submatrix of the Jacobian Jk.

2.6. The null-space matrix Zk. Let Zk be an n × nZ full-rank matrix that
spans the null space of Wk. (Thus, nZ = n − nY , and WkZk = 0.) The QP solver
will often return Zk as part of some matrix factorization. For example, in NPSOL it
is part of an orthogonal factorization of Wk, while in LSSQP [28] (and in the current
SNOPT) it is defined implicitly from a sparse LU factorization of part of Wk. In any
event, Zk is useful for theoretical discussions, and its column dimension has strong
practical implications. Important quantities are the reduced Hessian ZT

kHkZk and the
reduced gradient ZT

kg.

2.7. The merit function. Once the QP solution (x̂k, π̂k, ŝk) has been deter-
mined, new estimates of the (GNP) solution are computed using a line search on the
augmented Lagrangian merit function

(2.3) M(x, π, s) = f(x)− πT
(
c(x)− s

)
+ 1

2

(
c(x)− s

)T
D
(
c(x)− s

)
,

where D is a diagonal matrix of penalty parameters. If (xk, πk, sk) are the current
estimates of (x∗, π∗, s∗), the line search determines a step length αk (0 < αk ≤ 1)
such that the new point

(2.4)

 xk+1

πk+1

sk+1

 =

 xk

πk

sk

+ αk

 x̂k − xk

π̂k − πk

ŝk − sk


gives a sufficient decrease in the merit function (2.3). Let ϕk(α) denote the merit
function computed at the point (xk + α(x̂k − xk), πk + α(π̂k − πk), sk + α(ŝk − sk));
i.e., ϕk(α) defines M as a univariate function of the step length. Initially D is zero
(for k = 0). When necessary, the penalties in D are increased by the minimum-norm
perturbation that ensures sufficient descent for ϕk(α) [47]. (Note: As in NPSOL, sk+1

in (2.4) is redefined to minimize the merit function as a function of s, prior to the
solution of (GQPk+1). For more details, see [44, 28].)

In the line search, for some vector b > 0 the following condition is enforced:

(2.5) c(xk + αkpk) ≥ −b (pk ≡ x̂k − xk).

We use bi = τV max{1,−ci(x0)}, where τV is a specified constant, e.g., τV = 10.
This defines a region in which the objective is expected to be defined and bounded
below. (A similar condition is used in [71].) Murray and Prieto [57] show that under
certain conditions, convergence can be assured if the line search enforces (2.5). If the
objective is bounded below in Rn, then b may be any large positive vector.

If αk is essentially zero (because ‖pk‖ is very large), the objective is considered
“unbounded” in the expanded region. Elastic mode is entered (or continued) as
described in section 4.7.
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2.8. The approximate Hessian. As suggested by Powell [64], we maintain a
positive-definite approximate Hessian Hk. On completion of the line search, let the
change in x and the gradient of the modified Lagrangian be

δk = xk+1 − xk and yk = ∇L(xk+1, xk, π)−∇L(xk, xk, π),

for some vector π. An estimate of the curvature of the modified Lagrangian along δk

is incorporated using the BFGS quasi-Newton update,

Hk+1 = Hk + θkykyT
k − φkqkqT

k,

where qk = Hkδk, θk = 1/yT
kδk, and φk = 1/qT

kδk. When Hk is positive-definite, Hk+1

is positive-definite if and only if the approximate curvature yT
kδk is positive. The

consequences of a negative or small value of yT
kδk are discussed in the next section.

There are several choices for π, including the QP multipliers π̂k and least-squares
multipliers λk (see, e.g., [40]). Here we use the updated multipliers πk+1 from the line
search, because they are responsive to short steps in the search and are available at
no cost. The definition of L from (2.2) yields

yk = ∇L(xk+1, xk, πk+1)−∇L(xk, xk, πk+1)
= gk+1 − gk − (Jk+1 − Jk)T πk+1.

2.9. Maintaining positive-definiteness. Since the Hessian of the modified
Lagrangian need not be positive-definite at a local minimizer, the approximate cur-
vature yT

kδk can be negative or very small at points arbitrarily close to (x∗, π∗). The
curvature is considered not sufficiently positive if

(2.6) yT
kδk < σk, σk = αk(1− η)pT

kHkpk,

where η is a preassigned constant (0 < η < 1) and pk is the search direction x̂k − xk

defined by the QP subproblem. In such cases, if there are nonlinear constraints, two
attempts are made to modify the update: the first modifying δk and yk, the second
modifying only yk. If neither modification provides sufficiently positive approximate
curvature, no update is made.

First modification. The purpose of this modification is to exploit the properties
of the reduced Hessian at a local minimizer of (GNP). We define a new point zk and
evaluate the nonlinear functions there to obtain new values for δk and yk:

δk = xk+1 − zk, yk = ∇L(xk+1, xk, πk+1)−∇L(zk, xk, πk+1).

We choose zk by recording x̄k, the first feasible iterate found for problem (GQPk)
(see section 4). The search direction may be regarded as

pk = (x̄k − xk) + (x̂k − x̄k) ≡ pR + pN .

We set zk = xk + αkpR, giving δk = αkpN and

yT
kδk = αkyT

kpN ≈ α2
kpT

N∇2L(xk, xk, πk)pN ,

so that yT
kδk approximates the curvature along pN . If Wk, the final working set of

problem (GQPk), is also the working set at x̄k, then WkpN = 0, and it follows that
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yT
kδk approximates the curvature for the reduced Hessian, which must be positive

semidefinite at a minimizer of (GNP).
The assumption that the QP working set does not change once zk is known is

always justified for problems with equality constraints. (See Byrd and Nocedal [18]
for a similar scheme in this context.) With inequality constraints, we observe that
WkpN ≈ 0, particularly during later major iterations, when the working set has settled
down.

This modification exploits the fact that SNOPT maintains feasibility with respect
to any linear constraints in (GNP). Although an additional function evaluation is
required at zk, we have observed that even when the Hessian of the Lagrangian has
negative eigenvalues at a solution, the modification is rarely needed more than a few
times if used in conjunction with the augmented Lagrangian modification discussed
next.

Second modification. If (xk, πk) is not close to (x∗, π∗), the modified approxi-
mate curvature yT

kδk may not be sufficiently positive, and a second modification may
be necessary. We choose ∆yk so that (yk +∆yk)Tδk = σk (if possible) and redefine yk

as yk + ∆yk. This approach was suggested by Powell [65], who proposed redefining
yk as a linear combination of yk and Hkδk.

To obtain ∆yk, we consider the augmented modified Lagrangian [59]:

(2.7) LA(x, xk, πk) = f(x)− πT
k dL(x, xk) + 1

2dL(x, xk)TΩdL(x, xk),

where Ω is a matrix of parameters to be determined: Ω = diag(ωi), ωi ≥ 0, i = 1:m.
The perturbation

∆yk = (Jk+1 − Jk)TΩdL(xk+1, xk)

is equivalent to redefining the gradient difference as

(2.8) yk = ∇LA(xk+1, xk, πk+1)−∇LA(xk, xk, πk+1).

We choose the smallest (minimum two-norm) ωi’s that increase yT
kδk to σk (see (2.6)).

They are determined by the linearly constrained least-squares problem

(LSP) minimize
ω

‖ω‖2

subject to aTω = β, ω ≥ 0,

where β = σk − yT
kδk and ai = viwi (i = 1:m), with v = (Jk+1 − Jk)δk and w =

dL(xk+1, xk). The optimal ω can be computed analytically [44, 28]. If no solution
exists, or if ‖ω‖ is very large, no update is made.

The approach just described is related to the idea of updating an approximation
of the Hessian of the augmented Lagrangian, as suggested by Han [50] and Tapia
[74]. However, we emphasize that the second modification is not required in the
neighborhood of a solution, because as x→ x∗, ∇2LA converges to ∇2L, and the first
modification will already have been successful.

2.10. Convergence tests. A point (x, π) is regarded as a satisfactory solution
if it satisfies the first-order optimality conditions (2.1) to within certain tolerances.
Let τP and τD be specified small positive constants, and define τx = τP (1 + ‖x‖),
τπ = τD(1 + ‖π‖). The SQP algorithm terminates if

(2.9) ci(x) ≥ −τx, πi ≥ −τπ, ci(x)πi ≤ τπ, |dj | ≤ τπ,
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where d = g(x)− J(x)Tπ. These conditions cannot be satisfied if (GNP) is infeasible,
but in that case the SQP algorithm will eventually enter elastic mode and satisfy
analogous tests for a series of problems

(GNP(γ)) minimize
x,v

f(x) + γeTv

subject to c(x) + v ≥ 0, v ≥ 0,

with γ taking an increasing set of values {γ`} up to some maximum. The optimality
conditions for (GNP(γ)) include

0 ≤ πi ≤ γ, (ci(x) + vi)πi = 0, vi(γ − πi) = 0.

The fact that ‖π∗‖∞ ≤ γ at a solution of (GNP(γ)) leads us to initiate elastic mode
if ‖πk‖ exceeds some value γ1 (or if (GQPk) is infeasible). We use

(2.10) γ1 ≡ γ0‖g(xk1)‖, γ` = 10`(`−1)/2γ1 (` = 2, 3, . . . ),

where γ0 is a parameter (104 in our numerical results) and xk1 is the iterate at which
γ is first needed.

3. Large-scale Hessians. In the large-scale case, we cannot treat Hk as an
n × n dense matrix. Nor can we maintain dense triangular factors of a transformed
Hessian QTHkQ = RTR as in NPSOL. We discuss the alternatives implemented in
SNOPT.

3.1. Linear variables. If only some of the variables occur nonlinearly in the
objective and constraint functions, the Hessian of the Lagrangian has structure that
can be exploited during the optimization. We assume that the nonlinear variables are
the first n̄ components of x. By induction, if H0 is zero in its last n − n̄ rows and
columns, the last n− n̄ components of the BFGS update vectors yk and Hkδk are zero
for all k, and every Hk has the form

(3.1) Hk =

(
H̄k 0
0 0

)
,

where H̄k is n̄ × n̄. Simple modifications of the methods of section 2.9 can be used
to keep H̄k positive-definite. A QP subproblem with a Hessian of this form is either
unbounded or has at least n− n̄ constraints in the final working set. This implies that
the reduced Hessian need never have dimension greater than n̄.

Under the assumption that the objective function is bounded below in some ex-
panded feasible region c(x) ≥ −b (see (2.5)), a sequence of positive-definite matrices
H̄k with uniformly bounded condition numbers is sufficient for the SQP convergence
theory to hold. (This case is analogous to converting inequality constraints to equal-
ities by adding slack variables—the Hessian is singular only in the space of the slack
variables.) However, in order to treat semidefinite Hessians such as (3.1), the QP
solver must include an inertia controlling working-set strategy, which ensures that
the reduced Hessian has at most one zero eigenvalue. See sections 4.6–4.7.

3.2. Dense Hessians. The Hessian approximations H̄k are matrices of order n̄,
the number of nonlinear variables. If n̄ is not too large, it is efficient to treat each H̄k

as a dense matrix and apply the BFGS updates explicitly. The storage requirement
is fixed, and the number of major iterations should prove to be moderate. (We can
expect one-step Q-superlinear convergence.)
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3.3. Limited-memory Hessians. To treat problems where the number of non-
linear variables n̄ is very large, we use a limited-memory procedure to update an initial
Hessian approximation Hr a limited number of times. The present implementation
is quite simple and has an advantage in the SQP context when the constraints are
linear: the reduced Hessian for the QP subproblem can be updated between major
iterations (see section 5.4).

Initially, suppose n̄ = n. Let ` be preassigned (say ` = 20), and let r and k denote
two major iterations such that r ≤ k ≤ r + `. Up to ` updates to a positive-definite
Hr are accumulated to represent the Hessian as

(3.2) Hk = Hr +
k−1∑
j=r

(
θjyjy

T
j − φjqjq

T
j

)
,

where qj = Hjδj , θj = 1/yT
j δj , and φj = 1/qT

j δj . The quantities (yj , qj , θj , φj) are
stored for each j. During major iteration k, the QP solver accesses Hk by requesting
products of the form Hkv. These are computed with work proportional to k − r:

Hkv = Hrv +
k−1∑
j=r

(
θj(yT

j v)yj − φj(qT
j v)qj

)
.

On completion of iteration k = r+`, the diagonals of Hk are computed from (3.2) and
saved to form the next positive-definite Hr (with r = k + 1). Storage is then “reset”
by discarding the previous updates. (Similar schemes are described by Buckley and
LeNir [13, 14] and Gilbert and Lemaréchal [37]. More elaborate schemes are given
by Liu and Nocedal [54], Byrd, Nocedal, and Schnabel [19], and Gill and Leonard
[39], and some have been evaluated by Morales [55]. However, as already indicated,
these schemes would require refactorization of the reduced Hessian in the linearly
constrained case.)

If n̄ < n, Hk has the form (3.1), and the same procedure is applied to H̄k. Note
that the vectors yj and qj have length n̄—a benefit when n̄ � n. The modified
Lagrangian LA from (2.7) retains this property for the modified yk in (2.8).

4. The QP solver SQOPT. Since SNOPT solves nonlinear programs of the
form (NP), it requires solution of QP subproblems of the same form, with f(x) re-
placed by a convex quadratic function, and c(x) replaced by its current linearization:

(QPk) minimize
x

fk + gT
k (x− xk) + 1

2 (x− xk)THk(x− xk)

subject to l ≤

 x

ck + Jk(x− xk)
Ax

 ≤ u.

At present, (QPk) is solved by the package SQOPT [42], which employs a two-phase
active-set algorithm and implements elastic programming implicitly when necessary.
The Hessian Hk may be positive-semidefinite and is defined by a routine for forming
products Hkv.

4.1. Elastic bounds. SQOPT can treat any of the bounds in (QPk) as elastic.
Let xj refer to the jth variable or slack. For each j, an input array specifies which
of the bounds lj , uj is elastic (either, neither, or both). A parallel array maintains
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the current state of each xj . If the variable or slack is currently outside its bounds
by more than the Minor feasibility tolerance, it is given a linear penalty term
γ × infeasibility in the objective function. This is a much-simplified but useful form
of piecewise linear programming (Fourer [33, 34, 35]).

SNOPT uses elastic bounds in three different ways:
• to solve problem (FLP) (section 1.2) if the linear constraints are infeasible,
• to solve problem (PP1) (section 5.1),
• to solve the QP subproblems associated with problem (NP(γ)) after nonlinear

elastic mode is initiated.

4.2. The null-space method. SQOPT maintains a dense Cholesky factoriza-
tion of the QP reduced Hessian:

(4.1) ZTHkZ = RTR,

where Z is the null-space matrix for the working sets W in the QP minor iterations.
Normally, R is computed from (4.1) when the nonelastic constraints are first satisfied.
It is then updated as the QP working set changes. For efficiency the dimension of
R should not be excessive (say, nZ ≤ 2000). This is guaranteed if the number of
nonlinear variables is moderate (because nZ ≤ n̄ at a solution), but it is often true
even if n̄ = n.

To review notation, Z is maintained in “reduced-gradient” form as in MINOS,
using the package LUSOL [45] to maintain sparse LU factors of a square matrix B
whose columns change as the working set W changes:

(4.2) W =

(
B S N

I

)
P, Z = PT

 −B−1S

I

0

 ,

where P is a permutation such that B is nonsingular. Variables associated with B
and S are called basic and superbasic; the remainder are called nonbasic. The number
of degrees of freedom is the number of superbasic variables (the column dimension of
S). Products of the form Zv and ZTg are obtained by solving with B or BT.

4.3. Threshold pivoting (TPP and TCP). Stability in LU factorization is
achieved by bounding the off-diagonal elements of L or U . There are many ways
to do this, especially in the sparse case. In LUSOL, L has unit diagonals, and each
elimination step produces the next column of L and the next row of U . Let

τL = the LU factor tolerance such that |Lij | ≤ τL

(where 1 < τL ≤ 100, say),

Al = the remaining submatrix to be factored after l steps
(updated by the first l columns of L).

For most factorizations, LUSOL uses a threshold partial pivoting strategy (TPP)
similar to that in LA05 [67] and MA28 [27]. To become the next diagonal of U , a
nonzero in Al must be sufficiently large compared to other nonzeros in the same
column of Al.

With τL ∈ [4, 25], TPP usually performs well in terms of balancing stability and
sparsity, but is not especially good at rank-detection (revealing near-singularity and
its cause). For example, a triangular matrix A gives L = I and U = A for all values
of τL (a perfect L and maximum sparsity, but little hint of possible ill-conditioning).
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For greater reliability, a threshold complete pivoting strategy (TCP) has been im-
plemented recently in LUSOL [63], in which the next diagonal of U must be reasonably
large compared to all nonzeros in Al. The original aim was to improve rank-detection
for the sparse matrices arising during the optimization of Markov decision chains [62].
Although reduced sparsity and speed are expected, TCP has proved valuable within
SNOPT, as described below.

In general we use TPP where possible, with τL decreasing through a short sequence
of values (currently 4, 2,

√
2, . . . , 1.1) if various tests continue to indicate instability

(e.g., large ‖b − Bx‖ or ‖x‖ when basic variables are recomputed from Bx = b).
When necessary, a switch is made to TCP with another sequence of values (currently
τL = 20, 10, 5, 2.5,

√
2.5, . . . , 1.1).

4.4. Basis repair (square or singular case). Whenever a basis is factored,
LUSOL signals “singularity” if any diagonals of U are judged small, and indicates
which unit vectors (corresponding to slack variables) should replace the associated
columns of B. The modified B is then factored.

The process may need to be repeated if the factors of B are not sufficiently “rank-
revealing.” Extreme behavior of this kind was exhibited by one of the CUTE problems
(section 6.2) when the first basis was factored with the normal partial pivoting options.
Problem drcavty2 is a large square system of nonlinear equations (10000 constraints
and variables, 140000 Jacobian nonzeros). The first TPP factorization with τL = 4.0
indicated 243 singularities. After slacks were inserted, the next factorization indicated
47 additional singularities, the next a further 25, then 18, 14, 10, and so on. Nearly
30 TPP factorizations and 460 new slacks were required before the basis was regarded
as suitably nonsingular. Since L and U each had about a million nonzeros in all
factorizations, the repeated failures were rather expensive.

In contrast, a single TCP factorization with τL = 2.5 indicated 100 singularities,
after which the modified B proved to be very well-conditioned. Although L and U
were more dense (1.35 million nonzeros each) and much more expensive to compute,
the subsequent optimization required significantly fewer major and minor iterations.

For such reasons, SQOPT includes a special “BR factorization” for estimating the
rank of a given B, using the LUSOL options shown in Figure 1. P and Q are the
row and column permutations that make L unit triangular and U upper triangular,
with small elements in the bottom right if B is close to singular. To save storage, the
factors are discarded as they are computed. A normal “B factorization” then follows.

B = = LU , PLPT =

(
L1

L2 L3

)
, PUQ =

 U1 U2

. . .


LUSOL options: TCP, τL = 2.5, discard factors

Fig. 1. BR factorization (rank detection for square B).

BR factorization is the primary recourse when unexpected growth occurs in ‖x‖
following solution of Bx = b. It has proved valuable for some other CUTE problems
arising from partial differential equations (namely, porous1 , porous2 , bratu2d , and
bratu3d). A regular “marching pattern” is sometimes present in B, particularly in
the first triangular basis following a cold start. With partial pivoting, the factors
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display no small diagonals in U , yet the BR factors reveal a large number of dependent
columns. Thus, although condition estimators are known that could tell us “this B is
ill-conditioned” (e.g., [52]), we are using LUSOL’s complete pivoting option to decide
which columns are causing the poor condition.

4.5. Basis repair (rectangular case). When superbasic variables are present,
the permutation P in (4.2) clearly affects the condition of B and Z. SQOPT therefore
applies an occasional rectangular “BS factorization” to choose a new P , using the
options shown in Figure 2.

WT = = LU , PLPT =

(
L1

L2 I

)
, PUQ =

(
U1

0

)
LUSOL options: TPP or TCP, τL ≤ 3.99, discard factors

Fig. 2. BS factorization (basis detection for rectangular W ).

For simplicity we assume that there are no nonbasic columns in W . A basis
partition is given by

PWT ≡

(
BT

ST

)
=

(
L1

L2

)
U1Q

T ,

and the required null-space matrix satisfying WZ = 0 is

(4.3) Z ≡ PT

(
−B−1S

I

)
= PT

(
−L−T

1 LT
2

I

)
.

With τL ≤ 3.99, L and L1 are likely to be well-conditioned, and ζ ≡ ‖L−T
1 LT

2 ‖
is unlikely to be large. (It can be bounded by a polynomial function of τL.) The
extreme singular values of Z are σmin ≥ 1 and σmax ≈ 1 + ζ. It follows that Z should
be well-conditioned regardless of the condition of W .

SQOPT applies this basis repair at the beginning of a warm start (when a potential
B-S ordering is known). To prevent basis repair at every warm start—i.e., every
major iteration of SNOPT—a normal B = LU factorization is computed first with
the current (usually larger) tolerance τL. If U appears to be more ill-conditioned than
after the last repair, a new repair is invoked. The relevant test on the diagonals of U
is tightened gradually to ensure that basis repair occurs periodically (even during a
single major iteration if a QP subproblem requires many iterations).

Although the rectangular factors are discarded, we see from (4.3) that a nor-
mal factorization of B allows iterations to proceed with an equivalent Z. (A BR
factorization may be needed to repair B first if W happens to be singular.)

4.6. Inertia control. If (NP) contains linear variables, Hk in (3.1) is positive
semidefinite. In SQOPT, only the last diagonal of R (see (4.1)) is allowed to be
zero. (See [46] for discussion of a similar strategy for indefinite QP.) If the initial
R is singular, enough temporary constraints are added to the working set to give a
nonsingular R. Thereafter, R can become singular only when a constraint is deleted
from the working set (in which case no further constraints are deleted until R becomes
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nonsingular). When R is singular at a nonoptimal point, it is used to define a direction
dZ such that

(4.4) ZTHkZdZ = 0 and gTZdZ < 0,

where g = g(xk) + Hk(x− xk) is the gradient of the quadratic objective. The vector
d = ZdZ is a direction of unbounded descent for the QP in the sense that the QP
objective is linear and decreases without bound along d. Normally, a step along d
reaches a new constraint, which is then added to the working set for the next iteration.

4.7. Unbounded QP subproblems. If the QP objective is unbounded along
d, subproblem (QPk) terminates. The final QP search direction d = ZdZ is also a
direction of unbounded descent for the objective of (NP). To show this, we observe
from (4.4) that if we choose p = d, then

Hkp = 0 and gT
kp < 0.

The imposed nonsingularity of H̄k (see (3.1)) implies that the nonlinear components
of p are zero, and so the nonlinear terms of the objective and constraint functions
are unaltered by steps of the form xk + αp. Since gT

kp < 0, the objective of (NP)
is unbounded along p, because it must include a term in the linear variables that
decreases without bound along p.

In short, (NP) behaves like an unbounded linear program (LP) along p, with the
nonlinear variables (and functions) frozen at their current values. Thus if xk is feasible
for (NP), unboundedness in (QPk) implies that the objective f(x) is unbounded for
feasible points, and the problem is declared unbounded.

If xk is infeasible, unboundedness in (QPk) implies that f(x) is unbounded for
some expanded feasible region c(x) ≥ −b (see (2.5)). We enter or continue elastic mode
(with an increased value of γ if it has not already reached its maximum permitted
value). Eventually the QP subproblem will be bounded, or xk will become feasible,
or the iterations will converge to a point that approximately minimizes the one-norm
of the constraint violations.

5. Algorithmic details. A practical SQP algorithm requires many features to
achieve reliability and efficiency. We discuss some more of them here before summa-
rizing the main algorithmic steps.

5.1. The initial point. To take advantage of a good starting point x0, we apply
SQOPT to one of the “proximal-point” problems

(PP1) minimize
x

‖x̄− x̄0‖1
subject to the linear constraints and bounds

or

(PP2) minimize
x

‖x̄− x̄0‖22
subject to the linear constraints and bounds,

where x̄ and x̄0 correspond to the nonlinear variables in x and x0. The solution defines
a new starting point x0 for the SQP iteration. The nonlinear functions are evaluated
at this point, and a “crash” procedure is executed to find a working set W0 for the
linearized constraints.
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In practice we prefer problem (PP1), as it is linear and can use SQOPT’s implicit
elastic bounds. (We temporarily set the bounds on the nonlinear variables to be
x̄0 ≤ x̄ ≤ x̄0.) Note that problem (PP2) may be “more nonlinear” than the original
problem (NP), in the sense that its exact solution may lie on fewer constraints (even
though it is nonlinear in the same subset of variables, x̄). To prevent the reduced
Hessian from becoming excessively large with this option, we terminate SQOPT early
by specifying a loose optimality tolerance.

5.2. Undefined functions. If the constraints in (PP1) or (PP2) prove to be
infeasible, SNOPT solves problem (FLP) (see section 1.2) and terminates without
computing the nonlinear functions. The problem was probably formulated incorrectly.

Otherwise, the linear constraints and bounds define a certain “linear feasible
region” RL, and all iterates satisfy xk ∈ RL to within a feasibility tolerance (as with
NPSOL). Although SQP algorithms might converge more rapidly sometimes if all
constraints were treated equally, the aim is to help prevent function evaluations at
obvious singularities.

In practice, the functions may not be defined everywhere within RL, and it may
be an unbounded region. Hence, the function routines are permitted to return an
“undefined function” signal. If the signal is received from the first function call
(before any line search takes place), SNOPT terminates. Otherwise, the line search
backtracks and tries again.

5.3. Early termination of QP subproblems. SQP theory usually assumes
that the QP subproblems are solved to optimality. For large problems with a poor
starting point and H0 = I, many thousands of iterations may be needed for the first
QP, building up many degrees of freedom (superbasic variables) that are promptly
eliminated by more thousands of iterations in the second QP.

In general, it seems wasteful to expend much effort on any QP before updating
Hk and the constraint linearization. Murray and Prieto [57] suggest one approach to
terminating the QP solutions early, requiring that at least one QP stationary point
be reached. The associated theory implies that any subsequent point x̂k generated
by a QP solver is suitable, provided that ‖x̂k − xk‖ is nonzero. In SNOPT we have
implemented a method within this framework that has proved effective on many
problems. Conceptually we could perform the following steps:

• Fix many variables at their current value.
• Perform one SQP major iteration on the reduced problem (solving a smaller

QP to get a search direction for the nonfixed variables).
• Free the fixed variables, and complete the major iteration with a “full” search

direction that happens to leave many variables unaltered.
• Repeat.

Normal merit-function theory should guarantee progress at each stage on the associ-
ated reduced nonlinear problem. We are simply suboptimizing.

In practice, we are not sure which variables to fix at each stage, the reduced QP
could be infeasible, and degeneracy could produce a zero search direction. Instead,
the choice of which variables to fix is made within the QP solver. The following steps
are performed:

• Perform QP iterations on the full problem until a feasible point is found or
elastic mode is entered.
• Continue iterating until certain limits are reached and not all steps have been

degenerate.
• Freeze nonbasic variables that have not yet moved.
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• Solve the reduced QP to optimality.
Rather arbitrary limits may be employed and perhaps combined. We have imple-
mented the following as user options:

• Minor iterations limit (default 500) suggests termination if a reasonable
number of QP iterations have been performed (beyond the first feasible point).
• New superbasics limit (default 99) suggests termination if the number of

free variables has increased significantly (since the first feasible point).
• Minor optimality tolerance (default 10−6) specifies an optimality toler-

ance for the final QPs.
Internally, SNOPT sets a loose but decreasing optimality tolerance for the early QPs
(somewhat smaller than a measure of the current primal-dual infeasibility for (NP)).
This “loose tolerance” strategy provides a dynamic balance between major and minor
iterations in the manner of inexact Newton methods (Dembo, Eisenstat, and Steihaug
[23]).

5.4. Linearly constrained problems. For problems with linear constraints
only, the maximum step length is not necessarily one. Instead, it is the maximum
feasible step along the search direction. If the line search is not restricted by the
maximum step, the line search ensures that the approximate curvature is sufficiently
positive and the BFGS update can always be applied. Otherwise, the update is
skipped if the approximate curvature is not sufficiently positive.

For linear constraints, the working-set matrix Wk does not change at the new
major iterate xk+1, and the basis B need not be refactorized. If B is constant, then
so is Z, and the only change to the reduced Hessian between major iterations comes
from the rank-two BFGS update. This implies that the reduced Hessian need not be
refactorized if the BFGS update is applied explicitly to the reduced Hessian. This
obviates factorizing the reduced Hessian at the start of each QP, saving considerable
computation.

Given any nonsingular matrix Q, the BFGS update to Hk implies the following
update to QTHkQ:

(5.1) H̄Q = HQ + θkyQyT
Q − φkqQqT

Q ,

where H̄Q = QTHk+1Q, HQ = QTHkQ, yQ = QTyk, δQ = Q−1δk, qQ = HQδQ,
θk = 1/yT

QδQ, and φk = 1/qT
QδQ. If Q is of the form ( Z Y ) for some matrix Y , the

reduced Hessian is the leading principal submatrix of HQ.
The Cholesky factor R of the reduced Hessian is simply the upper-left corner of

the n̄× n upper-trapezoidal matrix RQ such that HQ = RT
QRQ. The update for R is

derived from the rank-one update to RQ implied by (5.1). Given δk and yk, if we had
all of the Cholesky factor RQ, it could be updated directly as

RQ + uvT, w = RQδQ, u = w/‖w‖, v =
√

θkyQ −RT
Qu

(see Goldfarb [49], Dennis and Schnabel [24]). This rank-one modification of RQ could
be restored to upper-triangular form by applying two sequences of plane rotations from
the left [38].

The same sequences of rotations can be generated even though not all of RQ is
present. Let vZ be the first nZ elements of v. The following algorithm determines the
Cholesky factor R̄ of the first nZ rows and columns of H̄Q from (5.1):

1. Compute q = Hkδk and t = ZTq.
2. Define φ = ‖w‖2 = (δT

kHkδk)1/2 = (qTδk)1/2.
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3. Solve RTwZ = t.
4. Define uZ = wZ/φ and σ = (1− ‖uZ‖22)1/2.
5. Apply a backward sweep of nZ rotations P1 in the planes (nZ +1, i), i = nZ :1,

to give an upper triangular R̂ and a “row spike” rT :

P1

(
R uZ

σ

)
=

(
R̂ 0
rT 1

)
.

6. Apply a forward sweep of nZ rotations P2 in the planes (i, nZ+1), i = 1:nZ+1,
to restore the upper triangular form:

P2

(
R̂

rT + vT
Z

)
=

(
R̄

0

)
.

5.5. Summary of the SQP algorithm. The main steps of the SNOPT algo-
rithm follow. We assume that a starting point (x0, π0) is available, and that the
reduced-Hessian QP solver SQOPT is being used. We describe elastic mode qualita-
tively. Specific values for γ are given in section 2.10.

0. Apply the QP solver to problem (PP1) or (PP2) to find a point close to
x0 satisfying the linear constraints. If the PP problem is infeasible, declare
problem (NP) infeasible. Otherwise, a working-set matrix W0 is returned.
Set k = 0, and evaluate functions and gradients at x0.

1. Factorize Wk.
2. Find x̄k, a feasible point for the QP subproblem. (This is an intermediate

point for the QP solver, which also provides a working-set matrix W̄ k and its
null-space matrix Z̄k.) If no feasible point exists, initiate elastic mode and
restart the QP.

3. Form the reduced Hessian Z̄T
k HkZ̄k, and compute its Cholesky factorization.

4. Continue solving the QP subproblem to find (x̂k, π̂k), an optimal QP solution.
(This provides a working-set matrix Ŵk and its null-space matrix Ẑk.)
If elastic mode has not been initiated but ‖π̂k‖∞ is “large,” enter elastic mode
and restart the QP.
If the QP is unbounded and xk satisfies the nonlinear constraints, declare the
problem unbounded (f is unbounded below in the feasible region). Otherwise
(if the QP is unbounded), go to Step 6 (f is unbounded below in the feasible
region if a feasible point exists).

5. If (xk, πk) satisfies the convergence tests for (NP) analogous to (2.9), declare
the solution optimal. If similar convergence tests are satisfied for (NP(γ)),
go to Step 6. Otherwise, go to Step 7.

6. If elastic mode has not been initiated, enter elastic mode and repeat Step 4.
Otherwise, if γ has not reached its maximum value, increase γ and repeat
Step 4. Otherwise, declare the problem infeasible.

7. Find a step length αk that gives a sufficient reduction in the merit function.
Set xk+1 = xk + αk(x̂k − xk) and πk+1 = πk + αk(π̂k − πk). In the process,
evaluate functions and gradients at xk+1.

8. Define δk = xk+1 − xk and yk = ∇L(xk+1, xk, πk+1) − ∇L(xk, xk, πk+1).
If yT

kδk < σk (see (2.6)), recompute δk and yk, with xk redefined as xk +
αk(x̄k − xk). (This requires an extra evaluation of the problem derivatives.)
If necessary, increase yT

kδk (if possible) by adding an augmented Lagrangian
term to yk.
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9. If yT
kδk ≥ σk, apply the BFGS update to Hk, using the pair (Hkδk, yk).

10. Define Wk+1 from Ŵk, set k ← k + 1, and repeat from Step 1.

Apart from the function and gradient evaluations, most of the computational effort
lies in Steps 1 and 3. Steps 2 and 4 may also involve significant work if the QP
subproblem requires many minor iterations. Typically this will happen only during
the early major iterations.

6. Numerical results. SNOPT and SQOPT implement all of the techniques
described in sections 2–4. The Fortran 77 coding is compatible with Fortran 90
and 95 compilers and permits recursive calls, or re-entrant calls in a multithreaded
environment, as well as translation into C via f 2c [29] (though these features are not
used here).

We give the results of applying SNOPT 6.1 of May, 2001, to problems in the
CUTE and COPS 2.0 test collections [10, 7, 25]. Function and gradient values were
used throughout (but not second derivatives).

All runs were made on an SGI Octane workstation with 512MB of RAM and two
250MHz R10000 processors (only one being used for each problem solution). The f90
compiler was used with -n32 -O options specifying 32-bit addressing and full code
optimization. The floating-point precision was 2.22 × 10−16. Table 1 defines the
notation used in the tables of results.

Table 1
Notation in tables of results.

nZ The number of degrees of freedom at a solution (columns in Z).
Mnr The number of QP minor iterations.
Mjr The number of major iterations required by the optimizer.
Fcn The number of function and gradient evaluations.
cpu The number of cpu seconds.
Obj The final objective value (to help classify local solutions).
Con The final constraint violation norm (to identify infeasible problems).
a Almost optimal (within 10−2 of satisfying the convergence test).
c Final nonoptimal point could not be improved.
s User-defined superbasics limit exceeded.

6.1. Parameters for SNOPT. Figure 3 gives the SNOPT optional parameters
used, most of which are default values. Linear constraints and variables are scaled
(Scale option 1), and the first basis is essentially triangular (Crash option 3).

Elastic weight sets γ0 = 104 in (2.10).
The Major feasibility and optimality tolerances set τP and τD in section 2.10

for problem (NP). The Minor tolerances are analogous parameters for SQOPT as it
solves (QPk). The Minor feasibility tolerance incidentally applies to the bound
and linear constraints in (NP) as well as (QPk).

Violation limit sets τV in section 2.7 to define an expanded feasible region in
which the objective is expected to be bounded below.

For the Hessian approximations Hk, if the number of nonlinear variables is small
enough (n̄ ≤ 75), a full dense BFGS Hessian is used. Otherwise, a limited-memory
BFGS Hessian is used, with Hk reset to the current Hessian diagonal every 20 major
iterations.

6.2. Results on the CUTE test set. The CUTE distribution of 01/May/2001
contains 945 problems in standard interface format (SIF). A list of the CUTE problem
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types and their frequency is given in Table 2. Although many problems allow for the
number of variables and constraints to be adjusted in the SIF file, our tests used the
dimensions set in the CUTE distribution. This gave problems ranging in size from
hs1 , with two variables and no constraints, to cont5-qp, with 40601 variables and
40201 constraints.

BEGIN SNOPT Problem

Minimize

Crash option 3

Derivative level 3

Elastic weight 1.0E+4

Hessian updates 20

Superbasics limit 2000

Iterations 90000

Major iterations 2000

Minor iterations 500

LU partial pivoting

Major feasibility tolerance 1.0E-6

Major optimality tolerance 2.0E-6

Minor feasibility tolerance 1.0E-6

Minor optimality tolerance 1.0E-6

New superbasics 99

Line search tolerance 0.9

Proximal point method 1

Scale option 1

Step limit 2.0

Unbounded objective 1.0E+15

Verify level -1

Violation limit 1.0E+6

END SNOPT Problem

Fig. 3. The SNOPT optional parameter file.

Table 2
The 945 CUTE problems listed by type and frequency.

Frequency Type Characteristics

24 LP Linear obj, linear constraints
116 QP Quadratic obj, linear constraints
160 UC Nonlinear obj, no constraints
125 BC Nonlinear obj, bound constraints
70 LC Nonlinear obj, linear constraints

375 NC Nonlinear obj, nonlinear constraints
75 FP No objective

From the complete set of 945 problems, 74 were omitted as follows:
• 6 nonsmooth problems (bigbank , gridgena, hs87 , net1 , net2 and net3 ),
• 57 problems with more than 2000 degrees of freedom at the solution (aug3d ,

aug3dc, aug3dcqp, dixmaanb, dtoc5 , dtoc6 , jannson3 , jannson4 , jimack ,
jnlbrng1 , jnlbrng2 , jnlbrnga, minsurfo, obstclae, obstclbm, odnamur , orth-
rdm2, orthrgdm, stcqp1 , stnqp1 , torsion6 , and the 36 lukvli and lukvle1 prob-
lems),
• 9 problems with undefined variables or floating-point exceptions in the SIF

file (himmelbj , lhaifam, lin, pfit1 , pfit3 , recipe, robotarm, s365mod , and
scon1dls),
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• 2 problems too large to decode (qpband and qpnband),
• 1 problem with excessively low accuracy in the objective gradients (bleachng).

Requesting greater accuracy leads to excessive evaluation time.
SNOPT was applied to the remaining 870 problems, using the options listed in

Figure 3. No special information was used in the case of LP, QP, and FP problems—
i.e., each problem was assumed to have a general nonlinear objective. The results are
summarized in Table 3.

Table 3
Summary: SNOPT on the smooth CUTE problems.

Problems attempted 870

Optimal 794
Unbounded 3
Infeasible 10

Optimal, low accuracy 11
Cannot be improved 7
False infeasibility 17
Terminated 28

Major iterations 108980
Minor iterations 678524
Function evaluations 153867
Cpu time (secs) 70864.7

Discussion. Problems flosp2hh, flosp2hl , flosp2hm, ktmodel , and model have
infeasible linear constraints, but were included anyway. The objectives for indef ,
mesh, and static3 are unbounded below in the feasible region. SNOPT correctly
diagnosed the special features of these problems.

A total of 11 problems (allinitc, eigmaxc, eigminc, hs268 , mancino, marine,
orthrds2 , orthregd , penalty3 , pinene, and s268 ) were terminated at a point that
satisfied either the feasibility or the optimality test and was within 10−2 of satisfying
the other test. AMPL implementations of marine and pinene were solved successfully
as part of the COPS 2.0 collection (see section 6.3).

SNOPT reported 22 problems (argauss, bratu2dt , cont6-qq , drcavty2 , eigenb,
eigmaxb, fletcher , flosp2th, growth, hadamard , heart6 , himmelbd , hs90 , junkturn,
lewispol , lootsma, lubrif , lubrifc, nystrom5 , optcdeg3 , powellsq , vanderm3 ) with in-
feasible nonlinear constraints. Since SNOPT is not assured of finding a global mini-
mizer of the sum of infeasibilities, failure to find a feasible point does not imply that
none exists. Of these 22 problems, all but five cases must be counted as failures be-
cause they are known to have feasible points. The five exceptions, flosp2th, junkturn,
lewispol , lubrif , and nystrom5 , have no known feasible points. To gain further as-
surance that these problems are indeed infeasible, they were re-solved using SNOPT’s
Feasible Point option, in which the true objective is ignored but “elastic mode” is
invoked (as usual) if the constraint linearizations prove to be infeasible (i.e., f(x) = 0
and γ = 1 in problem (NP(γ)) of section 1.1). In all five cases, the final sum of
constraint violations was comparable to that obtained with the composite objective.
We conjecture that these problems are infeasible.

Problems fletcher and lootsma have feasible solutions, but their initial points are
infeasible and stationary for the sum of infeasibilities, and thus SNOPT terminated
immediately. These problems are also listed as failures. Problem drcavty2 is also
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listed as a failure, although it is probably infeasible for the size of problem tested (196
variables, 101 general constraints). SNOPT ran successfully on the larger versions of
the problem (the largest having 10816 variables and 10001 general constraints).

SNOPT was unable to solve 28 cases within the allotted 2000 major iterations
(biggsb1 , bqpgauss, catena, chainwoo, chenhark , curly10 , curly20 , curly30 , drcav1lq ,
drcav2lq , drcav3lq , eigenbls, eigencls, hydc20ls, noncvxu2 , noncvxun, palmer5b, palm-
er5e, palmer7a, palmer7e, qr3dls, sbrybnd , scosine, scurly10 , scurly20 , scurly30 ,
sparsine, and vibrbeam). Another 7 problems could not be improved at a nonoptimal
point: brownbs, catena, glider , meyer3 , nuffield , vanderm1 , and vanderm2 . SNOPT

essentially found the solution of the badly scaled problems brownbs and meyer3 but
was unable to declare optimality. An AMPL implementation of glider was solved
successfully (see section 6.3)

If the infeasible LC problems, the unbounded problems, and the 5 (conjectured)
infeasible problems are counted as successes, SNOPT solved a grand total of 807 of
the 870 problems attempted. In another 11 cases, SNOPT found a point that was
within a factor 10−2 of satisfying the convergence test. These results provide strong
evidence of the robustness of first-derivative SQP methods when implemented with
an augmented Lagrangian merit function and an elastic variable strategy for treating
infeasibility.

6.3. Results on the COPS 2.0 test set. Tests on the 17 problems in the
COPS 2.0 collection were made using the AMPL modeling system [36]. When neces-
sary, the AMPL model and data files were modified to increase the problem size to be
the largest considered in [7] (see Table 4).

Table 4
Dimensions of the AMPL versions of the COPS problems.

No. Problem Type Variables Constraints

Linear Nonlinear Total

1 bearing BC 5000 0 0 0
2 camshape NC 800 800 801 1601
3 catmix NC 2401 1 1600 1601
4 chain NC 800 401 1 402
5 channel FP 3198 1598 1600 3198
6 elec NC 600 1 200 201
7 gasoil NC 4001 799 3200 3999
8 glider NC 1999 1 1600 1601
9 marine NC 4815 1593 3200 4793
10 methanol NC 4802 1198 3600 4798
11 minsurf BC 5000 0 0 0
12 pinene NC 4000 996 3000 3996
13 polygon NC 198 99 4950 5048
14 robot NC 3599 2 2400 2402
15 rocket NC 1601 0 1200 1201
16 steering NC 2000 2 1600 1602
17 torsion BC 5000 0 0 0

The bound constrained problems bearing, minsurf, and torsion have more than
2000 degrees of freedom at the solution, but were tested anyway. (SNOPT is not
appropriate for problems with only bound constraints unless many of the bounds are
active.) Table 5 gives results obtained by applying SNOPT with the options listed in
Figure 3. The default AMPL options (including problem preprocessing) were used in
each case.



1000 P. E. GILL, W. MURRAY, AND M. A. SAUNDERS

Table 5
SNOPT on the COPS 2.0 problems.

No. Problem Mnr Mjr Fcn Obj Con nZ cpu

1 bearings 2279 19 23 1.147002E+01 0.0E+00 2000 175.0
2 camshape 3019 9 18 4.222963E+00 9.4E-08 6 5.5
3 catmix 594 11 14 -4.796022E-02 2.8E-07 395 14.0
4 chain 839 40 44 5.068630E+00 4.2E-06 399 24.6
5 channel 2192 5 7 1.000000E+00 3.2E-05 0 18.8
6 elec 731 326 354 1.843890E+04 4.6E-10 400 194.9
7 gasoil 2607 21 25 5.236596E-03 7.2E-08 3 32.5
8 glider 33959 516 785 1.247974E+03 5.3E-09 359 891.7
9 marine 5437 71 132 1.974653E+07 1.1E-11 22 144.7
10 methanol 6250 1381 8280 9.022290E-03 9.0E-10 4 1170.2
11 minsurf s 3029 19 26 2.516317E+00 0.0E+00 2000 1251.5
12 pinene 3090 41 63 1.987216E+01 4.0E-13 5 51.0
13 polygon 3490 64 66 7.850233E-01 1.1E-08 98 51.0
14 robot 5855 28 51 9.141018E+00 2.1E-06 0 279.3
15 rocket 2663 8 16 1.005422E+00 1.3E-07 66 16.7
16 steering 764 29 35 5.545734E-01 7.6E-07 398 30.2
17 torsions 3112 16 20 -4.004933E-01 0.0E+00 2000 171.4

Discussion. SNOPT solved every COPS problem that has fewer than 2000 de-
grees of freedom at the solution. The default New superbasics limit (99) often
improves efficiency, but for bearing, minsurf, and torsion, a larger value would reduce
the time and major iterations needed to terminate with excess superbasics.

It is not clear why the AMPL formulations of glider and robot (problem robotarm
in the CUTE set) can be solved relatively easily, but not the CUTE versions. Repeating
the runs with AMPL option presolve 0 did not significantly increase the cpu time,
which implies that preprocessing is not the reason for the difference in performance.

The COPS problems were also used to investigate the effect of the number ` of
limited-memory updates on the performance of SNOPT. Table 6 gives times for the 14
nonlinearly constrained problems when solved with different choices for `. In the case
of the BC problems bearing, minsurf, and torsion, the principal effect of increasing `
is to increase the cost of the Hessian/vector products in the minor iterations needed
to expand the reduced Hessian to its maximum size.

The results are typical of the performance of SNOPT in practical situations.
• Small values of ` can give low computation times but may adversely affect

robustness on more challenging problems. For example, ` = 5 gave the one
run in which the AMPL formulation of glider could not be solved.
• As ` is increased, the number of major iterations tends to decrease. However,

numerical performance remains relatively stable. (For example, the same
local solution was always found for the highly nonlinear problem polygon.)
• As ` is increased, the solution time often decreases initially, but then increases

as the cost of the products Hkv increases. This would be reflected in the total
computation time for Table 6 if it were not for methanol, whose time improves
dramatically because of a better Hessian approximation.

The choice of default value ` = 20 is intended to provide robustness without a
significant computational penalty.

7. Extensions. Where possible, we have defined the SQP algorithm to be inde-
pendent of the QP solver. Of course, implicit elastic bounds and certain “warm start”
features are highly desirable. For example, SQOPT can use a given starting point and
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Table 6
Number of LM updates vs. cpu time.

Problem Limited-memory updates

5 10 15 20 25 30

camshape 5.6 5.4 5.6 5.5 5.4 5.4
catmix 7.7 14.3 14.5 14.0 15.2 15.0
chain 14.2 13.2 18.8 24.6 17.6 22.5
channel 19.1 18.8 19.0 18.8 19.0 18.7
elec 221.3 216.3 127.3 194.9 217.6 241.0
gasoil 34.1 32.8 32.0 32.5 32.2 31.8
glider 254.0c 845.5 429.2 891.7 369.6 595.0
marine 155.2 139.3 157.3a 144.7 163.4a 166.6
methanol 398.2 390.5 1218.2 1170.2 1253.0 501.1
pinene 42.4a 48.7 50.2 51.0 43.8 45.6
polygon 120.3 74.8 87.3 51.0 56.5 63.0
robot 215.7 248.4 275.9 279.3 277.2 274.9
rocket 16.4 16.2 16.5 16.7 15.8 16.0
steering 43.8 26.0 27.6 30.2 31.4 30.7

1548.2 2090.2 2479.4 2924.7 2517.7 2027.4

Table 7
Number of LM updates vs. major iterations.

Problem Limited-memory updates

5 10 15 20 25 30

camshape 9 9 9 9 9 9
catmix 7 11 11 11 11 11
chain 29 25 33 40 27 32
channel 5 5 5 5 5 5
elec 459 399 227 326 340 361
gasoil 26 23 20 21 21 21
glider 50c 513 224 516 173 275
marine 83 71 90a 71 84a 88
methanol 479 245 1224 1381 1469 604
pinene 30a 37 39 41 29 30
polygon 243 123 158 64 81 94
robot 22 23 28 28 28 28
rocket 8 8 8 8 8 8
steering 38 28 28 29 26 26

1488 1520 2104 2550 2311 1592

working set, and for linearly constrained problems (section 5.4) it can accept a known
Cholesky factor R for the reduced Hessian.

Here we discuss other “black-box” QP solvers that could be used in future im-
plementations of SNOPT. Recall that active-set methods solve KKT systems of the
form

(7.1)

(
Hk WT

W

)(
p

q

)
=

(
g

h

)

at each minor iteration, where W is the current working-set matrix. Reduced-Hessian
methods such as SQOPT are efficient if W is nearly square and products Hkx can be
formed efficiently, but our aim is to accommodate many degrees of freedom.
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7.1. Approximate reduced Hessians. As the major iterations converge, the
QP subproblems require fewer changes to their working set, and with warm starts
they eventually solve in one minor iteration. Hence, the work required by SQOPT

becomes dominated by the computation of the reduced Hessian ZTHkZ and its factor
R from (4.1), especially if there are many degrees of freedom.

For such cases, MINOS could be useful as the QP solver because it has two ways
of approximating the reduced Hessian in the form ZTHkZ ≈ RTR:

• R may be input from the previous major iteration and maintained using
quasi-Newton updates during the QP minor iterations.
• If R is very large, it is maintained in the form

R =

(
Rr 0

D

)
,

where Rr is a dense triangle of specified size and D is diagonal. This struc-
ture partitions the superbasic variables into two sets. After a few minor
iterations involving all superbasics (with quasi-Newton updates to Rr and
D), the variables associated with D are temporarily frozen. Iterations pro-
ceed with updates to Rr only, and superlinear convergence can be expected
within that subspace. A frozen superbasic variable is then interchanged with
one from Rr, and the process is repeated.

Both of these features could be implemented in a future version of SQOPT. Thus,
SNOPT with MINOS or an enhanced SQOPT as the QP solver would provide a viable
SQP algorithm for optimization problems of arbitrary dimension. The cost per minor
iteration is controllable, and the only unpredictable quantity is the total number of
minor iterations.

Note that the SQP updates to Hk could be applied to R between major iterations
as for the linear-constraint case (section 5.4). However, the quasi-Newton updates
during the first few minor iterations of each QP should achieve a similar effect.

7.2. Range-space methods. If all variables appear nonlinearly, Hk is positive-
definite. A “range-space” approach could then be used to solve systems (7.1) as
W changes. This amounts to maintaining factors of Hk’s Schur complement, S =
WH−1

k WT. It would be efficient if W did not have many rows, so that S could be
treated as a dense matrix.

7.3. Schur-complement methods. For limited-memory Hessians of the form
Hk = H0 + V DV T, where H0 is some convenient Hessian approximation, D =
diag(I,−I) = D−1, and V contains the BFGS update vectors, equation (7.1) is equiv-
alent to  H0 WT V

W

V T −D


 p

q

r

 =

 g

h

0

 .

Following [43, section 3.6.2], if we define

K0 =

(
H0 WT

W

)
,

it would be efficient to work with a sparse factorization of K0 and dense factors of its
Schur complement S. (For a given QP subproblem, V is constant, but changes to W
would be handled by appropriate updates to S.)
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This approach has been explored by Betts and Frank [2, section 5] with H0 = I
(or possibly a sparse finite-difference Hessian approximation). As part of an SQP
algorithm, its practical success depends greatly on the definition of H0 and on the
BFGS updates that define V . Our experience with SNOPT emphasizes the importance
of updating Hk even in the presence of negative curvature; hence the precautions of
section 2.9.

If H0 were defined as in section 3, the major iterates would be identical to those
currently obtained with SQOPT.

8. Summary and conclusions. We have presented theoretical and practical
details about an SQP algorithm for solving nonlinear programs with large numbers of
constraints and variables, where the nonlinear functions are smooth and first deriva-
tives are available.

As with interior-point methods, the most promising way to achieve efficiency with
the linear algebra is to work with sparse second derivatives (i.e., an exact Hessian of
the Lagrangian, or a sparse finite-difference approximation). However, indefinite QP
subproblems raise many practical questions, and alternatives are needed when second
derivatives are not available.

The present implementation, SNOPT, uses a positive-definite quasi-Newton Hes-
sian approximation Hk. If the number of nonlinear variables is moderate, Hk is
stored as a dense matrix. Otherwise, limited-memory BFGS updates are employed,
with resets to the current diagonal at a specified frequency (typically every 20 major
iterations). An augmented Lagrangian merit function (the same as in NPSOL) ensures
convergence from arbitrary starting points.

The present QP solver, SQOPT, maintains a dense reduced-Hessian factorization
ZTHkZ = RTR, where Z is obtained from a sparse LU factorization of part of the
Jacobian. Efficiency improves with the number of constraints active at a solution; i.e.,
the number of degrees of freedom nZ should not be excessive. For the numerical tests
we set a limit of 2000. This is adequate for many problem classes, such as control
problems when the number of control variables is not excessive.

The numerical results of section 6 show that SNOPT is effective on most of the
problems in the CUTE and COPS 2.0 test sets. Separate comparisons with MINOS have
shown greater reliability as a result of the merit function and the “elastic variables”
treatment of infeasibility, and much greater efficiency when function evaluations are
expensive. Reliability has also improved relative to NPSOL, and the sparse-matrix
techniques have permitted production runs on increasingly large trajectory problems.

Future work will include the use of second derivatives (when available) and alter-
native QP solvers to allow for indefiniteness of the QP Hessian and many degrees of
freedom.
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