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Abstract. The verification of a local minimizer of a general (i.e., nonconvex) quadratic program
is in general an NP-hard problem. The difficulty concerns the optimality of certain points (which
we call dead points) at which the first-order necessary conditions for optimality are satisfied, but
strict complementarity does not hold. One important class of methods for solving general quadratic
programming problems are called inertia-controlling quadratic programming (ICQP) methods. We
derive a computational scheme for proceeding at a dead point that is appropriate for a general ICQP
method.
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1. Introduction. The general quadratic programming problem is to find a local
minimizer of a quadratic function subject to linear constraints. In this paper, the
problem considered is of the form

(1.1)
minimize

x
ϕ(x) = cTx + 1

2xTHx

subject to Ax ≥ β,

where the Hessian matrix H is symmetric, and A is an mL×n matrix. Of particular
interest is the nonconvex case where H has an arbitrary distribution of positive,
negative and zero eigenvalues.

Our attention will focus on the class of inertia-controlling methods for general
quadratic programming. Inertia-controlling quadratic programming (ICQP) methods
use a linearly independent subset of the constraints known as the working set to define
a search direction and multiplier estimates. A unique feature of ICQP methods is that
constraint deletions are restricted so as to control the inertia of the reduced Hessian,
which is never permitted to have more than one nonpositive eigenvalue. Fletcher [4]
proposed the first ICQP method, and various methods within this class have also been
proposed, see for example Gill et al. [5] and Gould [9].

For any nonconvex quadratic program there may exist certain dead points at which
all quadratic programming methods will find it difficult to proceed (see Section 2.6,
for a precise definition of a dead point). The difficulty arises because the verification
of such a point as a local minimizer of (1.1) is an NP-hard problem—see Murty and
Kabadi [12] and Pardalos and Schnitger [13]. Unfortunately, even if lower values of
ϕ do exist in the neighborhood of a dead point, any number of constraints may need
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by the Göran Gustafsson Foundation.

‡Department of Mathematics, University of California, San Diego, La Jolla, California, 92093-0012
(pgill@ucsd.edu). This author’s research was partially supported by National Science Foundation
Grant ECS-8715153, the Office of Naval Research Grant N00014-90-J-1242

§Department of Management Science and Engineering, Stanford University, Stanford, CA 94305-
4026 (walter@stanford.edu). This author’s research was partially supported by National Science
Foundation Grant ECS-8715153, the Office of Naval Research Grant N00014-90-J-1242

730



LOCAL MINIMIZERS IN QUADRATIC PROGRAMMING 731

to be deleted simultaneously in order to compute a direction of improvement. Since
existing ICQP methods can delete only one constraint at a time, they may be unable
to proceed from a dead point.

The difficulties associated with existing ICQP methods at a dead point may be
contrasted with the difficulties associated with the simplex method at a degenerate
vertex. The simplex method is able to keep iterating at a degenerate vertex, but a
large number of iterations may be performed, during which the working set changes,
but the vertex remains the same. By contrast, existing ICQP methods may terminate
prematurely at a dead point that is not a local minimizer.

If progress is to be made at a dead point, a scheme must be devised for the
identification and simultaneous deletion of more than one constraint from the working
set. The computational and theoretical properties of such a scheme are presented in
this paper. We show that at a dead point, the proposed method behaves in a similar
way to the simplex method at a degenerate vertex—i.e., the algorithm is able to
proceed, but there exists the danger of cycling. Our method is not guaranteed to
prevent cycling at a dead point. However, since the verification of optimality is NP-
hard, no known scheme can be guaranteed to make progress in a reasonable amount
of computational effort.

In an ICQP method, the reduced Hessian is required to be positive definite at the
starting point. In order to ensure this, it might be necessary to introduce artificial
constraints. (The importance of such constraints is explained in Section 2.5.) Un-
fortunately, the presence of these constraints may introduce dead points that are not
present in the original problem. However, we show that the computational scheme
derived is able to treat the artificial-constraint case so that the artificial constraints
cause no additional difficulties.

In order to describe the new scheme, we first review results on necessary and
sufficient conditions for optimality in general quadratic programming. For a discussion
of these conditions, see for example Majthay [10], Mangasarian [11], Contesse [2] or
Borwein [1]. The results presented here allow the presence of artificial constraints in
the working set.

2. Basics.

2.1. Notation. The following notation will be used throughout the paper:

The vector x denotes a feasible point of (1.1) to be examined.

The matrix A denotes the working-set matrix at x, and b denotes the associated
right-hand side vector.

The scalar m denotes the number of rows in A.

The vector g(x) denotes the gradient of ϕ at x, i.e., g(x) = Hx + c. We shall omit
the argument x when the meaning is clear.

The matrix Z denotes a matrix whose columns form a basis for the null space of A;
the reduced gradient and reduced Hessian of ϕ with respect to A are then ZTg(x)
and ZTHZ.

The vector ei denotes the i-th unit vector of the appropriate dimension.

2.2. Terminology. The following terminology will be used:
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A vector p is said to be a


descent direction if gTp < 0.
direction of positive curvature if pTHp > 0.
direction of negative curvature if pTHp < 0.
direction of zero curvature if pTHp = 0.
feasible direction if Ap ≥ 0.

A matrix D is said to be copositive if vTDv ≥ 0 for all v ≥ 0.

A constraint aT
i x ≥ βi is said to be

 active at x if aT
i x = βi.

inactive at x if aT
i x > βi.

violated at x if aT
i x < βi.

2.3. Assumptions. The following assumptions are used:
A1. The objective function, ϕ, is bounded from below in the feasible region.
A2. All constraints active at x are in the working set.
A3. The working-set matrix A has full row rank.
A4. The point x satisfies the first-order necessary conditions for optimality, i.e.,

there exists a nonnegative Lagrange multiplier vector µ such that x and µ
satisfy the Karush-Kuhn-Tucker equations

(2.1)
(

H AT

A 0

) (
x
−µ

)
=

(
−c

b

)
.

A5. The reduced Hessian, ZTHZ, is positive definite.

2.4. The inertia of a matrix. Let M be any symmetric matrix. We denote by
ip(M), in(M) and iz(M) respectively the (nonnegative) numbers of positive, negative
and zero eigenvalues of M . The inertia of M—denoted by In(M)—is the associ-
ated integer triple (ip, in, iz). The following lemma states an important relationship
between the inertia of the KKT-matrix

K =
(

H AT

A 0

)
and the reduced Hessian.

Lemma 2.1. Given assumptions A3 and A5, the inertia of the KKT matrix K is
(n, m, 0).

Proof. See Gould [8, Lemma 3.4].
Lemma 2.1 implies that K is nonsingular, so that the Lagrange multipliers in

(2.1) are unique.

2.5. Inertia-controlling methods for quadratic programming. Associated
with each iteration of an ICQP method is a linearly independent subset of the con-
straints known as the working set. The working set at the initial point x0 must be
chosen so that the reduced Hessian is positive definite. Thereafter, the working set
changes by only one constraint at each iteration and the reduced Hessian is never
permitted to have more than one nonpositive eigenvalue.

ICQP methods depend critically on a procedure for finding an initial working
set with an associated positive-definite reduced Hessian. In order to ensure that
the reduced Hessian is positive definite, the initial working set may need to include
“artificial” constraints that are not specified in the original problem. The only re-
quirement for an artificial constraint is linear independence from constraints already
in the working set. Artificial constraints do not restrict the feasible region, since the
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direction of the inequality need not be defined. As soon as an artificial constraint
can be removed from the working set, it is eliminated from the problem. The strat-
egy for choosing artificial constraints depends on the mechanics of the particular QP
method and procedures for finding the initial working set are usually dependent on
the method used to solve the KKT system. A simple example of a problem requiring
artificial constraints is given in Section 5. We emphasize that artificial constraints
are not part of the original problem, but are an artefact of the solution method. The
original constraints of the problem are referred to as regular constraints.

Once a constrained minimizer is found, an ICQP algorithm proceeds by deleting
one constraint from the working set and finding either a feasible descent direction or
a feasible direction of negative curvature. The constraint deletion is permitted only
if the reduced Hessian is positive definite.

All ICQP methods generate search vectors and multipliers that satisfy the KKT
equations. However, the equations may be solved either implicitly or explicitly, in
which case one ICQP algorithm may appear to be very different from another. In
this paper, only the form of equations to be solved is stated. For a discussion on the
relationship between different ICQP methods, see Gill et al. [6].

Dead points with only regular constraints will be treated first. In Section 5, we
consider the case when artificial constraints are present.

2.6. Dead points. If A contains only regular constraints, a dead point is defined
to be a point satisfying assumptions A4 and A5 for which one or more components of
the Lagrange multiplier vector µ are zero. We emphasize that such a point may not
be a local minimizer.

Since a dead point satisfies the first-order necessary conditions for optimality,
there exists no feasible descent direction. Therefore, it is necessary to find a feasible
direction of negative curvature if an ICQP method is to proceed to find a local mini-
mizer. Unfortunately, it may be impossible to compute a feasible direction of negative
curvature by deleting only one constraint at a time, as can be seen from the following
problem.

minimize
x∈R2

−x1x2

subject to 0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1.

(2.2)

If the starting point is the origin, and both active constraints are in the working
set, assumptions A1–A5 are satisfied. However, if either of the constraints is deleted
from the working set, the resulting reduced Hessian is positive semidefinite and sin-
gular. Therefore, no feasible direction of negative curvature may be computed by
deleting only one constraint. No more than one constraint may be deleted from the
working set, since constraint deletion is permitted only when the reduced Hessian is
positive definite. Therefore, an ICQP method must terminate at this point, although
the origin is not a local minimizer for the QP.

In this situation—where neither a feasible descent direction nor a feasible direction
of negative curvature may be found by deleting only one constraint—it is necessary
to develop a scheme for deleting more than one constraint simultaneously if an ICQP
method is to proceed.

2.7. Optimality conditions. In this section, necessary and sufficient conditions
for x to be a local minimizer under assumptions A1–A5 are reviewed. It will be useful
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to distinguish between constraints with positive and zero multipliers. Without loss of
generality we may assume that the rows of A are ordered such that

A =
(

A+

A0

)
,

where A+ corresponds to rows with positive Lagrange multipliers and A0 corresponds
to rows with zero Lagrange multipliers. Let m+ denote the number of rows in A+, and
let m0 denote the number of rows in A0. Also, let µ+ denote the vector containing
the m+ positive components of µ.

The following two necessary and sufficient conditions for x being a local minimizer
for (1.1) when assumption A2 holds are given by Majthay [10] and Contesse [2].
C1. The point x satisfies the first-order necessary conditions for optimality, i.e., there

exists a nonnegative Lagrange multiplier vector µ, such that x and µ satisfy
the KKT equations (

H AT

A 0

) (
x
−µ

)
=

(
−c

b

)
.

C2. It holds that dTHd ≥ 0 for all d such that A+d = 0 and A0d ≥ 0.
In his proof, Contesse derives an alternative formulation of Condition C2 involving

the set of generators for the finite cone

{p | A+p = 0, A0p ≥ 0}.

This formulation is described in Theorem 3.6 below. For the sake of completeness,
Contesse’s proof is reviewed with a notation relevant to our assumptions.

3. A Proof of the Optimality Conditions. Let Y+ denote the n×m+ matrix
whose j-th column y+j is defined to be the unique vector satisfying the equation

(3.1)

 H AT
+ AT

0

A+ 0 0
A0 0 0

  y+j

−ρj

−ηj

 =

 0
ej

0

 ,

and let Y0 denote the n×m0 matrix whose j-th column y0j is defined to be the unique
vector such that

(3.2)

 H AT
+ AT

0

A+ 0 0
A0 0 0

  y0j

−λj

−θj

 =

 0
0
ej

 .

Equations (3.1) and (3.2) imply that the computation of y+j and y0j involves
solving the KKT equations with a unit right-hand side. For a detailed discussion of
the properties of the KKT equations in this context, see Gould [9, Theorem 2.3].

Given Y+ and Y0, let M denote the n× n matrix M =
(
Z Y+ Y0

)
.

Lemma 3.1. The matrix M is nonsingular.
Proof. It is enough to show that the columns of M are linearly independent.

Assume that

Mv = ZvZ + Y+v+ + Y0v0 = 0.

Successive premultiplication of Mv by A+ and A0 gives v+ = 0 and v0 = 0. Since the
columns of Z are independent, it follows that vZ = 0.
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Lemma 3.2. The sets

{p | Ap ≥ 0} and {p | p = ZvZ + Y+v+ + Y0v0, v+ ≥ 0, v0 ≥ 0}

are identical.
Proof. From Lemma 3.1 it follows that the columns of Z, Y+ and Y0 span Rn.

Consequently, any p in Rn may be written in the form p = ZvZ + Y+v+ + Y0v0, for
some suitably dimensioned vectors vZ , v+ and v0. Premultiplication of p by A yields

Ap =
(

A+

A0

)
p =

(
v+

v0

)
.

Hence, the vector Ap is nonnegative if and only if v+ and v0 are nonnegative.
Verification of the optimality of x is now equivalent to finding a local solution of

the quadratic program

(3.3)
minimize

p
gTp + 1

2pTHp

subject to Ap ≥ 0.

Lemma 3.3. The vector x is a local minimizer of (1.1) if and only if zero is a
local minimizer of (3.3).

Proof. The Taylor-series expansion of ϕ gives gTp+ 1
2pTHp = ϕ(x+p)−ϕ(x). The

vector Ap is nonnegative if and only if A(x + p) ≥ Ax. Since every active constraint
is included in A, the point x will not be a local minimizer of (1.1) if and only if
there exists an infinite sequence {xk}∞k=1 converging to x such that Axk ≥ b and
ϕ(xk) < ϕ(x). We need consider only those constraints in the working set because
assumption A2 guarantees that if {xk}∞k=1 converges to x, all other constraints will be
satisfied for k sufficiently large. Similarly, the zero vector will not be a local minimizer
of (3.3) if and only if there exists an infinite sequence {pk}∞k=1 converging to zero such
that Apk ≥ 0 and gTpk + 1

2pkTHpk < 0. The proof is complete if we let xk = x + pk.

Lemma 3.4. All elements of the matrices ZTHY+ and ZTHY0 are zero.
Proof. Direct substitution in (3.1) yields ZTHy+j = 0 for j = 1, . . . , m+ and

direct substitution in (3.2) yields ZTHy0j = 0 for j = 1, . . . , m0.
Lemmas 3.3 and 3.4 are now combined to show that the verification of x as a

local minimizer is achieved by solving the QP problem
(3.4)

minimize
v

µT
+v+ + 1

2vT
ZZTHZvZ + 1

2vT
+Y T

+ HY+v+ + vT
+Y T

+ HY0v0 + 1
2vT

0 Y T
0 HY0v0

subject to v+ ≥ 0, v0 ≥ 0.

Lemma 3.5. The vector x is a local minimizer of (1.1) if and only if zero is a
local minimizer of (3.4).

Proof. Problem (3.4) is derived from problem (3.3) by using the transformation

p = Mv = ZvZ + Y+v+ + Y0v0.

Assumption A4, equations (3.1) and (3.2), and Lemma 3.4 are used to simplify the
objective function. The feasible region is obtained by using Lemma 3.2. Finally,
Lemma 3.3 implies that zero is a local minimizer of (1.1) if and only if it is a local
minimizer of (3.4).
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Using these results it is possible to pose the problem of determining local opti-
mality as a copositivity problem, as the following theorem shows.

Theorem 3.6 (Contesse [2]). The point x is a local minimizer of (1.1) if and
only if Y T

0 HY0 is copositive.
Proof. Assume that Y T

0 HY0 is not copositive. Then there exists a nonnegative
vector v0 such that vT

0 Y T
0 HY0v0 is negative and zero is not a local minimizer of (3.4).

Lemma 3.5 implies that x is not a local minimizer of (1.1).
Assume that Y T

0 HY0 is copositive. If zero is not a local minimizer of (3.4), there
must exist an infinite sequence {vk}∞k=1 converging to zero such that

µT
+v

k
+ + 1

2vk
Z

TZTHZvk
Z + 1

2vk
+

TY T
+ HY+vk

+ + vk
+

TY T
+ HY0v

k
0 + 1

2vk
0

TY T
0 HY0v

k
0 < 0,

where vk
0 and vk

+ are nonnegative. Since ZTHZ is positive definite and Y T
0 HY0 is

copositive, it must hold that

µT
+v

k
+ + 1

2vk
+

TY T
+ HY+vk

+ + vk
+

TY T
+ HY0v

k
0 < 0.

At least one component of vk
+ must be positive, since the left-hand side is zero when

vk
+ is zero. Since µ+ is a positive vector, it must have a positive least component µmin,

and we may write

µmineTvk
+ + 1

2vk
+

TY T
+ HY+vk

+ + vk
+

TY T
+ HY0v

k
0 < 0,

where e is a suitably dimensioned vector with unit components. If both sides of this
last equation are divided by the positive quantity eTvk

+, we obtain the inequality

(3.5) µmin +
1

2eTvk
+

vk
+

TY T
+ HY+vk

+ +
1

eTvk
+

vk
+

TY T
+ HY0v

k
0 < 0.

If we now consider this inequality as k goes to infinity, we note that µmin must be
nonpositive, which contradicts the assumption that µ+ is a positive vector. Hence,
the zero vector is a local minimizer of (3.4) and Lemma 3.5 implies that x is a local
minimizer of (1.1).

From this theorem, it follows that if we are able to check the m0 × m0 matrix
Y T

0 HY0 for copositivity, we are able to determine if x is a local minimizer.

4. On the Copositivity of a Matrix. It was shown in the previous section
that the verification of optimality of a dead point x is equivalent to checking if the
m0 ×m0 matrix Y T

0 HY0 is copositive. Once Y0 is computed, the matrix Y T
0 HY0 may

be calculated by performing direct matrix multiplications. However, the following
lemma shows that the m0 solutions of the equation (3.2) for j = 1, . . . , m0 provide
the matrix Y T

0 HY0.
Lemma 4.1. If θj satisfies (3.2), then Y T

0 HY0ej = θj for j = 1, . . . , m0.
Proof. Direct substitution in (3.2) yields yT

0iHy0j = eT
i θj .

Copositive matrices have been studied extensively (see, e.g., Cottle et al. [3] and
Pereira [14]). The problem of deciding if a given matrix is copositive has been shown
to be NP-hard, see Murty and Kabadi [12] and Pardalos and Schnitger [13]. Therefore,
no computationally tractable method for solving the general problem is known.

However, there are special situations in which a matrix may be simply checked
for copositivity. Two such situations are discussed in the following lemmas.

Lemma 4.2. If the elements of Y T
0 HY0 are nonnegative, then Y T

0 HY0 is coposi-
tive.
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Proof. If Y T
0 HY0 is not copositive, there must exist a nonnegative vector v0

such that vT
0 Y T

0 HY0v0 < 0. This is clearly impossible if all elements of Y T
0 HY0 are

nonnegative.
Lemma 4.3. If a diagonal element of Y T

0 HY0, say yT
0iHy0i is negative, the matrix

is not copositive. Moreover, the vector y0i is a feasible direction of negative curvature.
Proof. If yT

0iHy0i < 0, then clearly y0i is a direction of negative curvature. Lemma
3.2 implies that y0i is a feasible direction, as required.

It is also straightforward to check for copositivity when Y T
0 HY0 is a 2× 2 matrix

with nonnegative diagonal elements.
Lemma 4.4. A 2×2 real symmetric matrix with nonnegative diagonal elements is

not copositive if and only if its determinant is negative and its off-diagonal elements
are negative. Moreover, if the matrix is not copositive, the eigenvector corresponding
to the negative eigenvalue is a positive vector.

Proof. See Cottle et al. [3, Theorem 3.1].
As a consequence of Lemma 4.4 the following lemma is immediate.
Lemma 4.5. Assume that Y T

0 HY0 has nonnegative diagonal elements. Moreover,
assume that it has a 2 × 2 principal submatrix with negative determinant and neg-
ative off-diagonal elements. A feasible direction of negative curvature for Y T

0 HY0 is
given by the n0-vector whose nonzero elements are the components of the eigenvector
corresponding to the negative eigenvalue of the 2× 2 principal submatrix.

Proof. It follows from Lemma 4.4 that it is possible to choose the eigenvector
corresponding to the negative eigenvalue of this principal 2× 2 submatrix with both
components nonnegative. Hence, this eigenvector extended by zeros in the remaining
(n0 − 2) positions is a feasible direction of negative curvature.

Now we propose a scheme for the verification of local optimality based on the
lemmas above. First, it is shown that artificial constraints cause no additional diffi-
culties.

5. Artificial Constraints in the Working Set. From the earlier discussion,
it is clear that there may exist certain dead points at which the verification of local
optimality is very difficult. In this section we demonstrate that this inherent difficulty
need not be exacerbated by the imposition of artificial constraints.

To simplify the discussion, it will be necessary to distinguish between artificial
and regular constraints. Accordingly, we partition A0 and Y0 such that

A0 =
(

AR

AA

)
and Y0 =

(
YR YA

)
,

where the subscript “R” denotes regular constraints and the subscript “A” denotes
artificial constraints. Let mR denote the number of rows of AR and let mA denote
the number of rows of AA. Also let yRj denote the j-th column of YR and let yAj

denote the j-th column of YA. When artificial constraints are present, the definition
of a feasible direction will be changed as follows:

A vector p is said to be a feasible direction if A+p ≥ 0 and ARp ≥ 0.

Note that the sign of the vector AAp is not restricted.
It is also necessary to use a slightly modified version of assumption 4:

A4′. The point x satisfies the first-order necessary conditions for optimality, i.e.,
there exists a Lagrange multiplier vector µ =

(
µT

+ µT
A µT

R

)
T , with µ+ ≥ 0,
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µR ≥ 0 and µA = 0, such that x and µ satisfy the KKT equations
H AT

+ AT
R AT

A

A+ 0 0 0
AR 0 0 0
AA 0 0 0




x
−µ+

−µR

−µA

 =


−c
b+

bR

bA

 .

The difference between assumptions A4 and A4′ is that the Lagrange multipliers of the
artificial constraints are required to be zero. If an artificial constraint has a nonzero
multiplier, it could be deleted from the working set to yield a feasible descent direction.
Therefore, assumption A4′ is appropriate for x being a constrained stationary point.
Consequently, a point x is said to be a dead point if it satisfies assumptions A4′ and
A5.

Unfortunately, additional dead points may be added to the problem by imposing
artificial constraints. Consider the problem

minimize
x∈R2

−x1x2

subject to −1 ≤ x1 ≤ 1
−1 ≤ x2 ≤ 1.

(5.1)

If the starting point is the origin, no regular constraints are active and artificial
constraints are needed to obtain a positive-definite reduced Hessian. If artificial bound
constraints x1 = 0 and x2 = 0 are imposed, assumptions A1–A3, A4′ and A5 are
satisfied. However, as in problem (2.2), the origin is not a local minimizer and no
feasible direction of negative curvature may be obtained by deleting only one artificial
bound.

It might seem necessary that an arbitrary (unknown) number of artificial con-
straints must be deleted to give a feasible direction of negative curvature (if one
exists). However, we shall show below that such a direction may be computed by
making only one or two artificial constraints leave the working set.

In order to show this, we determine constraints in the working set that may be
deleted yielding a positive-definite reduced Hessian. This may be determined from
the solution of (3.1) and (3.2), as observed by Gould [9, Theorem 2.3] and reviewed
in the following lemma.

Lemma 5.1. If a constraint corresponding to a positive diagonal element of
Y T

0 HY0 is deleted from A, the resulting reduced Hessian remains positive definite.
Proof. Let y0i correspond to the deleted constraint aT

i x ≥ βi. Lemma 3.1 implies
that y0i is independent of the columns of Z and it follows from (3.2) that Ay0i = ei.
Therefore, a basis for the new null space is obtained by adding the column y0i to
Z. Lemma 3.4 implies that ZTHy0i is zero. Hence, the fact that yT

0iHy0i is positive
implies that the new reduced Hessian remains positive definite.

In order to distinguish between artificial and regular constraints we partition
Y T

0 HY0 such that

Y T
0 HY0 =

(
Y T

R HYR Y T
R HYA

Y T
A HYR Y T

A HYA

)
.

It follows from Lemma 4.3 that if a diagonal element of Y T
A HYA is negative, a

feasible direction of negative curvature can be computed. By Lemma 5.1 it follows
that if a diagonal element of Y T

A HYA is positive, the corresponding artificial constraint
can be deleted and the new reduced Hessian will be positive definite. Clearly, unless all
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diagonal elements of Y T
A HYA are zero, either a feasible direction of negative curvature

can be computed or an artificial constraint can be deleted.
Lemma 5.2. If two diagonal elements of Y T

A HYA, say yT
AiHy

Ai and yT
AjHy

Aj are
zero, and yT

AiHy
Aj is nonzero, the point x is not a local minimizer. Moreover, either

yAi − yAj or yAi + yAj is a feasible direction of negative curvature.
Proof. Direct calculation yields (yAi + yAj)TH(yAi + yAj) = −(yAi− yAj)TH(y

Ai−
y

Aj) = 2yT
AiHy

Aj 6= 0. Hence, either yAi + yAj or yAi − yAj is a direction of negative
curvature. Feasibility follows from the relations A+(yAi±yAj) = 0 and AR(yAi±yAj) =
0.

This lemma demonstrates that unless the matrix Y T
A HYA is zero, either a feasible

direction of negative curvature can be computed or an artificial constraint can be
deleted.

Lemma 5.3. If the diagonals of Y T
A HYA are zero, and an element of Y T

R HYA

(say yT
RiHy

Aj) is nonzero, the point x is not a local minimizer and a feasible direction
of negative curvature may be computed.

Proof. Let p be a vector of the form αiyRi + αjyAj . Direct calculation yields that
p is feasible if αi is nonnegative. The quantity pTHp may be expressed as

pTHp =
(
αi αj

) (
yT

RiHy
Ri yT

RiHy
Aj

yT
RiHy

Aj 0

) (
αi

αj

)
.

Consider the 2× 2 matrix T given by

T =
(

yT
RiHy

Ri yT
RiHy

Aj

yT
RiHy

Aj 0

)
.

Since yT
RiHy

Aj is nonzero, T has one negative and one positive eigenvalue. It has
orthogonal eigenvectors, since it is a real symmetric matrix. Hence, αi and αj may
be chosen so that p is the eigenvector corresponding to the negative eigenvalue, with
αi nonnegative. For those values of αi and αj , the vector p will be a feasible direction
of negative curvature.

Clearly, whenever a component of Y T
R HYA is nonzero, either an artificial con-

straint can be deleted or a feasible direction of negative curvature can be computed.
To summarize, the following result holds when artificial constraints are present in the
working set.

Theorem 5.4. If Y T
A HYA has nonpositive diagonal elements, then x is a local

minimizer of (1.1) if and only if Y T
R HYR is copositive and Y T

R HYA and Y T
A HYA are

zero.
Proof. If Y T

R HYA or Y T
A HYA are nonzero, there exists a feasible direction of

negative curvature and x cannot be a local minimizer.
Assume that Y T

R HYR is not copositive. In this case, a feasible direction of negative
curvature may be computed and the local optimality of x is contradicted.

Assume that Y T
R HYR is copositive and Y T

R HYA and Y T
A HYA are zero. Using a

similar analysis to that for the regular-constraint case, we can make the following
assertions. As in Lemma 3.2, partition the vector v0 such that

v0 =
(

vR

vA

)
and replace the constraint v0 ≥ 0 in (3.4) by vR ≥ 0. If x is not a local minimizer of
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(1.1) there must exist an infinite sequence {vk}∞k=1 converging to zero such that

µmin +
1

2eTvk
+

vk
+

TY T
+ HY+vk

+ +
1

eTvk
+

vk
+

TY T
+ HYRvk

R +
1

eTvk
+

vk
+

TY T
+ HYAvk

A < 0.

Again, if we consider this inequality as k goes to infinity, we obtain the required
contradiction.

Consequently, if assumptions A1–A3, A4′ and A5 hold, the artificial constraints
will cause no extra problem in determining if x is a local minimizer. There remains
the hard question of verifying that the matrix Y T

R HYR is copositive.

6. Computation of Directions of Negative Curvature. In this section, we
propose an extension to ICQP methods that will allow progress to be made at a dead
point. Algorithm 6.1 provides a means of computing a direction of negative curvature
by making one or two active constraints inactive. Lemma 6.1 below indicates that the
algorithm will terminate with either a direction of negative curvature or the conclusion
that x is a local minimizer.

Lemma 6.1. Algorithm 6.1 will terminate in at most m0 steps. Moreover, if
termination occurs without the computation of a direction of negative curvature, x is
a local minimizer of (1.1).

Proof. At each step, either the algorithm terminates or a constraint is deleted
from the working set. Since there are only m0 constraints to delete, the algorithm
must stop in at most m0 steps.

If Y T
A HYA has a positive diagonal element, the corresponding artificial constraint

is deleted. Since this deletion will be repeated until every diagonal element of Y T
A HYA

is nonpositive, we may assume that Y T
A HYA has nonpositive diagonal elements. At

this point, if no direction of negative curvature is computed, the matrices Y T
R HYA and

Y T
A HYA will be zero at each subsequent step of the algorithm. Either the algorithm

detects that the matrix Y T
R HYR is copositive, or a constraint corresponding to a

positive diagonal element of Y T
R HYR is deleted. If the algorithm terminates without

having computed a direction of negative curvature, the algorithm has determined that
a local minimizer has been found with respect to the constraints that are still present
in AR. However, this conclusion still holds if the deleted constraints are added again,
since deletion of constraints may only increase the size of the feasible region.

Hence, if Algorithm 6.1 does not terminate at a given step, a constraint with a
positive diagonal element of Y T

0 HY0 is deleted. Recall that Lemma 5.1 implies that
the new reduced Hessian is positive definite whenever a constraint corresponding to
a positive element of Y T

0 HY0 is deleted.
The amount of work needed at each step may be reduced by updating Y0 and

Y T
0 HY0. To show this, we assume that the normal of the constraint aT

i x ≥ βi is
deleted from A0 corresponding to a positive diagonal element of Y T

0 HY0. Partition A0

such that

A0 =
(

A01

aT
i

)
.

In order to state the results in compact form, let Λ denote the matrix whose j-th
column is λj in (3.2) and let Θ denote the matrix whose j-th column equals θj . With
this partition of A0, let the induced partition of Y0, Λ and Θ be given by

Y0 =
(
Y01 y0i

)
, Λ =

(
Λ1 λi

)
and Θ =

(
Θ11 θ1i

Θi1 θii

)
.
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Algorithm 6.1 (An algorithm for finding a direction of negative curvature).
repeat

Compute Y T
0 HY0; Initialize mA and mR;

if (mA > 0) then
k ← argument satisfying maxi yT

AiHy
Ai;

if (yT
AkHy

Ak > 0) then
Delete artificial constraint k; go to again; (see Lemma 5.1)

end if;
k ← argument satisfying mini yT

AiHy
Ai;

if (yT
AkHy

Ak < 0) then
p← yAk; go to exit; (see Lemma 4.3)

end if;
k, l← arguments satisfying maxi,j |yT

AiHy
Aj |;

if (yT
AkHy

Al 6= 0) then
p← yAk ± yAl; go to exit; (see Lemma 5.2)

else if(mR > 0) then
k, l← arguments satisfying maxi,j |yT

AiHy
Rj |;

if (yT
AkHy

Rl 6= 0) then
Compute p; go to exit; (see Lemma 5.3)

end if;
end if;

end if;
if (mR = 0) or (mini,j yT

RiHy
Rj ≥ 0) then

x is a local minimizer; go to exit; (see Lemma 4.2)
end if;
k ← argument satisfying mini yT

RiHy
Ri;

if (yT
RkHy

Rk < 0) then
p← yRk; go to exit; (see Lemma 4.3)

end if;
for i← 1 to mR do

for j ← i + 1 to mR do
negdet← (yT

RiHy
Ri yT

RjHy
Rj − yT

RiHy
Rj

2 < 0);
if (negdet) and (yT

RiHy
Rj < 0) then

Compute p; go to exit; (see Lemma 4.5)
else if(mR = 2) then

x is a local minimizer; go to exit; (see Lemma 4.4)
end if;

end do;
end do;
k ← argument satisfying maxi yT

RiHy
Ri;

Delete regular constraint k; (see Lemma 5.1)
label again:

until exit occurs;
label exit:
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With this partition equation (3.2) may be written in compact form as

(6.1)


H AT

+ AT
01 ai

A+ 0 0 0
A01 0 0 0
aT

i 0 0 0




Y01 y0i

−Λ1 −λi

−Θ11 −θ1i

−Θi1 −θii

 =


0 0
0 0
I 0
0 1

 .

Let Ȳ0, Λ̄ and Θ̄ denote the solution of (3.2) in the next step of Algorithm 6.1.
Then, Ȳ0, Λ̄ and Θ̄ will satisfy the equation H AT

+ AT
01

A+ 0 0
A01 0 0

  Ȳ0

−Λ̄
−Θ̄

 =

0
0
I

 .

Lemma 6.2. The quantities Θ̄ and Ȳ0 may be obtained from the solution of (6.1)
as

Θ̄ = Θ11 −
θ1iθ

T
1i

θii
and Ȳ0 = Y01 −

y0iθ
T
1i

θii
.

Proof. The matrices Θ̄ and Ȳ0 satisfy the equation

(6.2)


H AT

+ AT
01 ai

A+ 0 0 0
A01 0 0 0
aT

i 0 0 0




Ȳ0

−Λ̄
−Θ̄

0

 =


0
0
I

aT
i Ȳ0

 .

Equations (6.1) and (6.2) imply that the barred quantities may be obtained from
the equations

Ȳ0 = Y01 + y0ia
T
i Ȳ0(6.3a)

Λ̄ = Λ1 + λia
T
i Ȳ0(6.3b)

Θ̄ = Θ11 + θ1ia
T
i Ȳ0(6.3c)

0 = Θi1 + θiia
T
i Ȳ0.(6.3d)

It follows from Lemma 4.1 that Θ = Y T
0 HY0. Hence, Θ is a symmetric matrix

with Θi1 = θT
1i. Equation (6.3d) implies that θT

1i+θiia
T
i Ȳ0 = 0. The fact that aT

i x ≥ βi

is associated with a positive diagonal element of Y T
0 HY0 implies that θii is positive.

Substitution in (6.3a) and (6.3c) yields the desired result.
Hence, only a rank-one modification of Y0 and Y T

0 HY0 is needed at each step of
Algorithm 6.1.

Lemma 6.3. Assume that yT
0iHy0j is zero and yT

0iHy0i is positive at one step of
Algorithm 6.1. Also assume that the constraint with normal AT

0ei is deleted at this
step. At the next step, the column of Y T

0 HY0 corresponding to the constraint with
normal AT

0ej is modified only by deletion of the zero element yT
0iHy0j.

Proof. Lemma 6.2 implies that the rank-one modification of column j is zero
when yT

0iHy0j is zero.
Lemma 6.4. If, in one step of Algorithm 6.1, it holds that the matrices Y T

R HYA

and Y T
A HYA are zero, then they will remain zero.

Proof. Since both the matrices Y T
R HYA and Y T

A HYA are zero, the only way the
algorithm does not terminate is when a regular constraint corresponding to a positive
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diagonal element of Y T
R HYR is deleted. Lemma 6.3 implies that the matrices Y T

R HYA

and Y T
A HYA will remain zero. Only one column of zeros from Y T

R HYA is deleted at
each step.

Hence, once the matrices Y T
R HYA and Y T

A HYA are zero, they remain zero.
Lemma 6.5. If Y T

R HYR is positive semidefinite and Y T
R HYA and Y T

A HYA are
zero, then Algorithm 6.1 will resolve that x is a local minimizer in at most mR steps.

Proof. Lemma 6.4 implies that the matrices Y T
R HYA and Y T

A HYA will remain
zero until the algorithm terminates. Hence, the only iteration when the algorithm
does not halt is when regular constraints corresponding to positive diagonal elements
of Y T

R HYR are deleted. Therefore, at most mR steps may be taken in the algorithm.
Assume that the algorithm terminates without determining that x is a local min-

imizer. It follows that a direction of negative curvature must have been computed.
But Lemma 6.2 implies that the matrix Θ̄ of the next step is obtained as

Θ̄ = Θ11 −
θ1iθ

T
1i

θii
.

Sylvester’s law of inertia, (see e.g. [7, page 416]) implies that In(Θ̄) = In(Θ)− In(θii).
At the initial iteration, Θ is positive semidefinite. The value of the scalar θii is
positive. Hence, Θ̄ will have no negative eigenvalues. It follows by induction that no
direction of negative curvature can be computed.

Hence, if Y T
R HYR is positive semidefinite, Algorithm 6.1 determines that x is a

local minimizer.

7. Changes in the Working Set. In this section the changes in the working
set are described. In the proposed algorithm, either one or two constraints in A will
become inactive. In an ICQP method, only one constraint is added or deleted at a
time. However, we shall give a scheme that allows deletion of two constraints at a
dead point, maintaining the properties of an ICQP method, i.e., the reduced Hessian
having at most one nonpositive eigenvalue and the working-set matrix having full row
rank.

When a direction of negative curvature, p, is computed, the objective function is
strictly decreasing along that direction. The boundedness of ϕ in the feasible region
guarantees that a sufficiently large step along p will violate a constraint. Let ak denote
the normal of the first constraint that is violated. In order to determine how to update
A, it is necessary to know if ak is dependent on the rows of A. The following lemma,
given by Gill et al. [6], shows how linear independence may be checked.

Lemma 7.1. Consider the equations

(7.1)
(

H AT

A 0

) (
ω
v

)
=

(
ak

0

)
.

The vector ak is dependent on the rows of A if and only if the vector ω is zero in the
solution of (7.1).

Proof. Suppose that ak is dependent on the rows of A. In this case, there must
exist a vector v such that ak = ATv, and ω is zero in the solution of (7.1).

Assume that ω is zero in the solution of (7.1). It follows that ak = ATv, and ak

is dependent on the rows of A.
When the algorithm is applied, either one or two constraints leave the working

set. The following sections show how to update the working-set matrix.
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7.1. One constraint becomes inactive. Assume that p is given by p = y0i

and let aT
i x ≥ βi denote the constraint that leaves the working set.

Lemma 7.2. Assume that p is computed by deleting one constraint from the
working set. If ak is independent of the rows of A, it is added to A, while ai is
maintained in A as an artificial constraint. If ak is dependent on the rows of A, ak

and ai are exchanged. In either case, the resulting reduced Hessian is positive definite
and working-set matrix has full row rank.

Proof. If ak is independent of the rows of A, the new reduced Hessian remains
positive definite since only one more constraint is added to the working set. Also, the
new working-set matrix has full row rank.

Now assume that ak is dependent on the rows of A. If ak and ai are exchanged,
the rows of the new working set will span the same space as the rows of A. Hence,
the new reduced Hessian is positive definite. Also, the new working-set matrix has
the same number of rows as the old one, and therefore it has full row rank.

Hence, after having either added ak or exchanged ak and ai, the new reduced
Hessian is positive definite and the new working-set matrix has full row rank.

7.2. Two constraints become inactive. Assume that p is given by p = αiy0i+
αjy0j , where αi and αj are both nonzero. Let ai and aj denote the normals of the
constraints that leave the working set, and let A2 denote the submatrix of A that
remains when ai and aj are removed.

Lemma 7.3. Assume that ak = AT
2v2 + aivi + ajvj. Then it cannot hold that

vi = vj = 0.
Proof. Assume that ak = AT

2v2. Premultiplication by pT yields pTak = 0. But
this could not hold since ak becomes violated when a sufficiently large step along p is
taken.

Lemma 7.4. Assume that p is computed by making two active constraints inactive.
If ak is independent of the rows of A, it is added to A, while ai and aj are maintained
as artificial constraints. If ak is dependent on the rows of A and |vi| > |vj |, ak and
ai are exchanged. If ak is dependent on the rows of A and |vi| ≤ |vj |, ak and aj are
exchanged. In each case, the new reduced Hessian is positive definite and the new
working-set matrix has full row rank.

Proof. Assume that ak is independent of the rows of A. The new reduced Hessian
remains positive definite since only one more constraint is added to the working set.
Also, the new working-set matrix has full row rank.

Assume that ak is dependent on the rows of A. Lemma 7.3 implies that at least
one of the scalars vi and vj is nonzero. Hence, by performing the specified exchange,
the rows of the new working set will span the same space as the rows of A. Hence,
the new reduced Hessian will be positive definite. Also, the new working-set matrix
has the same number of rows as the old one, and therefore it has full row rank.

Hence, after having either added ak or exchanged either ak and ai or ak and aj ,
the new reduced Hessian is positive definite and the working-set matrix has full row
rank.

8. Verification of Local Optimality. In this section we describe a complete
algorithm for checking if a given dead point x is a local minimizer. In Algorithm 8.1,
a direction of negative curvature is found by making one or two constraints leave the
working set at a time. If no such direction exists, Algorithm 6.1 yields the result that
x is a local minimizer.

If constraints corresponding to positive diagonal elements of Y T
R HYR are deleted

in Algorithm 6.1, assumption A2 will no longer hold. In this case, if a direction of
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Algorithm 8.1 (An algorithm checking for local optimality).
repeat

Apply Algorithm 6.1;
local minimizer← Algorithm 6.1 implies that x is a local minimizer;
if (local minimizer) then

go to exit;
else

ak ← constraint that is first violated along p;
αF ← maximum feasible step along p;

Solve
(

H AT

A 0

) (
ω
v

)
=

(
ak

0

)
; (see Lemma 7.1)

indep← (‖ω‖ > 0);
nr inactiv← number of constraints that become inactive;
if (nr inactiv = 1) then

ai ← constraint that becomes inactive;
if (indep) then

Add ak;
else

Exchange ak and ai; (see Lemma 7.2)
end if;

else
ai, aj ← constraints that become inactive;
if (indep) then

Add ak;
else

if (|vi| > |vj |) then
Exchange ak and ai; (see Lemma 7.4)

else
Exchange ak and aj ;

end if;
end if;

end if;
if (αF > 0) then

x← x + αF p;
local minimizer← false;
go to exit;

end if;
end if;

until too many iterations;
label exit:

negative curvature is computed, the resulting maximum feasible step could be zero
and there is a danger of cycling.

However, if Algorithm 8.1 terminates, it will provide either a feasible direction of
negative curvature along which a nonzero step may be taken or the information that
x is a local minimizer. As shown in Section 6, the algorithm will terminate with the
information that x is a local minimizer in the special case when the matrix Y T

R HYR

is positive semidefinite.
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9. Conclusions. When solving a general quadratic programming problem there
may exist certain dead points at which it is very difficult to verify optimality. We
emphasize that this difficulty is inherent to the problem, and is independent of the
solution method.

In this paper, the verification of optimality has been discussed within the context
of an inertia-controlling method. We have derived a computational method appro-
priate for general ICQP methods, that will attempt to determine if a dead point is
a local minimizer. The use of artificial constraints may introduce additional dead
points. It has been shown that the new procedure does not terminate at such points,
unless they are local minimizers.

However, the verification of optimality in the general case is an NP-hard problem,
so we would not expect to find a procedure capable of solving a general problem in a
reasonable amount of computational effort. In our scheme, there is a potential danger
of cycling, and a more elaborate scheme is needed to guarantee the solution of the
problem in a finite number of iterations.
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