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In verifying and validating models of nonlinear processes it is important to incorporate information
from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical
systems, we present a framework for connecting a data signal with a model in a way that minimizes
the required coupling yet allows the estimation of unknown parameters in the model.

The need to evaluate unknown parameters in models of nonlinear physical, biophysical, and en-
gineering systems occurs throughout the development of phenomenological or reduced models of
dynamics. Our approach builds on existing work that uses synchronization as a tool for parame-
ter estimation [1–9]. We address some of the critical issues in that work and provide a practical
framework for finding an accurate solution. In particular, we show the equivalence of this problem
to that of tracking within an optimal control framework. This equivalence allows the application of
powerful numerical methods [13, 14] that provide robust practical tools for model development and
validation.

PACS numbers: 05.45.Xt

The use of observed data to estimate parameters in a
nonlinear dynamical model is an important component
in the development of predictive models of physical and
biological systems. This capability is required in many
areas of research, but it is especially important in the
development of reduced or phenomenological models of
physical and biophysical phenomena, where parameters
and even network connectivity may need to be specified
as the model is being developed.

The synchronization of the experimental data with the
model system has been suggested as a way to incorpo-
rate experimental information into the model, see, e.g.,
[1–9]. Synchronization shows promise in enabling the
desired estimation, but there are important issues asso-
ciated with the selection of the coupling strength of the
data into the model. When this coupling is too small,
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the data and the model do not synchronize, and infor-
mation is not effectively exploited. When the coupling
is too large, the desired minimum value of the synchro-
nization cost function (defined as a function of the model
parameters) is ill-defined. In addition, for large enough
coupling, the data entrain any model, and the parame-
ters in specific models cannot be determined at all.

The problem we address may be cast in the follow-
ing form. We have a data-producing system described
by the state vector x(t) = [x1(t), x2(t), . . . , xN (t)] =
[x1(t),x⊥(t)]. Measurements are made at times tm =
t0 +mτ , resulting in x(m) = x(t0 +mτ); m = 1, . . . , M .
One component of the state is now measured. This could
be an arbitrary scalar function of the system state, but to
simplify the discussion we assume that x1(t) is observed.

The observed system satisfies differential equations in
x(t) that depend on a fixed set of parameters p, i.e.,

dx1(t)

dt
= F1(x1(t),x⊥(t),p)

dx⊥(t)

dt
= F⊥(x1(t),x⊥(t),p).
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The trajectories x(t) are determined by the initial con-
ditions and the parameters p.

The quantity x1(t) is now observed and passed to the
model. For this discussion, we take the model to be the
one used in generating the data, but we assume that
the model parameters q are unknown. The state of the
model is y(t) = [y1(t), y2(t), . . . , yN (t)] = [y1(t),y⊥(t)].

In general the vector field F(y,q) is not identical to
that of the data source. One must explore generalized

synchronization of the data and the model [7, 10, 11].
Strictly speaking, even when q 6= p generalized synchro-
nization is the best one can achieve. This important and
somewhat complex issue will be explored in our larger
paper [12] where space will allow a longer discussion.

To determine q for a given x1(t), we couple the model
to the input x1(t) via the system

dy1(t)

dt
= F1(y1(t),y⊥(t),q) + K(x1(t) − y1(t))

dy⊥(t)

dt
= F⊥(y1(t),y⊥(t),q). (1)

For some range of values of the scalar K, the model
will synchronize to the data y(t) ≈ x(t), and the model
will be “most accurate” when the model parameters
realize q = p. The conditional Lyapunov exponent
(CLE) [1] of the model system must be negative for the
synchronization.

We need a principle to assist in estimating q. A nat-
ural choice is to minimize the cost function C(q) =

1
2M

∑M
m=1 g

(

(x1(m) − y1(m))2
)

, where g(u2) ≈ u2 for
small u.

The determination of q involves seeking a zero of
∂C(q)/∂q. The equation for ∂y1(t)/∂q must confront
the issue of stability, because the eigenvalues of the Ja-

cobian, ∂F(y)/∂y−K, for K =

(

K 0
0 0

)

, iterated along

the orbit y(t), may lead to positive CLEs for small K.
If there is a positive CLE, then the synchronization

manifold y(t) = x(t) is not stable with respect to small
perturbations, and the evaluation of the derivatives of
the cost function is not numerically stable. Typically,
the landscape of C(q) as a function of q is quite complex,
with many local minima [15]. However, by increasing the
magnitude of K, the CLEs may be forced to be negative
and to behave as −K for large K.

As K becomes large the term K(x1(t) − y1(t)) dom-
inates the right-hand side of the equation for y1(t) un-
less x1(t) − y1(t) ≈ 1/K or smaller. As this happens,
C(q) ≈ 1/K2, and all the derivatives ∂C(q)/∂q ap-
proach zero. The function C(q) becomes so flat in q

that the zero of ∂C(q)/∂q is extremely difficult to lo-
cate numerically and the calculation of the parameters

q may not be possible.

We require a method that “balances” these extremes.
We proceed by replacing the constant coupling K with
a function of time (control) u(t). In the cost function
we add a penalty for large control values, i.e., we define

C(q,u) = 1
2M

∑M
m=1[g((x1(m)− y1(m))2)+u(m)2]. For

large u(t) the first term in this function behaves as 1/u,
and this, combined with the growth of the second term,
leads to a balanced magnitude for u(t).

If the cost function is minimized subject to the con-
straint of satisfying the differential equations (1) with
K → u(t), we obtain a classical tracking problem with
optimal control [16]. The trajectory of the dynamical
system for y(t) is controlled by u(t) to track x1(t), or, in
contemporary language, to synchronize with the observed

orbit x1(t). Because of the properties of nonlinear sys-
tems, when the CLE of (1) with K → u(t) is negative,
the unobserved components of the state, i.e., y⊥(t), will
also track the unobserved x⊥(t).

To solve the optimization problem, we use a “di-
rect transcription” method [13], which defines a finite-
dimensional problem with variables given by the states
y(m), the controls u(m), and the fixed parameters

p. The cost function 1
2M

∑M
m=1[g((x1(m) − y1(m))2) +

u(m)2] is minimized subject to equality constraints that
connect the y(m) and the u(m) across each time interval
[tm, tm+1]. These constraints are imposed in the finite-
dimensional space of the variables {y(m), u(m),q} and
are characterized by an integration rule for the states
y(m), and an interpolation rule for the control u(t).
Although the resulting finite-dimensional optimization
problem has many variables, it is also smooth and has
derivatives that may be calculated efficiently. Indeed, it
is this transcription into a smooth large-scale constrained
optimization problem that is the key to the robust and
efficient estimation of the parameters.

Here we report work using Simpson’s rule for the in-
tegration and Hermite interpolation for the states and
controls. Given the values of the states and controls at
the mid-point m2 = m+ 1

2 , Simpson’s rule for integration
defines a constraint in each interval of the form:

y(m) +
τ

6
[G(y(m), u(m),q)

+ G(y(m + 1), u(m + 1),q)

+ 4G(y(m2), u(m2),q)] − y(m + 1) = 0,

where G(y, u,q) = F(y, u,q) + Mu(x − y), M is an
N × N time-independent matrix with only M11 = 1
nonzero, and u = (u, 0, 0, . . . , 0). In addition, y(m2),
y(m), u(m2) and u(m) are required to satisfy the Her-
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mite interpolation condition [17], giving

y(m2) =
1

2
(y(m) + y(m + 1)) +

τ

8
(G(y(m), u(m),q)

− G(y(m + 1), u(m + 1)),q)),

and

u(m2) =
1

2
(u(m) + u(m + 1)) +

1

8
(du(m) − du(m + 1)),

where du(m) is the slope parameter in the Hermite in-
terpolation.

Next, we discuss the application of this transcription
to an example of the Colpitts oscillator [18]. This is
an electronic circuit that uses a bipolar junction transis-
tor as the nonlinear gain element. The three dynamical
equations for this oscillator are

dx1(t)

dt
= αDx2(t)

dx2(t)

dt
= −γD(x1(t) + x3(t)) − qDx2(t)

dx3(t)

dt
= ηD(x2(t) + 1 − e−x1(t)).

For fixed γD = 0.08, qD = 0.7, and ηD = 6.3. For
αD ≥ 3, chaotic behavior was exhibited. The “data”
x1(t) was collected for αD = 5.0.

Then we selected a model for the system that produced
the data stream x1(t). The model system, including a
control u(t) to enforce synchronization, is

dy1(t)

dt
= αMy2(t) + u(t)(x1(t) − y1(t))

dy2(t)

dt
= −γM (y1(t) + y3(t)) − qMy2(t)

dy3(t)

dt
= ηM (y2(t) + 1 − e−y1(t)).

The optimal tracking problem is to determine the state
y(t), the control u(t), and the parameters αM , qM , γM ,
and ηM .

The Hermite-Simpson transcription was applied with
150 time steps. The cost function

C =
1

2

M
∑

m=1

[(x1(m) − y1(m))2 + u(m)2 + du(m)2

+ (x1(m2) − y1(m2))2 + u(m2)2],

includes the synchronization term, a term u(m)2 +
u(m2)2 that limits the magnitude of the control, and
a term du(m)2 that serves to provide a smooth control.
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FIG. 1: The SNOPT solution of the optimal tracking prob-
lem for the Colpitts oscillator. The model system is given the
“data” x1(m), and the state variables (y1(m), y2(m), y3(m)),
the control u(m), and the parameters αM , γM , qM , and ηM

are determined. After an initial transient, all state variables
accurately track the data. The model parameters were de-
termined to be αM = 4.99, γM = 0.082, qM = 0.704, and
ηM = 6.26. The parameters used to generate the data x1(t)
were αD = 5.0, γD = 0.08, qD = 0.7, and ηD = 6.3.

The midpoint quantities y(m2) and u(m2) are found us-
ing cubic Hermite interpolation; the value of x1(m2) was
presumed measured and provided in the data file. If
x1(m2) is not known then it may be defined using lin-
ear interpolation. These relations were imposed as ad-
ditional equality constraints in the optimization. The
finite-dimensional problem was solved using the SNOPT
constrained optimization package [13].

Figure 1 gives the state variables y(m), the transmit-
ted data x1(m), and the unknown state variable data
x2(m) and x3(m). Also shown is the control u(m). We
purposely integrated the model equations with fixed ini-
tial conditions in order the demonstrate the ability of
SNOPT to track data with a transient coming from an
unknown initial condition.

We also explored the ability of the method to track
time-varying parameters. The time dependence is deter-
mined externally, and we represent the parameter vari-
ation by a cubic polynomial over a time interval Nτ ,
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FIG. 2: The SNOPT solution for the optimal tracking prob-
lem of a Colpitts oscillator with a time-dependent parameter.
All the state variables track accurately over the time interval
used. The fixed parameters γ, q, and η were as before.

where N was between 25 and 200, to provide an appro-

priate smoothness to the time dependence.
We considered data αD(t) = 5 +

4e(t−100)2/2000) sin(2πt/50). This variation crosses
the bifurcation boundaries between fixed point, limit
cycle and chaotic behavior of the Colpitts solution.
Figure 2 gives the results for this case. The initial
conditions y(0), u(0), αM (0) were determined by the
optimization, and all state variables y(m) tracked the
data x(m) very accurately. N = 25.

Many methods have been explored for parameter esti-
mation in nonlinear systems; two quite interesting ones
are discussed in detail in [15]. The multiple shooting
and extended Kalman filter approaches considered there
show good results when applied to simple systems, as
here. In [12] we will explore models where parameters
enter in a nonlinear fashion. We will also consider the
role of both observational and dynamical noise.

We call the proposed method a “dynamical micro-
scope”. It combines a balanced dynamical synchroniza-
tion of the observed data with a model of the system that
produced the data. The method should allow the use of
one or more dynamical variables from an observed net-
work of nonlinear oscillators to determine other parame-
ters associated with nodes or links of the network. When
they refer to network links, they determine the connec-
tivity of the network. We believe that the method will
provide a useful tool for study and validation of complex
models. Of course, the method does not replace the need
to develop models based on insights into the physics or
biophysics of the processes involved.
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