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Abstract

For quasi-Newton methods for unconstrained optimization, it is valuable to develop
methods that are robust, i.e., methods that converge on a large number of problems.
Trust-region algorithms are often regarded as being more robust than line-search meth-
ods, however, because trust-region methods are computationally more expensive, the
most popular quasi-Newton implementations use line-search methods. To fill this gap,
we develop a trust-region method that updates an LDLT factorization, scales quadrat-
ically with the size of the problem, and is competitive with a conventional line-search
method.
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1. Introduction

Consider the unconstrained optimization problem

minimize
x∈Rn

f(x), (1.1)

where f : Rn → R is at least twice-continuously differentiable. Second-order model-based
methods generate an infinite sequence {xk} in which xk+1 is found by minimizing a local
quadratic model of f based on values of the gradient ∇f(x) and Hessian ∇2f(x) at xk. Any
method for unconstrained optimization must include a globalization strategy that forces
convergence from any starting point. Broadly speaking, the two principal components of
any globalization strategy are a line search and/or the solution of a trust-region subproblem.
In a conventional line-search method the local quadratic model is defined in terms of the
change in variables pk. Once pk has been determined, a line search is used to compute a
positive scalar step length αk such that f(xk + αkpk) is sufficiently less than f(xk). In this
case the local quadratic model must be defined in terms of a positive-definite approximation
of ∇2f(xk) in order to ensure that the quadratic model has a bounded minimizer. By
contrast, a trust-region method is designed to give a new iterate xk + sk, where sk is a
minimizer of ∇f(xk)

Ts + 1
2s

T∇2f(xk)s subject to the constraint ∥s∥ ≤ ∆k. The value
of ∆k is chosen by an iterative process designed to compute a value f(xk + sk) that is
sufficiently less than f(xk). If the two-norm is used for the constraint ∥s∥ ≤ ∆k and n is
“small-to-medium” in size, the standard method is due to Moré & Sorensen [38]. In this
method the subproblem is also solved by an iterative method, with each iteration requiring
the factorization of a diagonally-shifted Hessian ∇2f(xk) + σjI for σj a nonnegative scalar.
In general, the Moré-Sorensen method requires several factorizations to find sk. However,
this cost is mitigated by the fact that compared to line-search methods, trust-region methods
have a stronger convergence theory and are generally more robust, i.e., they are able to solve
more problems (see e.g., Dai [14], Gay [22], Sorensen [43], Hebden [33], and Conn, Gould &
Toint [13]).

If first derivatives, but not second derivatives are available, then quasi-Newton methods
can be very effective (see, e.g., Dennis & Moré [15], Gill & Murray [25], Byrd, Dong &
Nocedal [11]). Quasi-Newton methods maintain an approximate Hessian Bk (or approxi-
mate inverse Hessian Hk) that is modified by a low-rank update that installs the curvature
information accumulated in the step from xk to xk+1. By updating Hk or a factoriza-
tion of Bk, a quasi-Newton method can be implemented in O(n2) floating-point operations
(flops) per iteration. There are infinitely many possible modifications, but it can be argued
that the most widely used quasi-Newton method is the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method (see Broyden [2], Fletcher [19], Goldfarb [28] and Shanno [42]), which uses
a rank-two update. This method has exhibited superior performance in a large number of
comparisons (see, Gill & Runnoe [27] for a recent survey). In particular, many state-of-the-
art software implementations include an option to use a quasi-Newton method, see, e.g.,
SNOPT [26], IPOPT [46], Knitro [12] and the Matlab Optimization ToolBox [37]. All
these implementations use the BFGS method in conjunction with a Wolfe line-search (see,
e.g., Moré & Thuente [39]). In particular, if Bk is positive definite and the Wolfe line-search
conditions hold, then the update gives a positive-definite matrix and the method typically
exhibits a fast superlinear convergence rate. A method based on the BFGS update is the
focus of Section 3. However, we start by making no assumptions about the method used to
compute Bk.

Although trust-region globalization methods tend to provide a more reliable algorithm
overall, the additional factorizations required at each iteration have limited their application
to quasi-Newton methods. The trust-region subproblem for the quasi-Newton case is given
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by
minimize
∥s∥≤∆k

gTk s+
1
2s

TBks, (1.2)

where ∆k is the positive trust-region radius, gk is the gradient ∇f(xk), and Bk is an n× n
symmetric quasi-Newton approximation to the Hessian matrix ∇2f(xk). The trust-region
subproblem (1.2) can be solved using the Moré-Sorensen method, but the substantial cost
of repeatedly factoring a shifted approximate Hessian has motivated the formulation of less
expensive methods for computing sk. The most successful of these methods are based on a
combination of three basic strategies.

The first strategy is to choose the norm of s so that the subproblem (1.2) is easier to
solve. In Gertz [23] the trust-region constraint is defined in terms of the infinity-norm and
the associated trust-region subproblem is solved using a quadratic programming algorithm.
An infinity-norm trust-region is also the basis of Fletcher’s Sl1QP method for constrained
optimization (see Fletcher [20]).

The second strategy is to use an iterative method to solve the linear equations associated
with the optimality conditions for problem (1.2). Iterative methods have the benefit of
being able to compute approximate solutions of (1.2). Steihaug [44] and Toint [45] apply
the conjugate-gradient method to the equations Bks = −gk but terminate the iterations if
a direction of negative curvature is detected or the trust-region constraint becomes active.

The third strategy is to seek an approximate solution of (1.2) that lies in a low-dimensional
subspace (of dimension less than 10, say). The dogleg method of Powell [40] uses the sub-
space spanned by the vectors {gk, B

−1
k gk}. Byrd, Schnabel and Schultz [10] propose using

the subspace based on {gk, (Bk+σI)−1gk} for some nonnegative σ. This extends the dogleg
method to the case where Bk is not positive definite.

Other well-known iterative trust-region methods have been proposed that do not use a
quasi-Newton approximate Hessian. These include the SSM (Hager [32]), GLTR (Gould,
Lucidi, Roma & Toint [30]) and Algorithm 4 of Erway, Gill & Griffin [18].

A number of methods combine the three strategies described above. These include the
methods of Brust, Marcia, Petra & Saunders [7] and Brust, Marcia & Petra [6]. The use
of a trust-region approach in conjunction with a limited-memory approximate Hessian has
been proposed by Brust, Burdakov, Erway & Marcia [5].

The proposed method is based on exploiting the properties of the factorization

Bk = LkDkL
T
k , (1.3)

where Lk ∈ Rn×n is lower triangular and Dk ∈ Rn×n is diagonal. This factorization and
the associated Cholesky factorization have been used extensively in the implementation
of line-search quasi-Newton methods (see, e.g., Gill & Murray [25], Fletcher & Powell [21],
Dennis & Schnabel [16]) but they are seldom used in trust-region quasi-Newton methods. In
Luksan [35] a factorization similar to (1.3) is used for nonlinear least-squares, by introducing
transformed trust-region constraints ∥LT

k s∥ ≤ ∆k in the subproblem. However, it is not
applied to general minimization problems.

1.1. Contributions

We formulate and analyze a quasi-Newton trust-region method based on exploiting the
properties of the LDLT factorization. Each iteration involves two phases. In the first phase
we use a strategy similar to that proposed by Luksan [35] that computes an inexpensive
scalar diagonal shift for Bk based on solving a trust-region subproblem with a diagonal
matrix Dk. In the second phase the computed shift and the factorization in (1.3) are used
to define an effective conjugate-gradient iteration. These steps give a quasi-Newton trust-
region algorithm that is competitive with state-of-the-art line-search implementations. We
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note that Gould, Lucidi, Roma & Toint [30] have anticipated the potential of a two-phased
approached, however, to the best of our knowledge, the proposed method is new.

1.2. Notation

We use Householder notation, which uses upper- and lower-case Roman letters to represent
matrices and vectors, and lower-case Greek symbols to represent scalars. The one exception
to this rule is ∆k > 0, which denotes a scalar. The identity matrix is I with dimension
depending on the context. The subscript k (k ≥ 0) represents the main iteration index. At
times, an inner-iteration will be used, which is denoted by a superscript. For example, a

matrix used in inner iteration j of outer iteration k is denoted by Q
(j)
k . The letters Dk and

Ek are reserved for diagonal matrices and Rk, Lk and Tk denote triangular matrices.

2. The Method

The proposed method is based on exploiting the properties of the factorization (1.3). First,
we show how a low-rank modification of the factors can be updated in O(n2) operations.

2.1. Updates to the factors

Suppose that the factorization Bk = LkDkL
T
k is available at the start of the kth iteration.

We make no assumptions concerning whether or not Bk is positive definite but Lk is assumed
to be nonsingular. We wish to compute Lk+1 and Dk+1 following a rank-one update to Bk.
In particular, consider

LkDkL
T
k + αkaka

T
k = Lk+1Dk+1L

T
k+1, (2.1)

where ak ∈ Rn and αk ∈ R. Let L̄
(1)
k denote the n × (n + 1) matrix

[
Lk ak

]
, which is

lower triangular except for its last column. Similarly, let D̄
(1)
k denote the (n+ 1)× (n+ 1)

diagonal matrix diag(Dk, αk). Then

LkDkL
T
k + αkaka

T
k =

[
Lk ak

] [Dk

αk

] [
Lk ak

]T
= L̄

(1)
k D̄

(1)
k L̄

(1)
k

T.

A sequence of orthogonal Given’s rotationsQ
(1)
k · · ·Q

(n)
k may be used to zero out the elements

of the last column in L̄
(1)
k (cf. Golub & Van Loan [29]). For j = 1, 2, . . . , n we define

L̄
(j+1)
k = L̄

(j)
k Q

(j)
k , (2.2)

where each Q
(j)
k is an (n+ 1)× (n+ 1) identity matrix except for four entries:

Q
(j)
k (j, j) = Q

(j)
k (n+ 1, n+ 1) =

L̄
(j)
k (j, j)√

(L̄
(j)
k (j, j))2 + (L̄

(j)
k (j, n+ 1))2

and

Q
(j)
k (j, n+ 1) = −Q(j)

k (n+ 1, j) =
−L̄(j)

k (n, n+ 1)√
(L̄

(j)
k (j, j))2 + (L̄

(j)
k (n, n+ 1))2

.
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The following example illustrates how L̄
(1)
k is restored to triangular form:

× ×
× × ×
× × × ×
× × × × ×
× × × × × ×

Q
(1)
k =


× 0
× × ×
× × × ×
× × × × ×
× × × × × ×



× ×
× × ×
× × × ×
× × × × ×
× × × × × ×

Q
(1)
k Q

(2)
k =


× 0
× × 0
× × × ×
× × × × ×
× × × × × ×


...

...
× ×
× × ×
× × × ×
× × × × ×
× × × × × ×

Q
(1)
k Q

(2)
k · · ·Q

(n)
k =


× 0
× × 0
× × × 0
× × × × 0
× × × × × 0

 .

In general, L̄
(n+1)
k = L̄

(1)
k Q

(1)
k · · ·Q

(n)
k ≡

[
Lk+1 0

]
, and Lk+1 is the first n rows and columns

of L̄
(n+1)
k . A similar recursion can be applied symmetrically to D̄

(1)
k to give

D̄
(n+1)
k = (Q

(1)
k Q

(2)
k · · ·Q

(n)
k )TD̄

(1)
k Q

(1)
k Q

(2)
k · · ·Q

(n)
k ≡

[
Dk+1 ×
× ×

]
.

If the product Q
(1)
k Q

(2)
k · · ·Q

(n)
k is denoted by Qk then the factorization can be written as{

LkDkL
T
k + αkaka

T
k = L̄

(1)
k D̄

(1)
k L̄

(1)
k

T = L̄
(1)
k QkQ

T
k D̄

(1)
k QkQ

T
k L̄

(1)
k

T

= Lk+1Dk+1L
T
k+1.

(2.3)

If Bk is not positive definite, then some of the elements of Dk+1 may be negative or zero
and some diagonal elements of Lk+1 may be zero. In the latter case any offending diagonals
of Lk+1 must be modified to give a nonsingular factor for the next iteration.

Because of the special form of each Given’s rotation Q
(j)
k , each product in (2.2) can be

computed with O(n) flops. As there are n total products, updating the indefinite factor-
ization with a rank-one term requires O(n2) flops. If more than one rank-one update is
required, the method can be applied as many times as needed. A related algorithm for
updating the Cholesky factorization is given in Algorithm C1 of Gill, Golub, Murray &
Saunders [24].

2.2. Computing the optimal shift

Trust-region methods generate a sequence of solution estimates {xk} such that xk+1 =
xk+sk, where sk ∈ Rn is a solution of the trust-region subproblem (1.2). If the two-norm is
used to define the trust region then s∗ is a global minimizer of the trust-region subproblem
if and only if ∥s∗∥2 ≤ ∆k and there is a scalar “shift” σ∗ ≥ 0 such that

(Bk + σ∗I)s∗ = −gk and σ∗(∆k − ∥s∗∥2) = 0, (2.4)

with Bk + σ∗I positive semidefinite. Moreover, if Bk + σ∗I is positive definite, then the
global minimizer is unique. Once the optimal “shift” σ∗ ≥ 0 is known, determining s∗
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reduces to solving the shifted linear system (Bk + σ∗I)s∗ = −gk. An effective algorithm
due to Moré and Sorensen [38] is based on using Newton’s method to find a zero of the
scalar-valued function φ(σ) such that

φ(σ) ≡ 1

∆k
− 1

∥s∥2
, where (Bk + σI)s = −gk. (2.5)

Starting with a nonnegative scalar σ0 such that Bk + σ0I is positive semidefinite, each iter-
ation of Newton’s method requires the computation of the Cholesky factorization RT

i Ri =
Bk + σiI. The main computational steps of the Moré-Sorensen method are summarized in
Algorithm 1.

Algorithm 11

Require: σ0 ≥ 0; R0 such that RT
0 R0 = Bk + σ0I;

for i = 0 : imax do
Solve RT

i Risi = −gk;
Solve RT

i qi = si;

Update σi+1 = σi +
∥si∥22
∥qi∥22

(∥si∥2 −∆k

∆k

)
;

Factor RT
i+1Ri+1 = Bk + σi+1I;

end for;

This iteration typically continues until ∥si∥2 ≈ ∆k. Recomputing the factorization
RT

i+1Ri+1 is by far the most expensive part of the algorithm. Therefore, practical imple-
mentations typically first check whether the solution to Bks0 = −gk satisfies ∥s0∥2 ≤ ∆k

whenever it is known that Bk is positive definite to avoid this loop.

2.3. Computing the modified shift (phase 1)

Since computing the optimal shift and step using Algorithm 1 is expensive, the factorization
Bk = LkDkL

T
k is used to compute a modified shift at a significantly reduced cost. This

computation constitutes phase 1 of the proposed method. Let Tk denote the inverse of LT
k ,

i.e.,
LT
k Tk = TkL

T
k = I.

For any scalar σ it holds that

Bk + σI = LkDkL
T
k + σI = Lk(Dk + σT T

k Tk)L
T
k . (2.6)

This identity can be used to modify the iteration (2.5) so that expensive refactorizations
are not needed. If Ek is the diagonal matrix

Ek = diag(T T
k Tk), (2.7)

then Ek can be used to approximate T T
k Tk in the conditions (2.4). This gives a modified

shift σ+ such that

∥s+∥2 ≤ ∆k, Lk(Dk + σ+Ek)L
T
k s

+ = −gk and σ+(∥s+∥2 −∆k) = 0, (2.8)

with Dk + σ+Ek positive semidefinite. It is important to note that Dk + σ+Ek is diagonal,
which allows the conditions (2.8) to be satisfied without the need for additional factoriza-
tions. The corresponding algorithm, with the initial scalar σ+

0 ≥ 0 is given in Algorithm 2
(details of the derivation of Algorithm 2 are given in Appendix A).



2. The Method 7

Algorithm 22

Require: σ+
0 ≥ 0;

for i = 0 : imax do
Solve Lk(Dk + σ+

i Ek)L
T
k s

+
i = −gk;

Solve (Dk + σ+
i Ek)L

T
k q

+

i = −EkL
T
k s

+
i ;

Update σ+
i+1 = σ+

i −
∥s+i ∥22
s+i

Tq+

i

(∥s+i ∥2 −∆k

∆k

)
;

end for;

Observe that Algorithm 2 requires no direct factorizations. Moreover, the solves are
inexpensive because they involve only triangular or diagonal matrices. Even though the
main focus of Algorithm 2 is to compute a appropriate shift σ+

i ≥ 0, the vector s+i is available
as a by-product of the computation of σ+. The vector s+i satisfies ∥s+i ∥2 = ∥s∗∥2 = ∆k and
is used to approximate s∗.

2.4. Solving the shifted system (phase 2)

The estimate σ+
i is expected to be an overestimate to σ∗ because ∥Ek∥2 ≤ ∥T T

k Tk∥2. Never-
theless, it contains the exact diagonal for the optimal system by (2.7) and typically captures
at least the right order of magnitude. For comparison, s∗ is the solution to the shifted sys-
tem (LkDkL

T
k + σ∗I)s∗ = −gk. We use the inexpensive estimate σ+

i to solve the related
shifted system in a second phase

(LkDkL
T
k + σ+

i I)sk = −gk. (2.9)

The computation of an exact solution of (2.9) requires a factorization of LkDkL
T
k +σ+

i I and
would be too expensive. Instead we propose the use of an iterative solver in combination with
the LDLT factors. From (2.6) it holds that LkDkL

T
k + σ+

i I = Lk(Dk + σ+
i T

T
k Tk)L

T
k . The

conjugate-gradient (CG) method of Hestenes [34] can be applied to exploit the availability
of the factors:

Lkhk = −gk, (triangular solve) (2.10)

(Dk + σ+
i T

T
k Tk)vk = hk, (conjugate-gradient solve) (2.11)

LT
k sk = vk. (triangular solve) (2.12)

This vector is often close to s∗ and constitutes a useful search direction.

2.5. Backtracking the shift

As Ek is just an estimate of T T
k Tk the computed shift σ+ is usually different from σ∗. In

particular, the computed σ+ is often larger than σ∗ because ∥Ek∥2 ≤ ∥T T
k Tk∥2. In order

to improve the accuracy of σ+, a backtracking mechanism is included to allow additional
trial values for σ+. Specifically, the value of σ+ is reduced as long as the function value
decreases. This approach is summarized in Algorithm 3.
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Figure 1: Illustration of Alg. 3 on the two CUTEst problems FLETCHCR and WOODS. The
dashed red curve represents the objective value as a function of σ+. The dotted vertical line
represents the optimal shift σ∗. The blue point is the selected shift.

Algorithm 33

Require: σ+
0 ≥ 0, γk < 1;

Set i = 0;
repeat

Solve (LkDkL
T
k + σ+

i I)sk = −gk; [Use eqs. (2.10)—(2.12)]
σ+
i+1 = γkσ

+
i ; i = i+ 1;

until f(xk) ≤ f(xk + sk);

The search on the shift parameter is the same for both an estimated and optimal shift,
i.e., the backtracking scheme could be applied if Algorithm 1 is used to solve the subproblem.
As in a backtracking line search, this strategy requires additional function evaluations.
However the quality of the computed search direction is improved. For additional efficiency,
the value of σ+

0 in Algorithm 3 is set to the final estimate of σ∗ computed by Algorithm 2.
Thus on initialization, σ+

0 ≈ σ∗, but as long as f decreases σ+
i+1 → 0, and the computed

steps sk become closer to the full quasi-Newton step Bksk = −gk. Algorithm 3 is illustrated
on two problems in Fig. 2.5.

2.6. The quasi-Newton matrix

The method can be implemented by either updating the factorization Bk = LkDkL
T
k di-

rectly, or by updating its inverse. For the latter approach, recall that Tk represents the
inverse of LT

k , and suppose that Dk is an invertible diagonal with inverse Gk. Then

DkGk = GkDk = I.

and (
LkDkL

T
k

)−1 = L−T
k D−1

k L−1
k = TkGkT

T
k .

It will become evident that only Tk and Dk need be stored when the inverse factorization
is updated. Specifically, the proposed method generates two types of equation, with each
equation associated with a particular phase. In phase 1, we solve a sequence of linear
equations of the form

Lk

(
Dk + σ+

i Ek

)
LT
k s

+ = −gk. (2.13)



2. The Method 9

This solution can be expressed directly using only Tk, Dk and Ek; namely, from

hk = −T T
k gk, wk = (Dk + σ+

i Ek)
−1hk, s+ = Tkwk.

Similarly, in the second phase of the method we solve systems of the form

Lk(Dk + σ+T T
k Tk)L

T
k sk = −gk.

The solution of this system may also be computed using only Tk and Dk. In particular,

hk = −T T
k gk, (matrix-vector multiply) (2.14)

(Dk + σ+
i T

T
k Tk)vk = hk, (conjugate-gradient solve) (2.15)

sk = Tkvk. (matrix-vector multiply) (2.16)

To highlight a significant difference between updating the direct factorization LkDkL
T
k and

updating the inverse factorization T T
k GkTk observe that the direct method computes the

step in phase 2 using the equations (2.10)–(2.12).These relations depend not only on Lk and
Dk but also Tk. Therefore, in order to implement the direct factorization it is necessary to
update Lk, Dk and Tk. In contrast, if the inverse factorization is used, the step in phase 2
is determined by (2.14)–(2.16), which depend only on Tk and Dk. Therefore, updating the
inverse factorization is advantageous from an implementation viewpoint because it depends
only on Tk and Dk. Moreover, as Dk is diagonal it is straightforward to update Tk and Gk,
where Gk is the inverse of Dk. The inverse quasi-Newton matrix is denoted by Hk, i.e.,

B−1
k = (LkDkL

T
k )

−1 = TkGkT
T
k ≡ Hk.

The approximate Hessian and its inverse can be positive definite or indefinite depending
on the choice of updating formula. The most popular updates are defined in terms of the
vectors sk = xk+1−xk and yk = gk+1−gk. In particular the BFGS modified inverse Hessian
is given by the rank-two formula

Hk+1 = Hk +
yT
k sk + yT

k Hkyk
(yT

k sk)
2

sks
T
k −

1

yT
k sk

(Hkyks
T
k + sky

T
k Hk), (2.17)

and the SR1 inverse is

Hk+1 = Hk +
1

(yk −Hksk)Tsk
(yk −Hksk)(yk −Hksk)

T. (2.18)

Other options are the Multipoint Symmetric Secant Matrix (MSS) update of Brust [4]
and Burdakov, Mart́ınez & Pilotta [9], or the Powell-Symmetric-Broyden (PSB) update
Powell [41] and Broyden, Dennis & Moré [3]. After extensive experimentation, it was found
that a quasi-Newton method based on the BFGS update (2.17) required the fewest function
evaluations (see also Gill and Runnoe [27]). For this reason, the following discussion will
focus on the properties of a BFGS trust-region method.

Given the factorization TkGkT
T
k , the product Tk+1Gk+1T

T
k+1 is computed using a similar

approach to that used in Section 2.1. In particular, for the BFGS update (2.17) we have

α
(1)
k =

yT
k sk + yT

k Hkyk
(yT

k sk)
2

, α
(2)
k = − 1

yT
k sk + yT

k Hkyk
,

a
(1)
k = sk + (yT

k sk)α
(2)
k Hkyk, a

(2)
k = Hkyk.
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The factorization of (2.17) can be computed by applying (2.3) twice, i.e.,

Hk+1/2 = Tk+1/2Gk+1/2T
T
k+1/2 = TkGkT

T
k + α

(1)
k a

(1)
k a

(1)
k

T. (2.19)

Hk+1 = Tk+1Gk+1T
T
k+1 = Tk+1/2Gk+1/2T

T
k+1/2 + α

(2)
k a

(2)
k a

(2)
k

T. (2.20)

Details of how to derive the updates are given in Appendix B. The updates are implemented
using a modification of Algorithm C1 of Gill, Golub, Murray & Saunders [24].

3. The Algorithm

The proposed method is given in Algorithm 4 below. The algorithm is a trust-region type
method, with search directions being accepted when a sufficient decrease of the objective
function is achieved.

Two components of Algorithm 4 warrant further explanation. First, the check nmax < n
branches the algorithm according to the size of the problem. As Algorithm 1 is reliable, but
computationally expensive, it is used for problems that are relatively small, of the order of a
hundred variables, say. For large problems a new strategy is used to generate trial steps that
estimate the shift parameter in phase 1. The trial step with the smallest objective value,
becomes the next sk. Second, if c1 < ρk then the step is accepted and the iterate is updated.
In this case an increase or decrease of the parameter γk is permitted. Specifically, subject to
the limits γmin ≤ γk ≤ γmax, the value of γk is halved or doubled depending on the outcome
of Algorithm 3. In particular, if i = 2 then adding σ+

0 I to the quasi-Newton matrix improved
the objective, but γkσ

+

0 I did not. In this case γk+1 = 2γk. On the other hand, if i = imax

then at least every σ+

i , 0 ≤ i ≤ imax − 1 improved the objective. In this case, γk+1 = 1
2γk.

To ensure that γk+1 remains within the bounds, we set γk+1 ← max(min(γk+1, γmax), γmin).
Typical values for the bounds are γmax = 1

4 , and γmin =
(
1
4

)
10.

3.1. Complexity

Algorithm 4 has computational complexity of O(n2) for large n. To see this, note that as Tk

is triangular and Gk is diagonal, computing sk = −TkGkT
T
k gk or solving TkGkT

T
k hk = sk

each incurs n2 + n ≈ n2 multiplications. The cost of Algorithm 1 is negligible, because it is
only called when n < nmax (which is normally nmax = 100). For large n, Algorithms 2 and
3 are used to compute the step. Algorithm 2 is a Newton iteration for the scalar σ+

i , which
typically converges in 2—6 iterations. The main cost of each iteration is the solution of the
triangular systems. It is possible to achieve some savings by precomputing Lkhk = −gk at
the cost of 1

2n
2 multiplications. Then, s+

i is obtained from (Dk + σ+
i Ek)L

T
k s

+
i = hk in 1

2n
2

multiplications. Similarly, q+

i is computed in n2 multiplications per iteration. The overall
complexity of Algorithm 2 is thus O

(
1
2n

2 + ialg2max · ( 12n
2 + n2)

)
= O

(
1
2 (3 + ialg2max)n

2
)
, where

ialg2max represents the maximum iterations of Algorithm 2, which is a small integer. Algorithm 3
implements (2.10)—(2.12). The solutions of equations (2.10) and (2.12) are computed only
once at a combined cost of n2 multiplications. The conjugate gradient iteration costs O(icgmax·
n2) multiplications, where typically the maximum number of iterations for CG are icgmax =
15. Therefore Algorithm 3 is an O

(
(1 + ialg3max · icgmax)n

2
)
computation, where ialg3max is the

maximum number of iterations of Algorithm 3, typically ialg3max = 3. Finally, to update the
factorization in (2.19) and (2.20) the vector Hkyk is computed with n2 multiplications. It
follows that the two rank-one updates of (2.19) and (2.20) are computed with O(2n2) flops.
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Combining these estimates gives the complexity of Algorithm 4 as

O

(
1

2

(
4 + 3 + ialg2max + 2 + 2 · ialg3max · icgmax + 4

)
n2

)
= O

(
1

2

(
13 + ialg2max + 2 · ialg3max · icgmax

)
n2

)
,

where ialg2max, i
alg3
max and icgmax are the maximum number of iterations for Algorithms 2, Algo-

rithms 3, and the conjugate-gradient algorithm, respectively. As all of these values are small
constant integers, overall, Algorithm 4 is an O(n2) algorithm.

3.2. Convergence

Algorithm 4 accepts steps that either generate a sufficient decrease or reduce the trust-
region radius. From Theorem 1 of Burdakov, Gong, Yuan & Zikrin [8] this ensures that
the trust-region algorithm converges to a stationary point of (1.1) as long there exists a
constant c̃1 so that ∥LkDkL

T
k ∥2 ≤ ĉ1, ∀k. This condition is equivalent to ensuring that

∥TkGkT
T
k ∥2 ≤ ĉ2, ∀k for some c̃2. As (2.17) is positive definite when yT

k sk > 0, ∀k and
H0 ≻ 0 we enforce these conditions for the updates of the inverse LDLT factorization (2.19)
and (2.20). Specifically, Gk and Tk are updated only if yT

k sk > 0. Further, the initial matrix
is the positive multiple of the identity H0 = T0G0T

T
0 = ϕI for ϕ > 0.

4. Implementation Details

Algorithm 4 updates the factors of Gk and Tk, however the computation of sk in phase 2
using the equations (2.14)–(2.16) also uses the diagonal matrix Dk, where Dk = G−1

k .
Algorithm 2 is implemented using Tk and T T

k instead of LT
k and Lk. The initial matrix is

G0 = ϕI, a scalar multiple of the identity where ϕ = min
(
max(10−2, 1/∥g0∥2), 104

)
. The

computation of s1 = x1 − x0 and y1 = g1 − g0 for the first quasi-Newton update in (2.19)
and (2.20) requires the iterate x1. The vector is computed using the Moré-Thuente line-
search [39] so that x1 = x0−α̂0G0g0, where α̂0 is a step length that satisfies the strong Wolfe
conditions. Further, we set the initial trust-region radius as ∆1 = 2∥x1 − x0∥2. Round-off
error may result in a negative diagonal element in Gk+1 when a rank-one update is made.
In this case we set any negative values to their absolute values gj ← |gj | thereby ensuring
numerical positive definiteness of Gk. Cancellation error can also corrupt the computation
of f(xk)−f(xk+sk) for determining the sufficient decrease in Algorithm 4. Left unchecked,
the algorithm may stop making progress near a stationary point because the function values
cease to provide reliable information. As a remedy, if f(xk)− f(xk + sk) is of the order of
the machine precision, the sufficient decrease condition is changed to require a reduction in
the gradient norm compared to ∥gk∥2. This mechanism promotes convergence to stationary
points for some ill-conditioned problems. The algorithm is implemented in Matlab and
Fortran 90. All software is available in the public domain.

5. Numerical Experiments

Numerical results were obtained for a large subset of the unconstrained optimization prob-
lems from the CUTEst test collection (see Bongartz et al. [1] and Gould, Orban and
Toint [31]). In particular, a problem was selected if the number of variables was of the
order of 5000 or less. The same criterion was used to set the dimension of those problems
for which the problem size can be specified. This gave a test set of 252 problems. For
comparison purposes we also give results for bfgsR, which is a BFGS line-search algorithm



12 An LDLT quasi-Newton trust-region method

with a line-search based on satisfying the strong Wolfe conditions. This algorithm is the
state-of-the-art line-search BFGS implementation considered by Gill & Runnoe [27].

For assessment purposes, the cpu time, number of iterations and number of function
evaluations was recorded for each problem when

∥gk∥2 ≤ ϵ, with ϵ = 1× 10−4.

A limit of kmax = 6000 iterations was imposed on all runs. For a given problem, if the
maximum number of iterations was reached or the algorithm was unable to proceed, the
data was collected if the following “near optimal” conditions were satisfied:

|fk| ≤ |f0| × ϵ
2/3
M or ∥gk∥2 ≤ ∥g0∥2 × ϵ

2/3
M , (5.1)

where ϵM denotes the machine precision. Otherwise, the method was considered to have
failed. Algorithm LDLtr was unable to proceed if ∆k ≤ 10−22. Algorithm bfgsR was unable
to proceed if the line search was unable to find a better point.

Details of the numerical experiments are given in the following table. An entry of “Near
opt” indicates that the method was unable to proceed but the final iterate satisfied the
conditions (5.1).

Problem n
LDLtr (Trust Region) bfgsR (Line Search)

It Numf Sec Conv It Numf Sec Conv

AKIVA 2 14 22 0.044 Opt. 15 19 0.221 Opt.
ALLINITU 4 8 10 0.045 Opt. 10 12 0.039 Opt.
ARGLINA 200 5 11 0.112 Opt. 2 4 0.017 Opt.
ARGLINB 200 88 364 0.798 Near opt. 111 182 0.392 Near opt.
ARGLINC 200 91 391 0.749 Near opt. 196 267 0.757 Opt.
ARGTRIGLS 200 366 2255 7.318 Opt. 206 406 0.759 Opt.
ARWHEAD 5000 7 12 5.928 Opt. 8 12 9.860 Opt.
BA-L1LS 57 60 214 0.005 Opt. 72 289 0.129 Opt.
BA-L1SPLS 57 71 260 0.004 Opt. 56 237 0.081 Opt.
BARD 3 23 25 0.022 Opt. 23 24 0.011 Opt.
BDQRTIC 5000 52 63 24.669 Opt. 34 38 40.584 Opt.
BEALE 2 17 19 0.019 Opt. 14 15 0.009 Opt.
BENNETT5LS 3 23 61 0.009 Opt. 18 26 0.016 Opt.
BIGGS6 6 44 71 0.008 Opt. 33 44 0.022 Opt.
BOX 5000 31 88 31.615 Opt. 9 13 11.476 Opt.
BOX3 3 11 13 0.014 Opt. 9 10 0.005 Opt.
BOXBODLS 2 — — — Max. it. 15 37 0.018 Opt.
BOXPOWER 5000 36 64 25.848 Opt. 40 46 52.003 Opt.
BRKMCC 2 5 8 0.008 Opt. 4 7 0.004 Opt.
BROWNAL 200 5 10 0.060 Opt. 6 10 0.018 Opt.
BROWNBS 2 16 32 0.017 Opt. 20 38 0.016 Near opt.
BROWNDEN 4 19 50 0.011 Opt. 25 37 0.014 Opt.
BROYDN3DLS 5000 22 27 13.550 Opt. 23 24 28.412 Opt.
BROYDN7D 5000 360 368 206.365 Opt. 363 365 424.145 Opt.
BROYDNBDLS 5000 114 154 64.477 Opt. 53 60 62.142 Opt.
BRYBND 5000 114 154 64.472 Opt. 53 60 62.250 Opt.
CERI651ALS 7 114 197 0.044 Opt. 81 106 0.046 Opt.
CERI651BLS 7 231 530 0.004 Opt. — — — Not conv.
CERI651CLS 7 338 789 0.002 Opt. — — — Not conv.
CERI651DLS 7 — — — Not conv. 206 264 0.126 Opt.
CERI651ELS 7 185 385 0.001 Opt. 100 125 0.057 Opt.
CHAINWOO 4000 537 3345 602.959 Opt. 2718 5362 1840.668 Opt.

(continued on the next page)
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Problem n
LDLtr (Trust Region) bfgsR (Line Search)

It Numf Sec Conv It Numf Sec Conv

CHNROSNB 50 167 340 0.062 Opt. 144 170 0.133 Opt.
CHNRSNBM 50 137 277 0.098 Opt. 119 147 0.075 Opt.
CHWIRUT1LS 3 28 94 0.007 Opt. 16 32 0.016 Opt.
CHWIRUT2LS 3 28 93 0.004 Opt. 15 32 0.010 Opt.
CLIFF 2 39 127 0.001 Opt. 42 60 0.022 Opt.
CLUSTERLS 2 14 16 0.031 Opt. 14 15 0.008 Opt.
COATING 134 339 834 3.140 Opt. 341 459 0.566 Opt.
COOLHANSLS 9 111 195 0.032 Opt. 172 204 0.085 Opt.
COSINE 5000 16 26 9.675 Opt. 14 22 17.041 Opt.
CRAGGLVY 5000 138 201 86.893 Opt. 279 341 327.076 Opt.
CUBE 2 51 101 0.007 Opt. 37 55 0.021 Opt.
CURLY10 5000 5118 9440 6155.342 Opt. 4258 5164 5615.681 Opt.
CURLY20 5000 4114 9947 6353.707 Opt. 3422 4536 4807.715 Opt.
CURLY30 5000 3451 9837 5549.342 Opt. 3007 4280 4136.564 Opt.
CYCLOOCFLS 4994 392 565 247.393 Opt. 378 429 504.329 Opt.
DANIWOODLS 2 12 15 0.028 Opt. 14 17 0.010 Opt.
DANWOODLS 2 115 143 0.007 Opt. 20 39 0.013 Opt.
DENSCHNA 2 10 12 0.011 Opt. 10 11 0.012 Opt.
DENSCHNB 2 7 9 0.009 Opt. 7 8 0.006 Opt.
DENSCHNC 2 14 18 0.016 Opt. 15 19 0.009 Opt.
DENSCHND 3 77 114 0.018 Opt. 65 81 0.036 Opt.
DENSCHNE 3 46 77 0.005 Opt. 30 50 0.018 Opt.
DENSCHNF 2 17 35 0.004 Opt. 10 20 0.009 Opt.
DEVGLA1 4 53 179 0.006 Opt. 33 57 0.023 Opt.
DEVGLA2 5 62 146 0.012 Opt. 40 56 0.024 Opt.
DIAMON2DLS 66 — — — Max. it. — — — Max. it.
DIAMON3DLS 99 — — — Max. it. — — — Not conv.
DIXMAANA 3000 22 27 5.120 Opt. 23 24 10.721 Opt.
DIXMAANB 3000 27 29 6.131 Opt. 27 29 11.912 Opt.
DIXMAANC 3000 29 31 6.515 Opt. 28 30 12.083 Opt.
DIXMAAND 3000 27 29 6.128 Opt. 28 29 11.975 Opt.
DIXMAANE 3000 1307 1312 273.515 Opt. 1308 1309 539.456 Opt.
DIXMAANF 3000 909 911 179.397 Opt. 910 911 384.064 Opt.
DIXMAANG 3000 871 873 172.185 Opt. 864 865 361.199 Opt.
DIXMAANH 3000 761 770 148.499 Opt. 735 739 303.049 Opt.
DIXMAANI 3000 — — — Max. it. — — — Max. it.
DIXMAANJ 3000 1028 1030 234.822 Opt. 1029 1030 457.468 Opt.
DIXMAANK 3000 919 921 210.152 Opt. 920 921 412.102 Opt.
DIXMAANL 3000 410 412 93.968 Opt. 706 708 315.743 Opt.
DIXMAANM 3000 — — — Max. it. — — — Max. it.
DIXMAANN 3000 1880 1885 370.036 Opt. 1881 1882 817.505 Opt.
DIXMAANO 3000 1508 1510 298.704 Opt. 1493 1494 664.182 Opt.
DIXMAANP 3000 1564 1566 309.012 Opt. 1566 1567 672.300 Opt.
DIXON3DQ 5000 — — — Max. it. — — — Max. it.
DJTL 2 145 526 0.007 Opt. 1476 9933 2.866 Opt.
DMN15102LS 66 — — — Max. it. — — — Max. it.
DMN15103LS 99 — — — Max. it. — — — Not conv.
DMN15332LS 66 — — — Max. it. — — — Max. it.
DMN15333LS 99 — — — Max. it. — — — Max. it.
DMN37142LS 66 — — — Max. it. — — — Max. it.
DMN37143LS 99 — — — Max. it. — — — Max. it.
DQDRTIC 5000 28 46 13.306 Opt. 17 21 29.082 Opt.

(continued on the next page)
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(continued from the preceding page)

Problem n
LDLtr (Trust Region) bfgsR (Line Search)

It Numf Sec Conv It Numf Sec Conv

DQRTIC 5000 799 991 537.722 Opt. — — — Max. it.
ECKERLE4LS 3 2 8 0.004 Opt. 3 5 0.003 Opt.
EDENSCH 2000 50 52 5.220 Opt. 54 56 9.811 Opt.
EG2 1000 3 6 0.182 Opt. 4 6 0.213 Opt.
EGGCRATE 2 7 12 0.005 Opt. 6 8 0.004 Opt.
EIGENALS 2550 674 1297 187.001 Opt. 665 790 201.828 Opt.
EIGENBLS 2550 5684 5717 958.874 Opt. — — — Max. it.
EIGENCLS 2652 — — — Max. it. — — — Max. it.
ELATVIDU 2 13 18 0.011 Opt. 12 18 0.008 Opt.
ENGVAL1 5000 57 59 21.883 Opt. 36 37 50.878 Opt.
ENGVAL2 3 28 48 0.013 Opt. 26 31 0.016 Opt.
ENSOLS 9 23 26 0.031 Opt. 20 23 0.019 Opt.
ERRINROS 50 113 205 0.016 Opt. 247 333 0.169 Opt.
ERRINRSM 50 158 296 0.034 Opt. 329 442 0.218 Opt.
EXP2 2 10 12 0.009 Opt. 11 12 0.008 Opt.
EXPFIT 2 20 45 0.003 Opt. 10 14 0.007 Opt.
EXTROSNB 1000 125 489 7.205 Opt. 114 231 5.047 Opt.
FBRAIN3LS 6 801 2326 0.010 Opt. 1324 1735 6.021 Opt.
FLETBV3M 5000 119 150 63.915 Opt. 103 118 147.353 Opt.
FLETCBV2 5000 0 5 1.602 Opt. 0 1 0.018 Opt.
FLETCBV3 5000 8 27 8.563 Unbounded 2 11 1.769 Unbounded
FLETCHBV 5000 0 2 1.255 Unbounded 0 1 0.015 Unbounded
FLETCHCR 1000 4995 16254 368.990 Opt. 3104 5029 134.077 Opt.
FMINSRF2 4900 280 405 163.668 Opt. 243 249 317.487 Opt.
FMINSURF 4900 331 486 195.033 Opt. 289 292 376.528 Opt.
FREUROTH 5000 328 2411 887.841 Opt. 37 72 52.228 Opt.
GAUSS1LS 8 39 95 0.022 Opt. 21 32 0.014 Opt.
GAUSS2LS 8 47 98 0.003 Opt. 21 33 0.016 Opt.
GAUSS3LS 8 29 91 0.014 Opt. 24 34 0.017 Opt.
GAUSSIAN 3 1 4 0.005 Opt. 1 3 0.003 Opt.
GBRAINLS 2 8 20 0.020 Opt. 9 11 0.036 Opt.
GENHUMPS 5000 4220 14470 8968.239 Opt. — — — Max. it.
GENROSE 500 1336 4608 30.586 Opt. 838 1503 8.894 Opt.
GROWTHLS 3 1 3 0.005 Opt. 1 2 0.002 Opt.
GULF 3 54 89 0.004 Opt. 44 55 0.050 Opt.
HAHN1LS 7 275 902 0.002 Opt. 107 197 0.077 Near opt.
HAIRY 2 64 148 0.004 Opt. 18 42 0.010 Opt.
HATFLDD 3 13 15 0.012 Opt. 8 11 0.004 Opt.
HATFLDE 3 50 91 0.003 Opt. 14 15 0.009 Opt.
HATFLDFL 3 3 6 0.005 Opt. 3 5 0.004 Opt.
HATFLDFLS 3 13 24 0.005 Opt. 9 15 0.005 Opt.
HATFLDGLS 25 63 65 0.084 Opt. 66 67 0.032 Opt.
HEART6LS 6 751 1828 0.020 Opt. 3052 4151 2.706 Opt.
HEART8LS 8 2404 6450 0.001 Opt. 3133 4257 2.608 Opt.
HELIX 3 34 46 0.011 Opt. 28 35 0.011 Opt.
HIELOW 3 12 30 0.058 Opt. 13 22 0.048 Opt.
HILBERTA 2 3 8 0.003 Opt. 5 8 0.003 Opt.
HILBERTB 10 6 11 0.006 Opt. 7 8 0.005 Opt.
HIMMELBB 2 6 18 0.004 Opt. 10 19 0.006 Opt.
HIMMELBCLS 2 11 20 0.006 Opt. 7 9 0.006 Opt.
HIMMELBF 4 40 71 0.006 Opt. 36 42 0.017 Opt.
HIMMELBG 2 10 17 0.004 Opt. 5 8 0.004 Opt.

(continued on the next page)
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Problem n
LDLtr (Trust Region) bfgsR (Line Search)

It Numf Sec Conv It Numf Sec Conv

HIMMELBH 2 6 8 0.006 Opt. 5 6 0.003 Opt.
HUMPS 2 127 391 0.002 Opt. 49 124 0.030 Opt.
HYDC20LS 99 — — — Max. it. 1648 1830 2.152 Opt.
INDEF 5000 7 32 6.246 Unbounded 3 12 2.871 Unbounded
INDEFM 5000 202 357 127.215 Opt. 182 213 211.380 Opt.
INTEQNELS 502 5 7 0.167 Opt. 6 7 0.092 Opt.
JENSMP 2 1 3 0.005 Opt. 1 2 0.004 Opt.
JIMACK 3549 3536 30456 9394.187 Opt. 1293 2635 1133.339 Opt.
KIRBY2LS 5 96 320 0.002 Opt. 39 60 0.021 Opt.
KOWOSB 4 26 36 0.004 Opt. 23 28 0.009 Opt.
LANCZOS1LS 6 99 166 0.003 Opt. 79 100 0.041 Opt.
LANCZOS2LS 6 99 150 0.004 Opt. 78 98 0.033 Opt.
LANCZOS3LS 6 103 163 0.006 Opt. 90 104 0.047 Opt.
LIARWHD 5000 21 31 11.977 Opt. 17 21 21.010 Opt.
LOGHAIRY 2 685 1768 0.004 Opt. 51 148 0.032 Opt.
LSC1LS 3 79 195 0.002 Opt. 55 78 0.031 Opt.
LSC2LS 3 72 92 0.001 Opt. 89 165 0.061 Opt.
LUKSAN11LS 100 1063 2380 0.127 Opt. 797 1049 1.212 Opt.
LUKSAN12LS 98 221 812 0.007 Opt. 95 196 0.110 Opt.
LUKSAN13LS 98 176 649 0.007 Opt. 44 89 0.048 Opt.
LUKSAN14LS 98 205 403 0.175 Opt. 224 273 0.236 Opt.
LUKSAN15LS 100 55 192 0.008 Opt. 68 193 0.140 Opt.
LUKSAN16LS 100 60 220 0.008 Opt. 68 249 0.106 Opt.
LUKSAN17LS 100 182 580 0.135 Opt. 421 552 0.512 Opt.
LUKSAN21LS 100 236 546 0.122 Opt. 194 260 0.318 Opt.
LUKSAN22LS 100 108 139 0.254 Opt. 115 129 0.126 Opt.
MANCINO 100 81 289 0.017 Opt. 79 145 0.596 Near opt.
MARATOSB 2 1379 3051 0.005 Opt. 1010 1421 0.678 Opt.
MEXHAT 2 40 74 0.010 Opt. 42 59 0.024 Opt.
MEYER3 3 637 1746 0.002 Opt. 320 431 0.146 Near opt.
MGH09LS 4 25 31 0.016 Opt. 16 24 0.009 Opt.
MGH10LS 3 — — — Not conv. 303 424 0.171 Near opt.
MGH17LS 5 29 51 0.003 Opt. 20 32 0.010 Opt.
MISRA1ALS 2 50 130 0.007 Opt. 43 61 0.020 Opt.
MISRA1BLS 2 51 111 0.015 Opt. 34 50 0.016 Opt.
MISRA1CLS 2 26 82 0.006 Opt. 30 38 0.015 Opt.
MISRA1DLS 2 38 87 0.012 Opt. 26 35 0.015 Opt.
MNISTS0LS 494 1 3 0.317 Opt. 1 2 0.252 Opt.
MNISTS5LS 494 1 3 0.356 Opt. 1 2 0.182 Opt.
MOREBV 5000 25 165 31.345 Opt. 11 23 13.530 Opt.
MSQRTALS 1024 1860 1877 80.236 Opt. 1855 1860 81.718 Opt.
MSQRTBLS 1024 1566 1578 66.963 Opt. 1564 1569 71.230 Opt.
NCB20 5000 335 455 219.814 Opt. 208 216 259.715 Opt.
NCB20B 5000 897 908 497.100 Opt. 881 885 1189.335 Opt.
NELSONLS 3 247 774 0.001 Opt. — — — Not conv.
NONCVXU2 5000 — — — Max. it. — — — Max. it.
NONCVXUN 5000 — — — Max. it. — — — Max. it.
NONDIA 5000 109 770 118.168 Opt. 11 17 13.948 Opt.
NONDQUAR 5000 832 837 443.351 Opt. 831 836 999.714 Opt.
NONMSQRT 4900 — — — Max. it. — — — Not conv.
OSBORNEA 5 64 101 0.011 Opt. 65 80 0.034 Opt.
OSBORNEB 11 72 134 0.032 Opt. 57 66 0.029 Opt.

(continued on the next page)
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(continued from the preceding page)

Problem n
LDLtr (Trust Region) bfgsR (Line Search)

It Numf Sec Conv It Numf Sec Conv

OSCIGRAD 5000 486 2661 1109.817 Opt. 805 3549 1189.449 Near opt.
OSCIPATH 500 26 173 0.422 Opt. 23 47 0.292 Opt.
PALMER1C 8 53 81 0.058 Opt. 50 54 0.027 Opt.
PALMER1D 7 39 68 0.017 Opt. 37 41 0.025 Opt.
PALMER2C 8 62 86 0.008 Opt. 58 61 0.034 Opt.
PALMER3C 8 59 79 0.009 Opt. 60 63 0.028 Opt.
PALMER4C 8 60 78 0.008 Opt. 60 63 0.032 Opt.
PALMER5C 6 22 27 0.017 Opt. 24 25 0.009 Opt.
PALMER6C 8 75 94 0.007 Opt. 70 73 0.036 Opt.
PALMER7C 8 69 96 0.006 Opt. 70 73 0.037 Opt.
PALMER8C 8 70 100 0.008 Opt. 67 70 0.043 Opt.
PARKCH 15 39 163 0.221 Unbounded 51 70 3.030 Opt.
PENALTY1 1000 858 2375 46.592 Opt. 275 314 12.325 Opt.
PENALTY2 200 1371 5910 18.818 Opt. 283 971 1.161 Opt.
PENALTY3 200 864 4923 40.313 Near opt. 212 522 3.435 Near opt.
POWELLBSLS 2 191 413 0.003 Opt. 84 135 0.072 Opt.
POWELLSG 5000 44 46 26.320 Opt. 50 51 72.768 Opt.
POWER 5000 3528 8250 5353.477 Opt. — — — Max. it.
QUARTC 5000 799 991 545.104 Opt. — — — Max. it.
RAT42LS 3 1 7 0.005 Opt. 1 6 0.004 Opt.
RAT43LS 4 4 9 0.002 Opt. 5 6 0.004 Opt.
ROSENBR 2 53 101 0.001 Opt. 29 40 0.020 Opt.
ROSENBRTU 2 839 1034 0.009 Opt. 45 83 0.036 Opt.
ROSZMAN1LS 4 101 166 0.022 Opt. 24 35 0.018 Opt.
S308 2 15 17 0.011 Opt. 12 14 0.008 Opt.
SBRYBND 5000 5912 22673 15225.131 Opt. 4564 27376 8030.757 Opt.
SCHMVETT 5000 44 50 26.562 Opt. 45 47 77.080 Opt.
SCOSINE 5000 — — — Max. it. — — — Max. it.
SCURLY10 5000 — — — Not conv. — — — Max. it.
SCURLY20 5000 — — — Not conv. — — — Max. it.
SCURLY30 5000 — — — Not conv. — — — Max. it.
SENSORS 100 30 54 0.145 Opt. 24 32 0.108 Opt.
SINEVAL 2 88 209 0.003 Opt. 62 96 0.042 Opt.
SINQUAD 5000 41 77 15.391 Opt. 16 30 23.645 Opt.
SISSER 2 6 8 0.006 Opt. 4 7 0.005 Opt.
SNAIL 2 119 295 0.003 Opt. 94 133 0.049 Opt.
SPARSINE 5000 — — — Max. it. — — — Max. it.
SPARSQUR 5000 230 303 149.771 Opt. 1039 1540 1365.125 Opt.
SPMSRTLS 4999 423 433 227.425 Opt. 421 426 512.698 Opt.
SROSENBR 5000 55 321 38.980 Opt. 10 15 12.296 Opt.
SSBRYBND 5000 4822 22972 12439.335 Opt. 4015 16401 4906.791 Opt.
SSCOSINE 5000 — — — Not conv. — — — Max. it.
SSI 3 151 392 0.002 Opt. 1009 1418 0.649 Opt.
STRATEC 10 76 151 2.569 Opt. 47 61 1.926 Opt.
TESTQUAD 5000 — — — Max. it. 954 1909 1228.821 Opt.
THURBERLS 7 110 324 0.006 Opt. 46 69 0.027 Opt.
TOINTGOR 50 154 156 0.751 Opt. 155 156 0.091 Opt.
TOINTGSS 5000 36 45 22.138 Opt. 32 34 39.242 Opt.
TOINTPSP 50 86 112 0.189 Opt. 93 111 0.069 Opt.
TOINTQOR 50 75 80 0.161 Opt. 76 77 0.043 Opt.
TQUARTIC 5000 65 299 62.010 Opt. 14 25 17.365 Opt.
TRIDIA 5000 4197 25360 10533.044 Opt. 705 1410 862.734 Opt.

(continued on the next page)
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Problem n
LDLtr (Trust Region) bfgsR (Line Search)

It Numf Sec Conv It Numf Sec Conv

VARDIM 200 47 55 0.447 Opt. 46 51 0.105 Opt.
VAREIGVL 5000 281 286 155.250 Opt. 289 291 348.909 Opt.
VESUVIALS 8 173 481 0.011 Opt. — — — Max. it.
VESUVIOLS 8 164 601 0.004 Opt. 34 70 0.051 Opt.
VESUVIOULS 8 86 294 0.018 Opt. 40 70 0.060 Opt.
VIBRBEAM 8 75 194 0.018 Opt. 75 111 0.040 Opt.
WATSON 12 61 68 0.056 Opt. 60 63 0.031 Opt.
WOODS 4000 620 3642 720.361 Opt. 531 918 361.367 Opt.
YATP1LS 4899 455 2407 875.932 Opt. 37 69 43.469 Opt.
YATP2LS 4899 86 403 63.070 Opt. 10 14 11.802 Opt.
YFITU 3 85 180 0.010 Opt. 63 82 0.029 Opt.
ZANGWIL2 2 1 3 0.007 Opt. 2 3 0.002 Opt.

In this experiment LDLtr solved 226/252 problems to optimality, while the line-search
method solved 222/252. This indicates that the LDLtr method is robust on this large subset
of the unconstrained CUTEst problems.

For an “at-a-glance” comparison we provide performance profiles proposed by Maha-
jan, Leyffer & Kirches [36], which extend the performance profiles proposed by Dolan &
Moré [17]. In the general case with np test problems, performance profiles are based on
values of the performance metric

ρs(τ) =
card {p : πp,s ≤ τ}

np
and πp,s =

tp,s
min tp,i

1≤i≤S, i ̸=s

,

where tp,s is the “output” (i.e., iterations or time) of “solver s” on problem p, and S denotes
the total number of solvers for a given comparison. When τ < 1, ρs(τ) is an estimate of the
probability that solver s is faster than any other solver in S by at least a factor of 1/τ . For
example, ρs(0.25) is an estimate of the probability that solver s is four times faster than any
other solver in S on a given instance. When τ > 1, ρs(τ) is an estimate of the probability
that solver s is at most τ times slower than the best-performing solver. For example, ρs(1)
is an estimate of the probability that solver s is the fastest for a problem instance, and ρs(4)
is an estimate of the probability that solver s can solve a problem at most four times slower
than any other solver.

In Fig. 2 we depict the performance metric ρs(τ) as a function of τ for each solver s (i.e.,
for bfgsR and LDLtr). A dotted vertical is used to indicate the value τ = 1.

The profiles indicate that LDLtr required less overall cpu time than bfgsR. The main
reason for this appears to be the updating strategy of an LDLT factorization, which is
implemented by updating the inverse factorization. Algorithm 4 (LDLtr) is based on a
modification of Algorithm C1 of Gill, Golub, Murray & Saunders [24], while bfgsR updates
the Cholesky factors of Bk using the method of Dennis & Schnabel [16].

In a second experiment LDLtr was compared to an implementation of the Moré-Sorensen
(MS) trust-region algorithm ( [38]). The MS algorithm is considered to be very robust, but
requires O(n3) flops per iteration. Therefore, the problem dimension is limited to n ≤ 1000.
(Note that LDLtr is applicable to larger problems, but MS is not.) The resulting test-set
consisted of 161 problems. Many of the problems are relatively small, and any computational
advantages in terms of time are also small. Based on the results of Fig. 3, the proposed
strategy with two phases (including a branching for small and large problems) is also effective
when compared to the MS algorithm.
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Figure 2: Computation-time extended performance profiles for Algorithm 4 and a
strong Wolfe line-search BFGS algorithm on 252 CUTEst unconstrained problems
with n ≤ 5000 variables.

6. Conclusions

An effective two-phase LDLT quasi-Newton trust-region algorithm has been formulated
for smooth unconstrained optimization problems for which the second derivatives are not
available. In the first phase, the LDLT factorization is used to compute an inexpensive
estimate of the shift parameter associated with the optimality conditions for the two-norm
trust-region subproblem. In the second phase, the factorization is used for a modified
conjugate-gradient iteration that solves a system with the inverse approximate Hessian
plus a shifted identity. Because the estimated shift parameter may be different from the
optimal shift, a backtracking strategy on the shift is used to find the shift that gives the
lowest function value. By updating the LDLT factorization with rank-one corrections and
using two phases to generate a step, the algorithm has an overall complexity of O(n2)
flops. Numerical experiments show that the LDLT trust-region method is competitive with
a strong Wolfe line-search quasi-Newton method on a subset of almost all unconstrained
problems in the CUTEst test collection. The experiments indicate that the method inherits
the robustness of the Moré-Sorensen trust-region method without the computational cost.

A. Algorithm 2

Algorithm 2 is based on solving for σ+ and s+ in the optimality conditions (2.8), specifically
so that ∥s+∥2 = ∆k. Note that, because of the first equation in (2.8), s+ = s+(σ+), i.e.,
the step s+ is a function of σ+. Instead of solving ∥s+(σ+)∥2 = ∆k it is better numerically
to solve the equivalent (secular) equation

ϕ(σ+) =
1

∥s+(σ+)∥2
− 1

∆k
= 0.

This is a one-dimensional root finding problem in terms of σ+, which can be solved with
Newton’s method. Starting from an initial point σ+

0 , the iteration is

σ+
i+1 = σ+

i −
ϕ(σ+

i )

ϕ′(σ+
i )

, i = 0, 1, . . . .
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Figure 3: Extended iteration performance profiles for Algorithm 4 and the Moré-
Sorensen method on 161 CUTEst unconstrained problems with n ≤ 1000 variables.

If q+ = q+(σ) denotes the derivative s+′ = (s+(σ))′, then ϕ′(σ) is given by

ϕ′(σ) =

(
1

∥s+∥2
− 1

∆k

)′

=

(
1

s+Ts+

)′

= −q+Ts+

∥s+∥32
.

The quantity q+ is computed from the equations(
Lk(Dk + σEk)L

T
k s

+ = −gk
) ′, i.e., LkEkL

T
k s

+ + Lk(Dk + σEk)L
T
k q

+ = 0,

which implies that
(Dk + σEk)L

T
k q

+ = −EkL
T
k s

+.

The Newton correction at σ is then

ϕ(σ)

ϕ′(σ)
=

ϕ

ϕ′ = −
(1/∥s+∥2 − 1/∆k)

s+Tq+/∥s+∥32
= − ∥s

+∥22
s+Tq+

(∆k − ∥s+∥2
∆k

)
.

It follows that at σ = σi, we have

σi+1 = σi −
∥s+∥22
s+Tq+

(∥s+∥2 −∆k

∆k

)
,

which completes the derivation of the quantities used in Algorithm 2.

B. Quasi-Newton LDLT Updates

In order to apply the LDLT updating strategy to (2.17) we reformulate the rank-2 update
in (2.17) to conform to (2.1). Specifically, let

β1 =
yT
k sk + yT

k Hkyk
(yT

k sk)
2

, β2 =
1

yT
k sk

,

and note that

(yT
k sk + yT

k Hkyk)sk
(yT

k sk)
2

sks
T
k −

1

yT
k sk

(
Hkyks

T
k + sky

T
k Hk

)
=

[
sk Hkyk

] [ β1 −β2

−β2 0

] [
sk Hkyk

]T
.
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The 2× 2 matrix can be factored as[
β1 −β2

−β2 0

]
=

[
1 0

l21 1

][
α
(1)
k

α
(2)
k

][
1 l21

0 1

]
.

where

α
(1)
k = β1, l21 = −β2

β1
, and α

(2)
k = −β2

2

β1
.

If a
(1)
k and a

(2)
k denote the quantities

a
(1)
k =

[
sk Hkyk

] [ 1
l21

]
= sk + (yT

k sk)α
(2)
k Hkyk, and a

(2)
k = Hkyk,

then

α
(1)
k a

(1)
k a

(1)
k

T + α
(2)
k a

(2)
k a

(2)
k

T =
(yT

k sk + yT
k Hkyk)

(yT
k sk)

2
sks

T
k −

1

yT
k sk

(
Hkyks

T
k + sky

T
k Hk

)
.

which are the updates used in (2.19) and (2.20).
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Algorithm 44

Require: 0 < c1 ≤ c2, 0 < c3 < 1 < c4, 0 < c5 ≤ c6 ≤ c2, 0 < c7 < 1; 0 < γ0 < 1;
Set T0 = I, G0 = ϕI, ∆0 > 0, ϵ > 0, kmax > 0;
k = 0;
while ϵ ≤ ∥gk∥2 and k ≤ kmax do

sk = −TkGkT
T
k gk;

if minGk ≤ 0 or ∆k < ∥sk∥2 then
if nmax < n then

Compute s+, σ+ from Algorithm 2; [phase 1]
else

Compute s+, σ+ from Algorithm 1;
end if

end if
Compute sk from Algorithm 3 [phase 2]
if f(xk + s+) < f(xk + sk) then

sk = s+;
end if

Solve TkGkT
T
k hk = sk and set ρk =

f(xk)− f(xk + sk)

sTk gk + 1
2s

T
k hk

;

if c1 < ρk then
xk+1 = xk + sk;
Update γk;

else
xk+1 = xk;

end if
if c2 < ρk then

if ∥sk∥2 ≤ c3∆k then
∆k+1 = ∆k;

else
∆k+1 = c4∆k; [increase trust-region radius]

end if
else if c5 ≤ ρk ≤ c6 then

∆k+1 = ∆k;
else

∆k+1 = c7∆k; [decrease trust-region radius]
end if
Compute Gk+1, Tk+1 from Gk, Tk using (2.19) and (2.20); [Update factors]
k ← k + 1;

end while
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