Linear Algebra Software in Nonlinear Optimization

Elizabeth Wong

Department of Mathematics
University of California, San Diego

Joint work with:
Philip E. Gill & Michael A. Saunders

SIAM Meeting on Applied Linear Algebra,
Atlanta, October 26–30, 2015.
Introduction

Optimization methods require the solution of many systems:

\[Kv = r, \quad \text{with} \quad K = \begin{pmatrix} H & J^T \\ J & -G \end{pmatrix}. \]

- \(H \) is \(p \times p \) and symmetric.
- \(J \) is \(m \times p \).
- \(G \) is \(m \times m \) and symmetric positive semidefinite.
- \(J \) and \(H \) are \textit{sparse} with \(p \) and \(m \) \textit{large}.
In some cases we must reject the KKT matrix K and solve with

$$\tilde{K} = \begin{pmatrix} H + E & J^T \\ J & -G \end{pmatrix},$$

for some positive semidefinite E.

If K is symmetric, then the matrix inertia of K is the ordered triple

$$\text{In}(K) = (i_P, i_N, i_0),$$

where

$$\begin{cases} i_P = \# \text{ positive eigenvalues of } K \\ i_N = \# \text{ negative eigenvalues of } K \\ i_0 = \# \text{ zero eigenvalues of } K \end{cases}$$
\[K = \begin{pmatrix} H & J^T \\ J & -G \end{pmatrix}, \quad H \ p \times \ p \quad J \ m \times \ p \]

\(G \) is positive semidefinite (typically, \(G \) is a positive-definite diagonal).

The matrix must have \textit{correct inertia}

\[\text{In}(K) = (p, m, 0). \]

\[\text{In}(K) = \text{In}(H + J^T G^{-1} J) \quad + \quad (0, m, 0) \quad \text{when} \ G \neq 0 \]
\[\text{In}(K) = \text{In}(Z^T H Z) \quad + \quad (m, m, 0) \quad \text{when} \ G = 0 \]

\(Z^THZ \) is the reduced Hessian, with the columns of \(Z \) forming a basis for the nullspace of \(J \).
Otherwise, we must find
\[\bar{K} = \begin{pmatrix} H + E & J^T \\ J & -G \end{pmatrix}, \]
with \(m \) negative eigenvalues.

The “least” \(E \) is known, but not easily computed (Cheng and Higham ’98).
Result (Inertia-controlling factorization)

There exists a permutation P and a positive semidefinite E such that

$$\ln(\bar{K}) = (p, m, 0) \quad \text{and} \quad P\bar{K}P^T = LDL^T$$

where L is unit lower-triangular and D is block-diagonal.

If $\ln(K) = (p, m, 0)$, then $E = 0$, i.e., $\bar{K} = K$.

(Forsgren '92, Forsgren & G, '98).

This method is based on deferring certain pivots during the LDL^T factorization.

- Interfering with the pivot order increases “fill” in L.
- $\|L\|$ cannot be bounded independently of K.
- We want a method that can exploit “black box” software
Identify a subset of the columns of J to form a square $m \times m$ matrix B such that
\[
(B \quad -G) \quad \text{has full row rank.}
\]
The remaining columns of J form the $m \times n_s$ matrix S.

\[
K = \begin{pmatrix}
H & J^T \\
J & -G
\end{pmatrix} \sim \begin{pmatrix}
H_{BB} & B^T & H_{BS}^T \\
B & -G & S \\
H_{BS} & S^T & H_{SS}
\end{pmatrix}.
\]

The smaller KKT matrix in the $(1, 1)$ block of K

\[
K_{BB} = \begin{pmatrix}
H_{BB} & B^T \\
B & -G
\end{pmatrix}
\]

is nonsingular and has m negative eigenvalues.
Identifying B

Given the KKT matrix, we create 2×2 “tile” matrices of the form

$$T_{ij} = \begin{pmatrix} h & a \\ \bar{a} & -g \end{pmatrix},$$

where h is an element of H, a and \bar{a} are elements of A, and g is an element of G.

These tiles form a symmetric $2m \times 2m$ “checkerboard” matrix T of tiles from K_{BB}, i.e.,

$$T = \begin{pmatrix} T_{11} & T_{12} & T_{13} & \cdots \\ T_{12}^T & T_{22} & T_{23} & \cdots \\ T_{13}^T & T_{23}^T & T_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \sim \begin{pmatrix} H_{BB} & B^T \\ B & -G \end{pmatrix} = K_{BB}$$
A permutation matrix Π is defined such that the upper left-hand corner of a symmetrically permuted version of K consists of

$$C = \Pi^T K \Pi = \begin{pmatrix} T & F^T \\ F & M \end{pmatrix}$$

with T nonsingular. Then

$$C / T \equiv T - FM^{-1}F^T.$$

is the \textit{Schur complement} of T in C.
\[C = \begin{pmatrix} T & F^T \\ F & M \end{pmatrix} \quad T \sim \begin{pmatrix} H_{BB} & B^T \\ B & -G \end{pmatrix} \]

- If we compute the LDL\(^T\) factors of \(C \), the permuted and tiled version \(K \), in such a way that \(T \) is eliminated first, the remaining Schur complement must be positive definite for \(\ln(K) \) to be correct.
- If the Schur complement is not positive definite, then we can implicitly modify \(H \) based on the LDL\(^T\) factors such that \(\bar{K} \) will have correct inertia.
- Eliminating \(T \) first allows us to safely modify the factors (modifications are restricted to \(H \)).
Nonlinear optimization

Our interest is in *sequential quadratic programming (SQP)* methods to solve nonlinear optimization problem:

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad c(x) - s = 0, \quad x \geq 0, \quad s \geq 0.
\end{align*}
\]

This involves solving a sequence of *quadratic subproblems (QP)*

\[
\begin{align*}
\text{minimize} & \quad g^T(x - x_0) + \frac{1}{2}(x - x_0)^TH(x - x_0) \\
\text{subject to} & \quad c + A(x - x_0) - s = 0, \quad x \geq 0, \quad s \geq 0.
\end{align*}
\]

- \(H\) is a positive-semidefinite approximation or the exact Hessian of the Lagrangian function.
- \(A\) is the \(m \times n\) Jacobian of \(c(x)\) at \(x_0\).
The majority of the work in solving the QP subproblem involves solving a sequence of linear systems with a KKT matrix defined by a set of *basis variables*:

\[
K_B = \begin{pmatrix} H_B & A_B^T \\ A_B & 0 \end{pmatrix}
\]

where \(H_B \) is symmetric and \(n_B \times n_B \), and \(A_B \) is \(m \times n_B \) with rank \(m \).

Basis variables must define \(K_B \) such that \(K_B \) has *correct inertia*

\[
\text{In}(K_B) = (n_B, m, 0) = \text{In}(Z^THZ) + (m, m, 0).
\]
K_B and its associated set of basis variables are rejected if K_B does not have the correct inertia.

- QP method will maintain correct inertia.
- In the SQP context, an initial set of basis variables is always provided.

⇒ Apply the algorithm to find an initial set of basis variables such that K_B has correct inertia.
Given an initial set of basis variables, we identify the \textit{basic} and \textit{superbasic} variables:

\[A_B \sim (B \quad S) \]

with \(B \) \(m \times m \) and nonsingular, and \(S \) an \(m \times n_s \) matrix. To find \(B \), we compute the \textit{LU} of \(A_B^T \).

Compute the \textit{LDL}^T factors of \(K_{BB} \) to get a pivot ordering

\[K_{BB} = \begin{pmatrix} H_{BB} & B^T \\ B & 0 \end{pmatrix} \quad \ln(K_B) = (m, m, 0). \]

Form \(K_B \) such that

\[
K_B = \begin{pmatrix} H_{BB} & B^T & \hline H_{BS}^T \\ B & 0 & \hline S^T \\ H_{BS} & S & \hline H_{SS} \end{pmatrix} \sim \begin{pmatrix} H_B & A_B^T \\ A_B & 0 \end{pmatrix}.
\]

The Schur complement of \(K_B \) is:

\[
H_{SS} - (H_{BS} \quad S^T) K_B^{-1} \begin{pmatrix} H_{BS}^T \\ S \end{pmatrix} = Z^T H Z.
\]
Compute a restricted ordering for K_B such that the ordering from K_{BB} is preserved (J. Hogg, RAL).

Compute the LDL^T factors of K_B using this restricted ordering.

- $Z^T H Z$ is implicitly formed and factored.
- Sparsity in $Z^T H Z$ is exploited.
- Once K_{BB} has been eliminated, it is safe to modify the factors.

Given the factors of K_B, we can

- remove any superbasics that cause incorrect inertia, or

- modify the appropriate components of H so that K_B will have correct inertia.

 \Rightarrow modifications to H affect the reduced Hessian $Z^T H Z$.
Some numerical results

<table>
<thead>
<tr>
<th>Problem</th>
<th>m</th>
<th>Initial n_S</th>
<th>Final n_S</th>
<th># elts in K</th>
<th># elts in L (restricted) (unrestricted)</th>
<th>Density of L</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVGASA</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>75</td>
<td>254 241</td>
<td>63% 59%</td>
</tr>
<tr>
<td>DUALC1</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1294</td>
<td>1975 1954</td>
<td>2% 2%</td>
</tr>
<tr>
<td>DUALC2</td>
<td>229</td>
<td>2</td>
<td>2</td>
<td>1378</td>
<td>2101 2080</td>
<td>2% 2%</td>
</tr>
<tr>
<td>GMNCAE1</td>
<td>300</td>
<td>175</td>
<td>23</td>
<td>18973</td>
<td>37752 35957</td>
<td>19% 18%</td>
</tr>
<tr>
<td>GMNCAE2</td>
<td>1050</td>
<td>175</td>
<td>175</td>
<td>43499</td>
<td>100824 80059</td>
<td>4% 3%</td>
</tr>
<tr>
<td>GOULDQQP1</td>
<td>18</td>
<td>32</td>
<td>23</td>
<td>114</td>
<td>429 363</td>
<td>41% 35%</td>
</tr>
<tr>
<td>HS118</td>
<td>17</td>
<td>15</td>
<td>15</td>
<td>104</td>
<td>513 415</td>
<td>42% 34%</td>
</tr>
<tr>
<td>QPCBOEI1</td>
<td>351</td>
<td>384</td>
<td>384</td>
<td>4922</td>
<td>147737 23634</td>
<td>25% 4%</td>
</tr>
<tr>
<td>QPCBOEI2</td>
<td>166</td>
<td>143</td>
<td>143</td>
<td>1837</td>
<td>33671 7664</td>
<td>30% 7%</td>
</tr>
<tr>
<td>QPNBOEI2</td>
<td>166</td>
<td>143</td>
<td>44</td>
<td>1351</td>
<td>10617 5907</td>
<td>15% 8%</td>
</tr>
<tr>
<td>QPNSTAIR</td>
<td>356</td>
<td>467</td>
<td>72</td>
<td>3098</td>
<td>24011 11747</td>
<td>8% 4%</td>
</tr>
</tbody>
</table>

HSL_MA97 + J. Hogg’s restricted ordering code
Conclusions

- When $G \neq 0$, symmetric indefinite solvers are the only viable option.
- In practice, K is likely to have correct inertia except for the early iterations, so we can afford to use a vanilla LDL^T first.
- The method described is effectively deferring all pivots except “HG” pivots. The inertia-controlling factorization defers fewer pivots but needs a better implementation.

Software information at: http://ccom.ucsd.edu/~optimizers